Comp 310

Computer Systems and
Organization

Lecture #19
File Systems
(File & Directory Basics — Part 1)

Prof. Joseph Vybihal

Announcements

* Final Exam
— Dec 9, 2PM

Basic OS Architecture

(Course Table of Contents)

) _ Phase 4

«— Phase 1

Phase 3

Phase 2

Part 1
About Files

A File System

* Definition:
— A method by which the OS imposes a technique
where by 1t understands the meaning of files,
storage, retrieval and access.

* Two views:
— User view
* (1.e. window’s folders, Unix’s directories)

— Actual Implementation
* (data structures, device controllers)

Programs and more programs

OS in RAM

Memory (RAM) Cache

20l ~ | The OS

Icons, folders &
shortcuts

Actual medium

Read/write head - i Disk surface

Firmware on
HDD

What makes up a file?
(logically)

File Attributes

A symbolic Name Where should we
A unique integer Identifier store this info?
Its Type

An Address on disk

Its Size 1n bytes

The Security privileges assigned to the file
Who 1s the Owner of the file

Dates: Creation, Modification, Time

Others? .

File Operations

Create a file

— Text mode
— Binary mode Are these OS or
Write to a file (by mode) Language managed?

Reading from a file (by mode)

Repositioning within a file
— Sequential
— Random
— Reverse order

Deleting a file
Appending to a file

Truncating a file
— Delete file
— But keep attributes
— Write to file

executable

File Types

exe, com, bin read to run machine-
or none language program
object obj, o compiled, machine language,

not linked

source code

c, cc, java, pas,
asm, a

source code in various
languages

batch bat, sh commands to the command
interpreter
text txt, doc textual data, documents
word processor | wp, tex, rrf, various word-processor
doc formats
library lib, a, so, dll, libraries of routines for
mpeg, mov, rm programmers
print or view arc, zip, tar ASCII or binary file in a
format for printing or
viewing
archive arc, zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving
or storage
multimedia mpeg, mov, rm binary file containing

audio or A/V information

Are they or
should they
be formatted
differently?

10

Start address

|

Basic File Structure

Binary

v EOF

byte

Byte addressable

Should the OS provide for more complex file structures?

11

Example

Dear Mom,

Thanks for the money! You are the best.

Love Joe.
Die |a Mo cr [If |“°|T |h
a n |k flo t |h e m
O|n|e Y a I |e
t |hle e |s cr|lf \L o |v
e J EOF

12

Question

* How could we implement this physically on
a disk? What would the OS need to do?

(think of this in C)

13

Sequential Access

reset cp = 0;

read next read cp;
cp = cp+1,

write next write cp,
cp = cp+1;

o current position
beginning end

read or write sl

14

AS400 File Structures

Count = counters and flags

Fixed, unblocked BL = Block Length
AAA| | Record aaa RL = Record Length
Count Key Data Sub-key
Fixed, blocked l
FFF| |AAA| Record aaa CCC | Record ccc FFF | Record fff
Count Key Data T

Variable, unblocked Information

AAA BL||RL| Record aaa

Count Key Data

Variable, blocked

FFF BL | |RL|AAA [Record aaa3 RL |CCC | Record ccc RL|FFF | Record fff

Count Key Data

Indexed Sequential Files ISAM Files 15

AS400 File Structures

Directory
records

T
I
I
|

£
M

| |
ntry for | Entry for | Entry for
ember A l Member B { Member C

|
| Entry for

i
{ Member K :

Member C

SN =

Space
L from a
deleted

C

Member B ‘Member K

member

Member K

Member K

Member A

Member A

Available
— area for

insertion

\,

of new
members

Partitioned File (a set of Sequential Files with a directory header)

16

’
Software Supported File Structures
Database Example
Start address
Sorted by logical record Eikad sica
last name number < >
Offset
Binary
search
index file relative file
Fixed size Offset = Rec No * size
How do we do binary search?
17
A

File Access Methods

In all cases:
— File = Open(type, style)
* File is a pointer to the buffer in memory
* Type = text, binary, indexed, partitioned, ...
* Style = read, write, append, ...
— Close(File)
* Flushes buffer and frees buffer
Sequential
— Fscanf: read one byte, pointer moves to next byte
— Fprintf: write one byte, pointer moves to next byte

Direct
— Fread: n bytes read from disk
— Fwrite: n byte write to disk

— Fseek: start position, offset in bytes
* Start position: beginning, end, current position

Indexed
— Iseek: Key
— Iread & Iwrite: one record

18

OS Buffers
FILE *ptr = fopen(“abc.txt”,”rt”); _

char x[1007;

int I;
Read until buffer

for (I=0;I<100; I++) x[I] = fgetc (ptr); ©cmpty, thenload
more of file into Find and
fclose (ptr); buffer load n bytes

Delete buffer

The file access commands
must interface with OS not
with the files diI’@CtlY! (in buffer implementations)

Record file is open, also
record if in share mode ...

