Comp 310

Computer Systems and
Organization

Lecture #15
Memory Management
(Memory Allocation)

Prof. Joseph Vybihal

Announcements

* Ass#3?

* Course evaluation:
— Minerva
— Start date??
— Important to participate

* Tentative Final Exam:
— Dec 9 2PM

Basic OS Architecture

(Course Table of Contents)

) _ Phase 4

«——— Phase 1

Phase 3

Phase 2

The Kernel & Loading Process

* When does loading occur in the Kernel?
— How does a shell and login fit?

* Is login a privileged process, is shell?

* About the kernel loop and spawning initial
processes and how 1t connects

— Kernel not tasked switched, defines task switch

* Invoked as a task switched process
— Invokes initial process: login
— Login invokes shell, user's connection to OS
— Shell invokes user processes

Memory Allocation

Maybe i1t 1s obvious, but when the kernel

invokes a process we need to find space for 1t
in RAM.

Two techniques:
— All process in RAM

* Continuous object, or variation — swapping
* Static / dynamic separation (RAM & PCB)

— Virtual memory
* Like 'All Process' but simulated

— Paging and segmentation with “backing store”

Part 1

Memory Allocation Issues

Memory Allocation Issues

* The Dynamic Storage Allocation Problem
* The Memory Fragmentation Problem

Memory Allocation Issues

* The Dynamic Storage Allocation Problem

Problem: Given free RAM, where should we load the processes?
Issue : When process terminates and memory becomes free,

a hole 1s left in RAM.
Result : Best way to use memory to reduce Fragmentation

Operating
system

User A

User B

User C

User D

User E

User B
finishes
and

frees its
storage.

Holes

Operating
system

User A

User C

Operating
system

User A

User D

User E

User D
finishes
and
frees its
storage.

User E

Hole Management

If we have holes and a new
process 1s executed. ..

Management of holes:

* First fit (best processing time)

* Best fit (smallest left over hole)
* Worst fit (largest left over hole)

Advantages?

When should we kick someone out?

10

(a) FIRST-FIT STRATEGY

Place job in first storage hole on free
storage list in which it will fit.

Free Storage List

(Kept in storage address order,
or sometimes in random order.)

Operating
system

=

16K hole

Start
address Length
—— e
| 18K p——————— ook
c 14K
e 5K
30K hole
g 30K .
: h
(b) BEST-FIT STRATEGY o prep——
system
Place job in the smallest possible i
hole in which it will fit. 164 bote

Free Storage List

by hole size.)

(Kept in ascending order

14K hole

Start
address Length
Request for
e 5K e 13K -
o e - -
| ¢ 14K ———"
| SR C
a 16K
3 = 30K hole
: h
(c) WORST-FIT STRATEGY 0 Operating
system
Place job in the largest possible i
hole in which it will fit. - 16K hole

Free Storage List

Start
address Length
r—————
| g 30K
| . S s

a 16K

c 14K

e 5K

(Kept in descending order

by hole size.)

Request for
13K P

w0 Q 0o

14K hole

30K hole

How can any
of these
techniques be
optimized for
speed and
memory?

11

Memory Allocation Issues

* The Memory Fragmentation Problem

— Solution: De-fragmenting

* Method:
— Stop all process execution
— Compact memory by moving processes byte by byte
— Update PCB addresses
— Resume processing

* [ssues:
— Time intensive
— Frequency

— Solution: Non-contiguous process memory

NULL
_ 12

Compaction

Operating Operating
system system
In use In use

In use

In use In use

In use

Operating system places

all ““in use”” blocks together
leaving free storage as a
single, large hole.

13

Questions

Is memory compaction optimal?

— W.I.t
* Time

* Space
When should 1t be used?

When would it fit into the OS run-time
cycle?

How could we implement 1t?

