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Part 1
Page Replacement Issues




Percentage of a
process’s pages referenced
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Percentage of a process’s pages
referenced with time.

As time increases the
process will eventually
access all or most of its
pages and then terminate
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Primary storage allocation

A Space-time product under demand paging.
Competition between actually executing
and waiting for a page fault. The more
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F is average time for a page fetch.




Dependency of page fault rate on amount of storage
for a process’s pages.

The more pages in memory
reduces the need for page
1.00 faults.

How programs access
pages also effects fault rate.
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Dependency of interfault time on the number of page frames
allocated to a proce

4 Alotof page faults in the middle

Total |
execution -
time of
process
Page faults
slow down
with age

Interfault time
(time between page faults)

| | 2
Number of

pages in
process

Number of page frames
allocated to this process 5




Dependency of page faults on page size when primary
storage is held constant.
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Page Size Issues

Equal Allocation
— Everyone gets the same number of pages

— All frames are the same size

Proportional Allocation

— frames = program size / VM size * total frames

Categorized Replacement
— Global Set (any page from any process)

— Local Set (pages from only your process)

On Demand vs. Intelligent Allocation
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Thrashing

Question: How many frames should a program be allowed
to have at any time? (equal? Incremental? Set no.?)

A

overhead

CPU utilization

degree of multiprogramming

Exec processes

If we do not have enough pages to support the number of programs in
memory, we get a situation where the CPU spends most of its time managing

page faults "




Working Set — A Solution to Thrashing?

How to determine a working set?
* Assume a fixed no. of frames...
* JCL information from programmer...

Programy | . T neRa
Size | —
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g, o This implies all the program in
L N memory, which may no be

= practical.
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Window size, w

Increasing the working set 1s like increasing the window size 13




Thrashing Management

mcrease number
of frames

gupper bound

page-fault rate

f Iower bound
. decrease number
of frames -

number of frames

OS built with a lower bound and upper bound value that determines
the number of frames a program should own
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Part 2

Page Replacement Techniques
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Basic Algorithm

Process executes

Process generates a page fault, at this moment

Hardware traps to OS

1. Fault =page fault or illegal memory access?

* Ifillegal access then terminate process

2. If page fault then
1. Find page on disk
2. Find free frame in RAM

* If found then allocate page to frame

3. If no free memory then....
A) terminate the process asking for the page fault
B) terminate another process on a queue (ready/wait)
C) page replacement
17




Page Replacement (1/3)

1. Find page on disk
2. Find a free frame

1. If free fame exists then use i1t

2. Ifno free frame then select a victim frame
*  Write the victim’s page to disk (modify flag/dirty bit”)
* Adjust tables

3. Read the desired page into the frame
* Update tables

4. Restart the user’s process

18




valid—invalid
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frame \‘ / valid—invalid bit

page table

O,

change
to invalid

reset page
table for
new page

physical
memory

swap out
victim

S
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But how do we select the victim?

* FIFO? (first-1n first-out)

* Optimal? (won’t be needed for longest time)
* LRU? (least-recently-used)

* Second chance? (FIFO w/ reference bit = 0)
* LFU? (least frequently used)

* MFU? (most frequently used)
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The FIFO Anomaly.

FIFO page FIFO page
replacement replacement

Page with three pages with four pages
references available available
A Fault A + - Fault A - — -
B Fault B A -— Fault B A - —
C Fault c B A Fault C B A —
D Fault D c B Fault ( D c B A
A  Fault A D C D C
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Three ‘“no faults’’ Two ““no faults’’ 22




Optimal and LRU

* Problem: we can not see into the future...
* Rule of thumb:
time stamp the last time 1t was used

— Interpretation:
* Was not used for a long time? So, remove ...

* It 1s due to be used soon? So, maybe keep...?
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Second Chance

* Page frame table has an flag variable that
1s set to TRUE when the page 1s used.

* A timer 1s set to clear all bits to zero.

* Page faults are handled before the bit 1s set
to zero.

— Rule:
* Victim if FIFO and flag ==

24




reference pages reference pages

bits bits ]
Time-out
0 0
0 0
next
PTR ,ictim T 1 0

1 0
0
1 1
1 1

circular queue of pages circular queue of pages

(a) (b)
A Second chance implementation (circular queue) 25




LFU & MFU

* Page tables use an integer variable to count
the number of time the page was
referenced while in memory.

— LFU: remove lowest integer

— MFU: remove highest integer
* When page reloaded into RAM 1t 1s set to

ZC10
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Questions

* What data structures in C could we use to
implement each of the techniques?

* What algorithms?
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Part 3
At Home




Things to try out

1. Find the virtual memory page swap area in
your OS. Change 1ts size!!

2. Web Resources:

. http://users.actcom.co.il/~choo/lupg/tutorials/unix-memory/unix-
memory.html

. http://developer.apple.com/documentation/Darwin/Conceptual/KernelPr
ogramming/Mach/chapter 6 section 5.html

. http://www.windowsitlibrary.com/Content/356/04/1.html
. http://www.awprofessional.com/articles/article.asp?p=167857&rl=1

*  http://en.wikipedia.org/wiki/Memory management unit
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