19

Low-level File Access in C

#define CMASK 0377 /* for making char’s > 0 */ — Qctal: 377 =
#define BUFSIZE 512

Ol1111111
getchar () /* buffered version */ (glnnchaﬂ
(Sign forced to 0
static char buf [BUFSIZE] ;
static char *bufp = buf;
static int n=20;
if (n == 0) { /* buffer is empty */ Numeric file
n = read(0, buf, BUFSIZE); descriptor
bufp = buf; (max 15-30)
) PCB file ptr array

return((--n >= 0) ? xbufp++ & CMASK : EOF);
}

get (fd, pos, buf, n) /* read n bytes from position pos */
int £f4, n;
long pos; Number of bytes to address

char xbuf;

(e
lseek (fd, pos, 0); /* get to pos =*/
return (read (fd, buf, n));

Start of file

20

[#define NULL 0
/| #define BUFSIZE 512
#define PMODE 0644 /x RW for owner, R for group, others */

main(argc, argv) /* cp: copy f1 to f2 =x/
int argc;
char *argvl[];

{

int £1,-£2, -n;
char buf [BUFSIZE];

if (argc != 3)

error ("Usage: cp from to", NULL); Open =» open read
if ((f1 = open(argv(1], 0)) == -1) Create =» open write
error ("cp: can’t open %s", argv[1]); Read
if ((f2 = creat(argv([2], PMODE)) == -1) Write

error ("cp: can’'t create %s", argv([2]); :
P F S Exit =» closes all files
while ((n = read(f1, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) != n)
error ("cp: write error", NULL);
exit (0);

error(sl, s2) /* print error message and die x/
char *s1, =*s2;
{
printf(s1, s2);
printf ("\n");
exit(1); 21

#define _BUFSIZE 512
#define _NFILE 20 /* #files that can be handled */

stdio.h

typedef struct _iobuf {

char *_ptr; /* next character position */
inE _eont; /* number of characters left =*x/
char *_base; /* location of buffer =*/

int _flag; /* mode of file access */

int _fd: /* file descriptor =*/

} FILE; P
extern FILE _iob[_NFILE];

#define stdin (&_iob[0])
#define stdout (&_iob[1])
#define stderr (&_iobl[2])
#define _READ 01 /* file open for reading =*/
#define _WRITE 02 /* file open for writing %/
#define _UNBUF 04 /* file is unbuffered */
#define _BIGBUF 010 /% big buffer allocated */
#define _EOF 020 /* EOF has occurred on this file =*/
#define _ERR 040 /* error has occurred on this file #*/
#define NULL O
#define EOF (-1)
#define getc(p) (-—(p)->_cnt >= 0 \

? *(p)->_ptr++ & 0377 : _fillbuf(p))
#define getchar() getc(stdin)
#define putc(x,p) (-=(p)->_cnt >= 0 \

? *(p)->_ptr++ = (x) : _flushbuf((x),p))
#define putchar (x) putc (x, stdout) 22

‘ [#include <stdio.h>
#define PMODE 0644 /+ R/W for owner; R for others =*/

FILE *fopen(name, mode) /% open file, return file ptr =/
register char #*name, #*mode;
{

register int £4;

register FILE *fp;

if (#mode != ’'r’ && *mode != 'w’ && *mode != ’a’) |
fprintf (stderr, "illegal mode %s opening %s\n",
mode, name) ;
exit(1);
)
for (fp = _iob; fp < _iob + _NFILE; fp++)
if ((fp->_flag & (_READ | _WRITE)) == 0)
break; /* found free slot */
if (fp >= _iob + _NFILE) /% no free slots */
return (NULL) ;

if (*mode == 'w’) /% access file %/
fd = creat(name, PMODE) ;
else if (¥mode == ’a’) {
if ((fd = open(name, 1)) == -1)
fd = creat(name, PMODE) ;
lseek(fd, 0L, 2);

