
 C
O

M
P 310 - Joseph V

ybihal 2006

1

Comp 310
Computer Systems and

Organization

Lecture #4
Building A Command Interpreter

(The OS user interface)

Prof. Joseph Vybihal

 C
O

M
P 310 - Joseph V

ybihal 2006

2

Announcements
• Assignment #1 on Web CT Monday
• Tutorials:

– Unix, scripts and editting C programs: TBA
– Advanced: offered by SOCS (check web site)

• TA Info:

Theresa Deerng
Office: Web TA
Unix Lab Tutor

 C
O

M
P 310 - Joseph V

ybihal 2006

3

Basic OS Architecture
(Course Table of Contents)

User Interface

Memory Manager

Process Manager

Network Manager

Hardware Manager

Disk / Storage Manager

Phase 1

Phase 2

Phase 3

Security Phase 4

 C
O

M
P 310 - Joseph V

ybihal 2006

4

Part 1

OS Overview

 C
O

M
P 310 - Joseph V

ybihal 2006

5

What kind of UI?
• Command-line
• GUI
• Software only

– Job control language
– Bash programming

Command-line and GUI can encapsulate Software Only

 C
O

M
P 310 - Joseph V

ybihal 2006

6

OS Layout

System
Board

HDD
OS Kernel
Program

Library of
OS programs
and drivers
as separate
executables

CMOS on chip

RAM

1

2

3

4

5

1

2

3

4

CMOS hardware
check

Launch program at
address zero

Kernel loaded into
RAM

RAM is formatted
by kernel

Kernel’s UI
function called.
(5) Is the default
LOGIN shell.OS Registration

Database

OS
UI

Shells

 C
O

M
P 310 - Joseph V

ybihal 2006

7

The Boot-Up Sequence
1. Turn on PC
• CMOS checks hardware (RAM, Ports, Video)

If damage then stop PC with error message
• CMOS goes to “0000” address of HDD loads

software (hopefully it is OS, maybe Virus)
4. OS Loader puts only OS “Kernel” at top of RAM

and gives CPU to Kernel (designates “privileged”
execution status)

5. Kernel deletes loader and formats RAM
6. Kernel checks OS software components & verifies

installed hardware drivers (optional)
• If error displays error menu on screen (blue/black)

If no errors displays login screen

 C
O

M
P 310 - Joseph V

ybihal 2006

8

The OS Kernel & Shell Relationship

Kernel

Video Ptr To video RAM

U
ser Space

Hardware Map

Shelli

• Login/out fns  launch default shell
• Process and Memory Managers (in assem)
• Partial support: I/O and Network
• Remainder OS on HDD as DLL or EXE

Is a standard program launched by the kernel (sh.exe)

Exit or Logout from shell? What happens?
Last exit? No more processes on list  auto logout

The OS Structure:
• Loader
• Kernel
• Drivers (libraries on disk)
• Mini programs on disk

Only part in RAM

Loads Kernel

Like DLLs, gets
loaded when needed

Most of OS here!

 C
O

M
P 310 - Joseph V

ybihal 2006

9

Part 2

The OS Shell

 C
O

M
P 310 - Joseph V

ybihal 2006

10

Basic Structure

User
Interface Interpreter

Shell MemoryScript
Processor

Text or Graphics based

One command processor

Text file line iterator String based key=value space (~fixed)

OS

Library of functions

 C
O

M
P 310 - Joseph V

ybihal 2006

11

Shells
• Features:

– Command-line Interface
• Expression syntax
• Provides access to programs on disk

– User and OS
• Provides access to public kernel functions

– Generates errors with unknown commands
– Scripting Interface

• Expression syntax
• Executable on shell’s command-line or from a script

– Shell “global” memory sharable under multi-processing
– Provides for shell switch at launch-time
– GUI Interface

 C
O

M
P 310 - Joseph V

ybihal 2006

12

The Command Interpreters

Command-Line

Window

 C
O

M
P 310 - Joseph V

ybihal 2006

13

Part 3
Programming the OS Shell

 C
O

M
P 310 - Joseph V

ybihal 2006

14

It is just a program!

