COMP 310/ECSE 427
Computer Systems and Organization

Lecture #1
Introduction to Operating Systems

Prof. Joseph Vybihal
Announcements

• Instructor coordinates

• Course outline
 – Generic OS Course
 – Look a little at Unix, Microsoft, Apple

• Participation

• Web CT
 – discussions, assignments, mail, lectures

• Job!
 – Web programming $13/hr
The Operating System

What is this?

What is in it?

What can it do?

How can we make it do things?

How can we make this CPU write to the screen?

This is a lot of work, how can we make it simpler?
The Operating System

Basic OS

- Drivers
- CPU + Assembler

Advanced OS

- User Interface
- Services
- Networks and Communication
- Compiler Libraries
- Application Programs

Speed & Resources
Why is the OS Needed?

It is an interface

They speak different languages … a **translator** is needed
Computers are designed to be easy to build.

Operating systems are designed to make the computer accessible to people. (and to software)?
Why is the OS Needed?

• Need #1 – Human Machine Interface
• Need #2 – Program Interface
• Need #3 – Hardware Management

- Banking System
- Games
- Web Browser
 - Compilers
 - Editors
 - Command Interpreters

Operating System

Machine Language

Micro architecture

Physical Devices
NEED #1:
The Human Machine Interface

- Input:
 - keyboard, mouse, scanner, …

- Output:
 - screen, printer, …

- Network:
 - modem, Ethernet, …

- Algorithmic:
 - scripts, programs, …

- Environments:
 - single or multi-processing, …

Provides an **abstraction** for the human… (they become a user)?
A history of human to machine interfaces
1941 Konrad Zuse (Z3)?

German built – during WW2 – Bombed by the Allies
IO: ticker tape input & typewriter output,
control panel OS & music box operation, relays for memory
1944 Howard Aiken & IBM
The Mark 1

- 800 km of wire
- 3 million electrical connections
- Add in 0.3 sec
- Multiply in 6 sec
- Divide in 11.4 sec

- Used electromechanical relays and rotating shafts for data
- Sequencer controlled by punch cards

The operating system
Memory initialized to off

N wires

When charged bump touched electrode, current flows and flips a switch.

Metallic electrodes

Byte not invented yet

Electrically charged drum

SLOW
A lot of clicking
The BYTE concept not needed – N wires only required

Each wire represents a circuit subsystem that carries out a function: add, move, compare.

Switch box

outputs to subsystems

inputs

- add
- move
- compare
Direct Feed Input Devices

OS Input device:
“command-line interface”

OS = Turn on, go to address zero, execute.

1946
The wires where the program.
Control was then passed to the CPU for execution.
TABLE TOP FEED

A bit!!

4-bit direct feed device

Only binary and machine language.

OS = I/O board, exec address zero.

RAM 1950’s

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Switches on/off
- Submit address
- Switches on/off
- Submit data
- Repeat
- When done: Run
Code in RAM
(Programming)?

Java or C	Assembler	Machine Language
if \((x > 10)\)? | SUB x, 10 | 0000 101 000001 01010
\(x = x + 1;\) | BGT skip | 0001 011 0101
else | SUB x, 1 | 0010 101 000001 00001
\(x = x - 1;\) | MOV x, acc | 0011 000 000001 11111
BR next | | 0100 100 0111
skip: | | 0101 010 000001 00001
ADD x, 1 | | 0110 000 000001 11111
MOV x, acc | | 0111
next: | | | Address ——— Code/Data ————

Bits are sent to sequencer....
PUNCH CARD FEED
1960’s

Punch Card Machine
OS = ASCII to Binary, reader, output, exec.

In ASCII

In binary

In
(output on printer)?
The OS manages the communication between the peripherals, the CPU, and the human.

