Comp 310

Computer Systems and
Organization

Lecture #18
Virtual Memory
(Issues & Techniques — Part 2)

Prof. Joseph Vybihal

Announcements

* Course evaluation:
— Minerva

— Important to participate

Basic OS Architecture

(Course Table of Contents)

) _ Phase 4

«— Phase 1

Phase 3

Phase 2

Part 1
Page Replacement Issues

Percentage of a
process’s pages referenced

100 ¢

Percentage of a process’s pages
referenced with time.

As time increases the
process will eventually
access all or most of its
pages and then terminate

s

Time

Primary storage allocation

A Space-time product under demand paging.
Competition between actually executing
and waiting for a page fault. The more
Increasing pages the
Process 5 longer execution
running
T
Page
wait
“Wall
» clock”’
\V/ H_/ &_Y_/ H_/ N 2 time
Y’
F F ' F F

F is average time for a page fetch.

Dependency of page fault rate on amount of storage
for a process’s pages.

The more pages in memory
reduces the need for page
1.00 faults.

How programs access
pages also effects fault rate.

& 0.75
Had
o o
3 A process making
@ random references to
= . A
& 050 A process its various pages
making
localized
references
0.26

l

025 050 0.75 1.00

Fraction of process’s pages
in primary storage

34 _ 4
= _.:E“.."_"_.___________________"____ﬂ_m__m._"m_m.m_.____r_. - g ..n__ S L T e _..”__.____H.M_...ﬂ:._“
Iy . by
E __,_g__*__w o i u_”_.__ . _H_., ” ___
30 g o dapt :::: E_;ﬁ L __:_t Lt L .,._,. m
__: _im_z_ _..a_._____,_____._______"““_s____““““___ i
te ol
0L, i
: it

3 i

g I
ﬂ_. Wy
.. b p L7

xpm R T ; U |
o u A____E_____:____,___.? Wi h ________,___ %ﬁ. |

i s L

Storage address
Stor_age reference pattern exhibiting locality.

P T I Rk
-m Mo) _ r == ‘_—% TR PR PRI ol
2 N e b | e
mu __. ._ __ {1 41 73T} R TIOR FR IMLETL1 .i (b ______tg 111{ [(RPN (TLERR (THTRATI R er
< g U __________________._ e

Execution time ——»

Dependency of interfault time on the number of page frames
allocated to a proce

4 Alotof page faults in the middle

Total |
execution -
time of
process
Page faults
slow down
with age

Interfault time
(time between page faults)

| | 2
Number of

pages in
process

Number of page frames
allocated to this process 5

Dependency of page faults on page size when primary
storage is held constant.
4 . .
T < Notice small and large page sizes
=
= .=
.
QL o
%t
> 2
£ 3 \
- |
2 \
S5 \
. \
o3 \
o 2
25 \
£ \
) A \
- : LS
Page size —
J What does this mean?
10

Page Size Issues

Equal Allocation
— Everyone gets the same number of pages

— All frames are the same size

Proportional Allocation

— frames = program size / VM size * total frames

Categorized Replacement
— Global Set (any page from any process)

— Local Set (pages from only your process)

On Demand vs. Intelligent Allocation

11

Thrashing

Question: How many frames should a program be allowed
to have at any time? (equal? Incremental? Set no.?)

A

overhead

CPU utilization

degree of multiprogramming

Exec processes

If we do not have enough pages to support the number of programs in
memory, we get a situation where the CPU spends most of its time managing

page faults "

Working Set — A Solution to Thrashing?

How to determine a working set?
* Assume a fixed no. of frames...
* JCL information from programmer...

Programy | . T neRa
Size | —

b

g, o This implies all the program in
L N memory, which may no be

= practical.

O

=

Window size, w

Increasing the working set 1s like increasing the window size 13

Thrashing Management

mcrease number
of frames

gupper bound

page-fault rate

f Iower bound
. decrease number
of frames -

number of frames

OS built with a lower bound and upper bound value that determines
the number of frames a program should own

14

é N
-
&
Vg

& —
)
o
©
c
©
S
(&)
w s18s Buidiom
p—
o - uaamiaq
» uolyisues |
)
O
»
(o))
£
X~
| .
o
3
| .
(<)
© s1as Buidjuom o
m uaamiaq E
c uol}Isued | N
o
=
©
3]
=
©
()
)
© uaamiaq
o uollisues |
7
>
—
@©
=
=
B