Sh.exe or win.exe

int main (int argc, char* argv[]) …

Parameter passing from the OS
or from a launch request from a
previous shell

In Unix this
is programmed
in C!

Returned error code:
0  no error
N  an error code

Used to send switches to the shell
E.G.
-H help info
-V verbose mode

At the prompt:
$ sh -v

 C
O

M
P 310 - Joseph V

ybihal 2006

15

The Command Interpreter is a Program

 int main(int argc, char* argv[])

Standard execution sequence:
•Process parameter switches
•Execute standard initialization scripts (E.G. .cshrc)
•Command Line Processor

● Possible branch to Script Interpreter
● Shell Memory Manager

•Execute standard logout scripts (E.G. .logout)

 C
O

M
P 310 - Joseph V

ybihal 2006

16

The Command Line Processor

while (strcmp(“exit”,userinput)!=0)
{

printf(“%s”,prompt);
gets(userinput);

token = tokenize(userinput);
token2= tokenize(userinput);

if (strcmp(token,”ls”) directory(token2);
else if (strcmp(token, “man”) system(“man”+token2);
else {

errorcode = system(userinput);
if (errorcode > 0)

printf(“some error message”);
}

}

Some are calls
to internal shell
functions

Some are calls to the
Kernel

 C
O

M
P 310 - Joseph V

ybihal 2006

17

Parsing Strings
• Is tokenizing string optimal?

– How do we code a tokenizer...
– Are there other ways...

 C
O

M
P 310 - Joseph V

ybihal 2006

18

Command-line Switches
 if (argc > 0) // parameters exist
 {

for (I=0; I<argc; I++)
{

if (strcmp(argv[I],”-H”) help();
else if (strncmp(argv[I],”-V”) Verbose();
:
else
{

printf(“%s undefined”,argv[I]);
errorcode++;

}
}

 }
Graceful, if it does not crash…

 C
O

M
P 310 - Joseph V

ybihal 2006

19

The Script Interpreter
• Similar to the command line processor, but:

 No prompt, instead a pointer is set to the script file
 Command are fgets’d from the script file and tokenized
 Then processed in the same way as the command-line processor
 Interpreter ends at EOF or when EXIT or LOGOUT

Note: In Unix, all the programming commands can also be
input directly through the command-line prompt without the
need of a script interpreter.

Obviously there is some reuse of code.

How can we program this is C?

 C
O

M
P 310 - Joseph V

ybihal 2006

20

Question
• Can we rework the command-line program

so that its switches can accept a command-
line command?
– How would that look like for the user?
– How would we program this?
– Are there advantages to this?

 C
O

M
P 310 - Joseph V

ybihal 2006

21

The Shell’s Memory

The Shell

Script
Interpreter

Command
Processor

Interpreter uses command processor to execute

Switch
Processing

This includes invoking the login and logout scripts (via script interpreter)

Memory Implementation methods…

array Linked listDATANAME
Name
Data
Next

The UI or GUI and “library” of internal functions (commands)

Text file parser + programming language parser & interpreter

Tradition method since quick and easy, also memory controllable.

 C
O

M
P 310 - Joseph V

ybihal 2006

22

Question
• How do we write code to implement an

array form of memory? What would the
command-line command look like?

 C
O

M
P 310 - Joseph V

ybihal 2006

23

Part 4
GUI Architecture

 C
O

M
P 310 - Joseph V

ybihal 2006

24

Windowed Architectures
• Interrupt processing

– What is an interrupt?
– The interrupt table.

• Message passing architecture
– What is a message?
– The message queue
– The messaging/process loop
– How does that fit with interrupts?

 C
O

M
P 310 - Joseph V

ybihal 2006

25

Part 5

At Home

 C
O

M
P 310 - Joseph V

ybihal 2006

26

Things to try out
• Learn some of the command-line

commands on your personal computer:
• Create a folder
• Create a text file in that folder
• List the contents of the folder
• Delete that file
• List the contents of the folder again

• Try this out on Unix/Linux

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