I/O finally on same device!
Interface for the Program

Address 0

Address n-1

Code

Data

RAM

OS

Peripheral Interfacing

System Interfacing

User Interfacing

Process Interfacing

Assembler

Hardware

NEED #2
For Example

• Program → Computer Screen (discuss)?
 – Use assembler to access the video card’s RAM
 – Use pre-built function in OS to access video card’s RAM
 – Use pre-built function in C to access pre-built function in OS to access video card’s RAM

• What about…
 – Program to Printer
 – Program to Keyboard
 – Program to Network
 – Touch screen, stylus, character recognition, etc.
Hardware Management

- Boot the computer (CMOS not OS, but reboot/hibernate/etc.)?
- Give access to the CPU and provide features like multi-processing
- Give access to devices and provide for features like priority and queue
 - Disk drives
 - Screen
 - Keyboard and mouse
 - Printers
 - Networks
Complete Basic OS View

1. **BOOT OPERATION**
 - Load OS & Format RAM
 - Give address to first OS instruction to CPU IP.
 - Pass control to CPU

2. **Program Execution Cycle**
 - User types program in and OS finds place in memory for information.
 - When user says RUN, the OS passes first instruction of code to CPU.
 - OS has now lost control of CPU
 - CPU executes the code.

3. **CPU Execution Cycle**
 - Load info at IP
 - Execute if possible else crash
 - Increment IP
 - Go to step 1

At a specific address

Buffer for key status
Buffer for 12 characters

Zero Page

At a specific address

Buffer for key status
Buffer for 12 characters

OS

Code

Data

RAM
Basic OS Architecture

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Interface</td>
<td>Get input from user and display results. Windowed or command-lined.</td>
</tr>
<tr>
<td>Memory Manager</td>
<td>Organizes RAM and remembers where everything is in RAM.</td>
</tr>
<tr>
<td>Disk / Storage Manager</td>
<td>Algorithms for finding and saving binary to and from disk drives.</td>
</tr>
<tr>
<td>Process Manager</td>
<td>Algorithms for passing control to and from the CPU – OS – Process.</td>
</tr>
<tr>
<td>Network Manager</td>
<td>Algorithms to integrate the OS with a network.</td>
</tr>
<tr>
<td>Hardware Manager</td>
<td>The drivers that provide extra code to the OS in order to interface with new hardware.</td>
</tr>
</tbody>
</table>
Part 2

Machines That Contain Operating Systems
Operating System Types

• Preset / Controller
 – An operating system constructed to perform specific duties. Commonly seen on real-time hardware devices like robot arms, cell phones, washing machines, etc.

• General Purpose
 – Designed to allow a human to construct and execute algorithms in a particular language under an executing environment.
Preset Devices

- Each button set to a single action
- Not general purpose
- Easy to use

OS = Mapping between key and function

```c
Selection = button();
Switch(Selection)?
{
    1: Menu(); break;
    2: Dial(); break;
    ...;
    ...;
}
```
General Purpose OS

A Manager

The OS

Applications / Languages

(Interface)?

Result: Life easier…
So Many Different Kinds

Preset
- Cell Phone
- Calculator
- Dishwasher
- Gas pump
- ENIAC
- Real-time Systems

General Purpose
- Single CPU Single Process
- Single CPU Batch Process
- Single CPU Multi Process
- Multi CPU Single Process
- Multi CPU Multi Process
- Distributed CPU Single Process
- Distributed CPU Multi Process

Microsoft, Apple, Unix, …
Future Operating Systems

• Gear (Belt – Glasses – Earphone – Mic. - bluetooth)?
• Personal networks
• OS On A Stick (almost here…appliances!)?
• The laser keyboard & 3D Interfaces
• Shared Distributed OS (parts of OS on different computers!)?
• Code Migration Processing

Discuss…
Part 3

Things To Do
Research at McGill

- Compilers and Concurrency
 - Prof. Laurie Hendren
- Networks
 - Prof. Bettina Kemp
 - Prof. Maheswaran
- Internet Technology
 - Prof. Joseph Vybihal
 (also AI)?
At Home …

• Using any OS, identify the features it has and associate it with one area in the Basic OS Architecture.

• Know the following terminology:
 • Instruction Pointer
 • CPU and Program Execution Cycle
 • General Purpose OS, Preset OS and Controllers
 • BOOT
 • The Basic OS Architecture

• Have you every crashed your OS? How?
• What bug do you think exists in your OS?