14

Part 2

Memory Allocation Methods

15

Memory Allocation Methods

Single User Absolute/Default Addressing
Multi Process Fixed Partition Addressing
Paging

Segmentation }
S

Hybrid Model
Virtual Memory (will be covered in 1ts own lecture)

16

Evolution of Memory

Real Real Virtual
Single Real Virtual
user storage storage
dedicated multiprogramming multiprogramming
systems systems systems
il e | nue | b | Combine
P . P . paging segmentation paging
multiprogramming multiprogramming segmentation
Absolute | Relocatable

17

Single User Absolute/Default Addressing

18

Single User Absolute/Default Addressing

Operating
system

a Two options possible:
* Absolute Addressing:

* User specifies exact address
in RAM where process will
load and execute from

* Default Addressing:
* User does not specify
address and OS loads to
a default location and
executes from there

User

No concerns about holes — there is only one hole. 19

7

Multiprogramming in aswapping systeminwhich only asingle useratatime
is in main storage.

Main storage images stored on

secondary direct access storage. Main storage

Operating
system
a
User A UserB UserC User D User E User FUser G
a a a a a a a
Swapping
area
b

1. Only one user at a time is in main storage.

2. That user runs until PROCES SES IN

a) 1/0 is issued,
b) timer runout, WAITING QUEUE
c¢) voluntary termination.
3. Swapping area (main storage image) for that user is then
copied to secondary storage (i.e., “swapped out”’).
4. Main storage image for next user is read into the
swapping area (i.e., “swapped in"’) and that user runs
until it is eventually swapped out and the next user
is swapped in, etc.
5. This scheme was common in early timesharing systems.

Multi Process Fixed Partition Addressing

21

Multi Process Fixed Partition Addressing

0
Operating
Job queue for partition 1 : system
These jobs may N
be run only in oes , Partition 1
partition 1. g
. Job queue for partition 2
These jobs may Partition 2
be run only in ooe > >
partition 2. C
Job queue for partition 3
These jobs may /-—-J.‘
be run only in eee o
partition 3. Partition 3
d

No problem with holes.
The problem 1s now about the queues and partition sizes.

22

Queue Problems

0
Operating
system
a
Job queue for partition 1
No jobs Partition 1
waiting (empty)
for partition 1
b
Job queue for partition 2
No_jpbs Partition 2
waiting (empty)
for partition 2
Job queue for partition 3 C

Job|Job |Job |Job |Job|Job
FIE|D|C|B]| A

d

Extreme example of a queue problem

23

Queue Problem Solution

Operating
system

g

Queue backed-up/blocked Partition 1
Job queue 3

Partition 2
¢

Partition 3
d

Jobs may be placed in any available
partition in which they will fit.

Back to the problem with holes... (add to it indefinite postponement)
Except these holes have a fixed size o

. y

25

Paging

Paging Elements

* Due to memory limitations, want:
— Ability to swap in/our programs
— Don’t want to worry about holes
— The user to think there are no memory limits

* Problem
— We do not know the size of user’s program
— User programs have different sizes
— Swapping an entire program is a lot of overhead

* Solution
— Setup a fixed page size
— User’s program 1s segmented into n pages
— Swap in/out by the page y

logical
memory

N = O

N WO A -

page table

frame
number

0

physical
- memory

page number page offset
p d
m—n n

27

Page Addressing Hardware

offset

0
logical
address

‘\

physical
address L

.Using concatenation

page table

RAM

physical
) memory

28

logical

Page Addressing Hardware

Prge = PageTalle Base Repisier

address |

number number

page frame

e <Pk

A Cache PR ~ — : E. i

address

- f—
o e

/7TLB

: { bty
TLB miss AR

FasT A

Haduace
Regicier
orf

Bwf'(ft‘f" "

/. P = -‘ ;w"= PRy .
‘“Transg: Ko Looft

f 5_ : :ffifz'“i'j:

physical
memory

([‘gi‘ o

idle page table N CgCI*;f?(Q{Wc{me 1 RAM.
SLO ws

29

30

Part 3
At Home

Things to try out

1. If you have an advanced compiler like Visual C+
+ or C++ Builder...

* Load a large program you have written

* Go to the compilation options section and play with
the values and run your program after each change.
Try the following:

* Change stack & heap sizes
* Turn on/off page swapping
* Force entire program in RAM

2. Go to the OS Control Panel and make changes to

the memory manager (be careful — try this on a
machine that 1s not too important — like your

Dad’s...)! 31

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