<+ o

$sa20.d Siy} 0} pajedoj|e
sabed abeiois Asewiid Jo Jaquinp

<l

Part 2

Page Replacement Techniques

16

Basic Algorithm

Process executes

Process generates a page fault, at this moment

Hardware traps to OS

1. Fault =page fault or illegal memory access?

* Ifillegal access then terminate process

2. If page fault then
1. Find page on disk
2. Find free frame in RAM

* If found then allocate page to frame

3. If no free memory then....
A) terminate the process asking for the page fault
B) terminate another process on a queue (ready/wait)
C) page replacement
17

Page Replacement (1/3)

1. Find page on disk
2. Find a free frame

1. If free fame exists then use i1t

2. Ifno free frame then select a victim frame
* Write the victim’s page to disk (modify flag/dirty bit”)
* Adjust tables

3. Read the desired page into the frame
* Update tables

4. Restart the user’s process

18

valid—invalid

0 frame\ ?it 0 | monitor
1 1 l
PC —» 9.0 ¥
2| 4 ol L 2| D
~NQ |V
3 M RN 3
logical memory page tablc\ 4
for user 1 for user 1
5 J
6 A
7 E
0
physical
1 memory
2| D ‘
2| v
3 E 7|V
logical memory page table
for user 2 for user 2

19

frame \‘ / valid—invalid bit

page table

O,

change
to invalid

reset page
table for
new page

physical
memory

swap out
victim

S

20

|y 4=h\\1)

But how do we select the victim?

* FIFO? (first-1n first-out)

* Optimal? (won’t be needed for longest time)
* LRU? (least-recently-used)

* Second chance? (FIFO w/ reference bit = 0)
* LFU? (least frequently used)

* MFU? (most frequently used)

21

The FIFO Anomaly.

FIFO page FIFO page
replacement replacement

Page with three pages with four pages
references available available
A Fault A + - Fault A - — -
B Fault B A -— Fault B A - —
C Fault c B A Fault C B A —
D Fault D c B Fault (D c B A
A Fault A D C D C

w
n

Q

=

~+

w

>

O

O

(@]

W | @
> | >

E Fault C E B | A Fault E b | ¢ B
A | E B A Fault A E D C
B E ' B A Fault B A E D
C Fault C E B Fault » B A E
D Fault D C E Fault D C B A

E D c E Fault E D c B

Three ‘“no faults’’ Two ““no faults’’ 22

Optimal and LRU

* Problem: we can not see into the future...
* Rule of thumb:
time stamp the last time 1t was used

— Interpretation:
* Was not used for a long time? So, remove ...

* It 1s due to be used soon? So, maybe keep...?

23

Second Chance

* Page frame table has an flag variable that
1s set to TRUE when the page 1s used.

* A timer 1s set to clear all bits to zero.

* Page faults are handled before the bit 1s set
to zero.

— Rule:
* Victim if FIFO and flag ==

24

reference pages reference pages

bits bits]
Time-out
0 0
0 0
next
PTR ,ictim T 1 0

1 0
0
1 1
1 1

circular queue of pages circular queue of pages

(a) (b)
A Second chance implementation (circular queue) 25

LFU & MFU

* Page tables use an integer variable to count
the number of time the page was
referenced while in memory.

— LFU: remove lowest integer

— MFU: remove highest integer
* When page reloaded into RAM 1t 1s set to

ZC10

26

Questions

* What data structures in C could we use to
implement each of the techniques?

* What algorithms?

27

28

Part 3
At Home

Things to try out

1. Find the virtual memory page swap area in
your OS. Change 1ts size!!

2. Web Resources:

. http://users.actcom.co.il/~choo/lupg/tutorials/unix-memory/unix-
memory.html

. http://developer.apple.com/documentation/Darwin/Conceptual/KernelPr
ogramming/Mach/chapter 6 section 5.html

. http://www.windowsitlibrary.com/Content/356/04/1.html
. http://www.awprofessional.com/articles/article.asp?p=167857&rl=1

* http://en.wikipedia.org/wiki/Memory management unit

29

	Comp 310 Computer Systems and Organization
	Announcements
	Basic OS Architecture (Course Table of Contents)
	Part 1
	PowerPoint Presentation
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Page Size Issues
	Thrashing
	Working Set – A Solution to Thrashing?
	Thrashing Management
	Slide 15
	Part 2
	Basic Algorithm
	Page Replacement (1/3)
	Slide 19
	Slide 20
	But how do we select the victim?
	FIFO
	Optimal and LRU
	Second Chance
	Slide 25
	LFU & MFU
	Questions
	Part 3
	Things to try out