} else -
fd = open(name, 0);
if (£fd == -1) /% couldn’t access name */

return (NULL) ;

fp->_fd = £4;

fp->_cnt = 0;

fp->_base = NULL;

fp->_flag &= ~“(_READ | _WRITE);

fp->_flag |= (*mode == ’'r’) ? _READ : _WRITE;
return (fp) ;

23

7

directory (name) /* fsize for all files in name */

char *name; #define DIRSIZ 14 /* max length of file name */

(

struct direct dirbuf; Ttruct direct /* structure of directory entry =*/

char *nbp, *nep; ino_t d_ino; /% inode number */
int i, fd; char d_name[DIRSIZ]; /* file name */
};

nbp = name + strlen(name);

nbp++ = '/’; /% add slash to directory name =/
if (nbp+DIRSIZ+2 >= name+BUFSIZE) /* name too long */
return;
if ((fd = open(name, 0)) == -1)
return,;
while (read(fd, (char #*)&dirbuf, sizeof (dirbuf))>0)
if (dirbuf.d_ino == 0) /* slot not in use =*/
continue;
if (strcmp(dirbuf.d_name, ".") == 0
Il strcmp(dirbuf.d_name, "..") == 0)

continue; /* skip self and parent */
for (i=0, nep=nbp; i < DIRSIZ; i++)
*nep++ = dirbuf.d_name([i];
*nep++ = ‘'\0’;
fsize (name) ;
}
close (fd);
——nbp = '\0’; / restore name =*/
24

Part 2

File Systems

25

File Allocation Table (FAT)

* A data structure on the storage device needs
to record the information for a file:

— Name, size, owner, security, location, type, dates

Name Size Owner | Security | Address | Type Date

abc | 100 |Jack |Priv |FO1 |txt

/

Depends on addressing method of device

Space limitations?

Typical Organization

partition A <

partition B <

Partitions
Structure depends
on OS -
- disk 2
> disk 1
partition C
- disk 3

27

FAT Structures

Multi-Layered

Root
directory

User User User vee User
directories 1 2 n

User
f“es Lobagind YY) [Y

28

Acyclic Graph Directories

Permits shared files and directories

29

File Block Chaining

When your file cannot fit in a contiguous space on the medium

User directory

File Location

"
SN o

Data

o Nil

Data Data

Data Data Data
30

File map
User directory 0 22
o Bloc
. . 2 5 o —
File Location 3 26
A 8 4 9
B 6 5 20 e~ °
6
== == Oriented
8
9

File
Mapping

D

This has data and is the end

Physical blocks on secondary storage

Block O
B(4)

Block 1
B(10)

Block 2
Cc(1)

Block 3
A(4)

Block 4
B(8)

Block 5 Block 6
C(2) B(1)

Block 8
A1)

Block 9
B(9)

Block 10
B(2)

Block 12 Block 13
A(3) B(7)

Block 14
B(3)

Block 17
A(2)

Block 18
B(6)

Block 19 Block 20
C(5) C(3)

Block 22
B(5)

Block 23
C(4)

Block 26
A(5)

31

Question

* In each of the file mapping techniques, how

could we implement them 1n C?

— Data structures?

— Algorithms?

32

33

Part 3
At Home

1.

Things to try out

Use a program like Norton Disk Doctor to
look at the byte structure of your files.
Then modify them, even try to mess up
some files.

This 1s a relatively safe operation if you select
safe files like text or word files.

34

	Comp 310 Computer Systems and Organization
	Announcements
	Basic OS Architecture (Course Table of Contents)
	Part 1
	A File System
	Programs and more programs
	PowerPoint Presentation
	File Attributes
	File Operations
	File Types
	Basic File Structure
	Example
	Question
	Sequential Access
	AS400 File Structures
	Slide 16
	Software Supported File Structures
	File Access Methods
	OS Buffers
	Low-level File Access in C
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Part 2
	File Allocation Table (FAT)
	Typical Organization
	FAT Structures
	Acyclic Graph Directories
	File Block Chaining
	Block-Oriented File Mapping
	Slide 32
	Part 3
	Things to try out

