Comp 310

Computer Systems and
Organization

Lecture #21
[/O Systems

Prof. Joseph Vybihal

J

Announcements

* Final Exam Dec 9, 2PM
* Course Evaluations

Basic OS Architecture

(Course Table of Contents)

) _ Phase 4

«——— Phase 1

Phase 3

Phase 2

Part 1

[/O Systems

A Manager

The OS
I

Memory (RAM)

cPu

General Purpose OS

OS manages through
the system board

Being a Device Manager is one
of the OS’s biggest jobs.

Equal to process and memory
management.

5

7

Back of system
unit case

MONITOR PORT MODEM CONNECTOR

Computer Ports The monitor port is Plug the modem jack in

used to connect a here and connect the other

monitor. end to the phone outlet.

Parallel plug with
male connector

Serial plug with
female connecto\

POWER CONNECTOR SERIAL PORT USB PORT
The power connector Serial ports, which USB ports allow you
is used with a special have either 9 or 25 to connect several
cable to connect to pins, are used to devices to a single
a wall outlet. connect such low- port. Most new
speed peripherals computers come
as scanners and with two USB ports.

external modems.

MOUSE PORT

PHONE CONNECTOR
If you unplugged a
telephone to connect

your modem, plug the
cable from the phone

in here.

PARALLEL PORT

The mouse port is Parallel ports have 25
used to connect holes and are most
a mouse. commonly used for

printers and tape drives.

KEYBOARD PORT
The keyboard port
is used to connect a

keyboard.

N

TS
S

Iy
=

9007 1eYIqAA ydasor - 01€ JINOD

[The Motherboard/ System Board

Memory (RAM) Cache

Physical
Port

T TINININ T
- e s
1

Slots W
{connect “Jir Rttt AR =ar o
to bus) [PRCEERERS e (U2 M cpy

TRETORFTATPYNETTY '|1'l'_l"|"l'l'r'.!':|'.l'.n.'1l!-!!l

b Lo odld, §

FTTNINFTTRFTNTHTY

FETERTITORRNTIT o TETTTNT AT E 1LY

S

EELLE LR TEERRRR

%F‘q““‘*‘["_‘:’ L_._ H—"-"'.‘_"'

L e, e AN
- gm oo 13 !

Devices connect via Physical Ports or System Slots — no other way 7

Slots, Cards, Ports & ROMS

ROM To physical port

<—> Printer Port

Each pinis a
bit to a register

Interconnected One PIN of data (bit)

Flow Diagram

Device

Computer Interface

Where:

S = Status Register
D = Data Register
C = Command Register

Card, or
Device Controller

OS
Device Operation: Interrupt Method:
2. Device updates S (optionally D) * If SorD updated
* Waits a small unit of time and then reads C and signal CPU
D . CPU Task switch
(possible data loss) to OS

Polling Method:
* Check S for change in a busy loop

« If change then copy S and D to memory ?

Question

* Using pseudo-assembler, how would the OS
implement polling for a process?

— How would this relate to the process’ ready or
sleep queue status?

— How would the OS manage this:

* Queue, assembler and interrupts?

10

C@ﬂhb”(’/f: CL\,‘P ol Circvit boarA

(on device o #n compoter)

monitor

PoRT_

bbb

DAY cHa W

graphics controller

processor
cache
bridge/memory
controller il

SCSI controller

SLOT

IDE disk controller expansion bus interface

keyboard

(s
(@9

@ parallel
port

gLow PoRT

serial
port

StowPoE T

11

Access to Information

* So... all the information is in those cards and
chips... how do I get access to them?

* Direct Memory Mapped 1/0

— A section of RAM wired to system board:

* Slots, and
* Physical Ports

— Any activity that occurs in a slot or port 1s mirrored 1n
this section of RAM

— This section of RAM i1s a two-way path (Input and
Output) to these slots and ports

* Direct Memory Access

— The device can write directory to RAM without the OS
or CPU

12

Memory Mapped 1/O

A

=

i

000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

Partial IBM PC Mapped Address Space

13

Assembler/Pointer Programming

* To take advantage of this memory mapped
space requires low-level programming.
* Two low-level programming techniques are
used:
— Polling, and
— Interrupts

14

Polling

Handshaking

— OS waits for device to indicate that it is not busy
— OS then deposits a command and data to device registers
— Device now performs action & OS waits
— Device returns status information
— OS reads this information
Waiting
— Is a while-loop (a busy loop) that does nothing but loop
until the wait is over

— The OS knows when the wait is over because the device
updates the Status register to indicate its state.

