

COMP 310/ECSE 427 Computer Systems and Organization

Lecture #1
Introduction to Operating Systems

Prof. Joseph Vybihal

Announcements

- Instructor coordinates
- Course outline
 - Generic OS Course
 - Look a little at Unix, Microsoft, Apple
- Participation
- Web CT
 - discussions, assignments, mail, lectures
- Job!
 - Web programming \$13/hr

The Operating System

What is this?

What is in it?

What can it do?

How can we make it do things?

How can we make this CPU write to the screen?

This is a lot of work, how can we make it simpler?

Assembler

Why is the OS Needed?

It is an interface

They speak different languages ... a **translator** is needed 5

Computers are designed to be easy to build.

Operating systems are designed to make the computer accessible to people.

(and to software)?

Why is the OS Needed?

- Need #1 Human Machine Interface
- Need #2 Program Interface
- Need #3 Hardware Management

	Banking System	Games	Web Browser	Applications
	Compilers	Editors	Command Interpreters	} Tools
Needs to know the hardware	he Operating System			System Programs
				Hardware
				7

NEED #1:

The Human Machine Interface

- Input:
 - keyboard, mouse, scanner, ...
- Output:
 - screen, printer, ...
- Network:
 - modem, Ethernet, ...
- Algorithmic:
 - scripts, programs, ...
- Environments:
 - single or multi-processing, ...

Provides an abstraction for the human... (they become a user)? 8

A history of human to machine interfaces

1941 Konrad Zuse (Z3)?

German built – during WW2 – Bombed by the Allies

IO: ticker tape input & typewriter output, control panel OS & music box operation, relays for memory

1944 Howard Aiken & IBM The Mark 1

- 800 km of wire
- 3 million electrical connections
- Add in 0.3 sec
- Multiply in 6 sec
- Divide in 11.4 sec

- Used electromechanical relays and rotating shafts for data
- Sequencer controlled by punch cards

a switch. 12

The BYTE concept not needed – N wires only required

outputs to subsystems

Each wire represents a circuit subsystem that carries out a function: add, move, compare.

add move

compare

Switch box

inputs

Direct Feed Input Devices

WIRED FEED

OS = Turn on, go to address zero, execute.

OS Input device:

"command-line interface"

The wires where the program.
Control was then passed to the CPU for execution.

A bit!!

TABLE TOP FEED

Repeat

1950's

Only binary and machine language. OS = I/O board, exec address zero. 16

Code in RAM

(Programming)?

(not invented yet)?

This.

Java or C

Assembler

Machine Language

if (x > 10)? x = x + 1;

else

x = x - 1;

SUB x, 10

BGT skip

SUB x, 1

MOV x, acc

BR next

skip:

ADD x, 1

MOV x, acc

next:

101 000001 01010 0000

0001 011 0101

0010 101 000001 00001

000 000001 11111 0011

0100 100 0111

0101 010 000001 00001

000 000001 11111 0110

0111

----- Code/Data -----Address

Bits are sent to sequencer....

17

In

binary

Punch Card Machine

OS = ASCII to Binary, reader, output, exec.

KEYBOARD:

1980's

I/O finally on same device!

The OS manages the communication between the peripherals, the CPU, and the human.

MOUSE:

STYLUS: 1990's

Interface for the Program

System Interfacing

Peripheral Interfacing

User Interfacing

Process Interfacing²⁰

For Example

- Program → Computer Screen (discuss)?
 - Use assembler to access the video card's RAM
 - Use pre-built function in OS to access video card's RAM
 - Use pre-built function in C to access pre-built function in OS to access video card's RAM

- What about...
 - Program to Printer
 - Program to Keyboard
 - Program to Network
 - Touch screen, stylus, character recognition, etc.

NEED #3

Hardware Management

- Boot the computer (CMOS not OS, but reboot/hibernate/etc.)?
- Give access to the CPU and provide features like multi-processing
- Give access to devices and provide for features like priority and queue
 - Disk drives
 - Screen
 - Keyboard and mouse
 - Printers
 - Networks

Code

OS

(2

Program Execution Cycle

- User types program in and OS finds place in memory for information.
- When user says RUN, the OS passes first instruction of code to CPU.
- OS has now lost control of CPU
- CPU executes the code.

Last instruction is the address to the OS, or it crashes (or virus).

At a specific address

BOOT OPERATION

- Load OS & Format RAM
- Give address to first OS instruction to CPU IP.
- Pass control to CPU

CPU Execution Cycle

- Load info at IP
- Execute if possible else crash
- Increment IP
- Go to step 1

(3)

Buffer for key status Buffer for 12 characters

RAM

Basic OS Architecture

User Interface

Get input from user and display results. Windowed or command-lined.

Memory Manager

Organizes RAM and remembers where everything is in RAM.

Disk / Storage Manager

Algorithms for finding and saving binary to and from disk drives

Process Manager

Algorithms for passing control to and from the CPU – OS – Process

Network Manager

Algorithms to integrate the OS with a network.

Hardware Manager

The drivers that provide extra code to the OS in order to interface with new hardware

Part 2

Machines That Contain Operating Systems

Operating System Types

- Preset / Controller
 - An operating system constructed to perform specific duties. Commonly seen on real-time hardware devices like robot arms, cell phones, washing machines, etc.
- General Purpose
 - Designed to allow a human to construct and execute algorithms in a particular language under an executing environment.

Preset Devices

- Each button set to a single action
- Not general purpose
- Easy to use

OS = Mapping between key and function

```
Selection = button();
Switch(Selection)?
{
  1: Menu(); break;
  2: Dial(); break;
  :
  :
}
```

27

So Many Different Kinds

Preset

- Cell Phone
- Calculator
- Dishwasher
- Gas pump
- **ENIAC**
- Real-time Systems

General Purpose

- Single CPU Single Process
- Single CPU Batch Process
- Single CPU Multi Process
- Multi CPU Single Process
- Multi CPU Multi Process
- Distributed CPU Single Process
- Distributed CPU Multi Process

Microsoft, Apple, Unix, ...

Future Operating Systems

- Gear (Belt Glasses Earphone Mic. bluetooth)?
- Personal networks
- OS On A Stick (almost here...appliances!)?
- The laser keyboard & 3D Interfaces

- Shared Distributed OS (parts of OS on different computers!)?
- Code Migration Processing

Discuss...

Part 3

Things To Do

Research at McGill

 Compilers and Concurrency • Prof. Laurie Hendren

Networks

Prof. Bettina Kemp
 Prof. Maheswaran

- Internet Technology
- Prof. Joseph Vybihal (also AI)?

At Home ...

- Using any OS, identify the features it has and associate it with one area in the Basic OS Architecture.
- Know the following terminology:
 - Instruction Pointer
 - CPU and Program Execution Cycle
 - General Purpose OS, Preset OS and Controllers
 - BOOT
 - The Basic OS Architecture
- Have you every crashed your OS? How?
- What bug do you think exists in your OS?