
QUESTION 1
All files relevant to Q1 are located in the folder 'OS Program'

− 'Development.txt' : A text file containing platform development notes
− Foucher_S_OS_Ass2_Program.out : A Unix executable of the program
− Foucher_S_OS_Ass2_Source_Code.c : The c source code used to compile the 

program
− pass.txt :  A file containing the login credentials used by the program (The 

syntax used is described in 'Development.txt'). Must be in the same directory 
as the program's execution directory.

QUESTION 2
    a) A single user and single process computer.

The only  thing that  can be done in  this  situation  is  to  reduce the  OS 
overhead by optimizing the process swapping in and out as the OS comes back to 
service requests. Since it is a single user single process, it will be the only one 
causing I/O bursts and launching system calls, so it doesn't a small quanta.
A good implementation might be to let the process run until it requests an I/O  or 
an OS service. Perhaps we could set a quanta of 0.1 second and have the OS 
come back to make sure that the process is not in an infinite loop or ready to be 
terminated.
Another  good  implementation  would  be  to  design  the  process  as  a  Kernel 
function. By doing this, we would eliminate any task switch overhead and could 
let  the  process  run forever.  Since  it  is  part  of  the  OS the  OS/Process  could 
service itself.

    b) A single user but multi-process computer.

To Maximize CPU utilization, we should implement a priority based Multi-
Level-Queue  scheduling.  A  single  First-Come,  First-Served  (FCFS)  queue 
minimizes the average waiting time for a given set of processes, but might cause 
non important processes to take up more CPU time than they should. To remedy 
this, we could implement a Preemptive SJF, however, estimating the length of the 
next  CPU  burst  is  inaccurate,  time  consuming  and  might  cause  indefinite 
postponement for longer processes.

When  using  Multilevel  Queue  Scheduling  we  can  assign  priority  to 
processes  based  on  their   scheduling  needs,  and  give  each  queue  its  own 
scheduling  algorithm.  When  servicing  the  queues,  to  avoid  indefinite 
postponement,  instead of having a fixed priority scheduling, we can implement 
fixed CPU time slices allocated to each queue. 



C) A multi-user and multi-process computer.

On such a system, we can implement the same priority Queues as described in 
b), but also distinguish between different users.  The system could allocate more 
priority to Kernel processes, Batch jobs, the less CPU time to user processes. 

D) A multi-user, multi-process and multi-processor computer.

First  we  separate  processes  by  length  using  the  criteria  from  SJF 
processing.  Each  CPU gets  assigned  processes  of  similar  job  length  until  IO 
burst.  Afterwards,  the  processes  get  separated  in  a  Queue  based  on  their 
priority. Once running, every CPU has a set of similar length processes arranged 
in a priority Queue. The CPU quanta allocation is then done dynamically, based 
on the average length of the processes being serviced: CPUs servicing longer 
jobs assign longer quanta and CPUs servicing shorter jobs have smaller quanta. 
This reduces the Overhead of task switching, since the dispatcher will only come 
in roughly when processes request an OS service.

QUESTION 3: 

A) Is it possible for a process to block itself to wait for an event that will 
never occur? How?

Yes. In a deadlock situation; a process can block itself while waiting for a 
second  process  to  release  a  resource.  If  the  second  process  uses  the  same 
mechanism and block itself while waiting for a resource the first process has 
acquired,  both  processes  will  remained  blocked  indefinitely,  unless  a  third 
process detects the condition and fixes it.

B) Can the operating system detect that a blocked process is waiting for 
an event that will never occur? How?

Yes. The OS can look at a blocked process, figure out why it got blocked 
and analyze weather it will ever have access to the resources it needs to unblock 
itself. (At least 0(n^2) of time consumption)
Another solution would be to record the list of blocked processes at every OS 
cycle  and  distinguish  between  ‘computer  time’  processes  and  ‘human  time’ 
processes. If a ‘computer time’ process has remained blocked for more than 1 
second or a ‘human time’ process has remained blocked for more than 1 minute, 
assume that it is in a deadlock state and deal with it.

C) What reasonable safeguard might be built into an operating system to 
prevent processes from waiting indefinitely for an event?

The OS could force the release of all resources before a process can enter 
a ‘blocked’ state. 



QUESTION 4: 
A) Assuming that a system allowed such a process to run, what would the 
consequences be:
I. Assume that SPAWN generated a new process

If spawn() generates a new process, every time it is called, the OS will have 
to find space in RAM and load static data from the HDD, build a stack and heap, 
a PCB and insert it into the ready list. RAM will fill up and eventually the system 
should  crash.  It  should  take  a  bit  of  time  before  this  happens  because  the 
spawning task requires  a lot  of  steps.  Also,  since new processes are created 
every time, once the system crashes, the RAM will contain fewer process threads 
which are bigger because they all contain the parent processes’ static data. 
  
II. Assume that SPAWN generated a new thread

In this case, the creation of new thread will be faster since it takes less 
steps than creating full new processes, but RAM will be filled up more slowly, 
because threads will be sharing the static data from the parent Process.
The system will eventually crash, but with more copies of the process in RAM.

B)  What  are  the  consequences  of  this  basic  theoretical  result  from 
computer science on your ability to prevent processes like the above from 
running?

Since this computer science theory states that it is generally impossible to 
predict the path of execution of a program, it is also impossible to fully safeguard 
a system against such processes unless taking arbitrary safeguard measures (as 
described in the next question)

C) Suppose you decide that it is inappropriate to reject certain processes, 
and that the best approach is to place certain run-time controls on them.
I. What controls might the operating system use to detect processes like 
the above at runtime?

When spawning, the OS could scan all the ‘family tree’ of the process (i.e. 
all  other processes sharing the same static data or all  the child threads of a 
parent process) and not allow the operation if a certain amount of copies have 
been made (see how big the process is and not allow spawning if more than 70% 
of RAM allocated to processes is taken)
 
II. Would the controls you propose hinder a process’s ability to spawn 
new processes?
No, unless the process needs to spawn enough process to reach the condition 
where the OS will  deny the operation.  Realistically,  most  processes  shouldn't 
need that many threads and could operate normally.



III. How would the implementation of the controls you propose affect the 
design of the system’s process handling mechanism?

This  implementation  wouldn't  affect  the  process  run-time  handling 
mechanism (processes swapping in and out of CPU) so there wouldn't be any 
performance decrease other then during process creation. Even when creating a 
new  process,  the  only  noticeable  addition  regular  process  would  suffer  is 
something like ''if(newProcess !spawned)proceed;'.  Processes using the spawn 
function would suffer an OS slow down of servicing their request of spawning by 
a factor of O(n) (All the OS does more is count the processes having the same 
parents) 
  