Simple mechanism inserted directly into any OS fn
15

user
process

system call return from system call

kernel
/0O subsystem

kernel
1/0O subsystem

device
driver

i interrupt
device controller commands handler

interrupt

device
controller

16

The Interrupt Process

CPU I/O controller

CPU executing checks for
interrupts between instructions
[}

1

The interrupt 1s a:

2. A digital signal to stop the CPU

* A register with an integer number
(a code representing a message)

17

Sample INTEL Interrupt Codes

Note: not dependent on OS, but CPU & Device

0 divide error
1 debug exception
2 null interrupt
3 breakpoint
4 INTO-detected overflow
5 bound range exception
6 invalid opcode
¥4 device not available
8 double fault
9 coprocessor segment overrun (reserved)
10 invalid task state segment
11 segment not present
12 stack fault
13 general protection
14 page fault
15 (Intel reserved, do not use)
16 floating-point error
17 alignment check
18 machine check
19-31 (Intel reserved, do not use)
32-255 maskable interrupts

INTEL Pentium Processor event-vector 18

Interrupt Handling

* Interrupt Handler

— A special function called to process an interrupt from a
specific device

— Each device needs a custom handler

— The handler 1s aware of the registers and codes used by
that specific device (this is true for polling as well)

* Interrupt Messages
— Stored as codes 1n registers

— Two code types:
* Integers (integer code number representing a message)
— Processed by a switch statement

* Flags (a bit set to 1 for true or O for false)

— Processed by bit masking
19

Interrupt Notes

Software can also 1ssue interrupts
— Timers
— Java Action Listeners

Interrupts can be interpreted by the OS as having
priority
— Ordering how the OS will process them

* User interface interrupts have higher priority

Interrupts that are not handled quickly by the OS
can be overwritten by the next hardware signal

Each CPU and device has their own event-vector
table with their own unique codes

— Microsoft Mouse
— Logitech Mouse 20

MDA

(Direct Memory Addressing)

5. DMA controller transfers
bytes to buffer X,
increasing memory
address and decreasing
CuntiC=0

6. when C = 0, DMA
interrupts CPU to signal
transfer completion

1. device driver is told to
transfer disk data to
buffer at address X CPU

2. device driver tells disk
controller to transfer C]
bytes from disk to buffer cache
at address X

X

DMA/bus/interrupt i memory | buffer

controller

3. disk controller initiates
. DMA transfer
IDE disk controller 4. disk controller sends ; .
each byte to DMA Possible cycle stealmg.
controller 1f DMA does not have its
@ @ own bus

CES

21

22

Part 2
The OS Point-of-view

Management Issues

Device hardware specifications
Device communication features
Motherboard data transfer features

Optimization & Impact on Process
— Speed
— Memory

Security

23

[/O Sub-System Architecture

=-_ Array temp transfer storage
(manages fast to slow device)
=-— Fast memory with temp data
IFile queue/buffer to device (printer)

Queues Priorities Get resource ,
Exclusive access
Free Resource

. _ Trigger operation X at time T
The device status register 24

N\

UNIX I/O Kernel Data Structure

(Example — partial structure)

active-inode table |

file-system record

| inode pointer
pointer to read and write functions
pointer to select function

pointer to ioctl function

pointer to close function

per-process
open-file table

network-
information table

networking (socket) record

pointer to network info
pointer to read and write functions
pointer to select function

pointer to ioctl function
pointer to close function

Only shows file I/O s

e Kernel I/O Structure

kernel

8 General purpose

é kernel I/O subsystem . .

5 interface object

w
scsl keyboard | mouse PCI bus floppy ATAPI | Multiple
device device device eeoe device device device speciﬁc
driver driver driver driver driver driver .

drivers

hardware

26

Device Communication Features

Each device speaks differently

data-transfer mode character terminal
block disk
access method sequential modem
random CD-ROM
transfer schedule synchronous tape
asynchronous keyboard
sharing dedicated tape
sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
I/O direction read only CD-ROM
write only graphics controller
read-write disk

27

Device Communication Modes

* Block Driven

— I/0O cannot function by byte
— I/0 access by a fixed number of bytes called a block
— The entire set of bytes 1s loaded into a buffer as a single
unit
* Character Stream
— I/O access 1s by byte
— A pointer increments past each byte

* Socket Based

— An object that references a specific physical port
— The user’s application has a reference to this object

— The object manages communication with the device
28

Device Communication Modes

* Blocking I/O

— Stop executing process
— Switch to driver

* Non-Blocking I/O

— Device data accesses as a running process
* Keyboard
* Mouse

29

Programming Complexity

ok SRS
::

30

31

Part 3
At Home

1.

Things to try out

Have you every installed a driver?

2. Web Resources (I/0 Systems):

http://www.cs.mun.ca/~paul/cs3725/material/web/not

es/node28.html

http://download.oracle.com/docs/cd/B19306 01/serve

r.102/b14211/10design.htm

http://www.freebsd.org/doc/en US.ISO8859-1/books/

design-44bsd/overview-10-system.html

32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

