
 4: Buses/USART 1

ECSE-426

USART and Buses

 4: Buses/USART 2

Lab Experiment 2 –
Introduction to hardware
 Simple memory game
 Uses the UART as a mean of interacting with the

MSP430.
 Mostly used as a display
 Can be used to send test commands

 Uses timers + Interrupts
 Details on WebCT
 Tutorials are given to get started rapidly with the

hardware. Feel free to also use TA help in other
periods.

 Its hard to ensure correct timing of the
tutorials...

 4: Buses/USART 3

Note on Hardware Experiments

 Specifications are always a bit vague
 On purpose – That's usually how they are
 You need to meet the specs

• Yet fill the details
• Make reasonable assumptions

 Importance on robustness
 It has to work during the demo
 Start with a solid core and add fluff later

• Optimize your work...
• You have other courses too.

 4: Buses/USART 4

Today's lecture

 UART
 What is it ? historical perspective
 Principle of operation
 MSP430 USART module

 BUS
 Principles
 Discussion on common buses

 4: Buses/USART 5

Asynchronous Transmission
 Early attempts at serial transmission

 Smoke signals, Morse code
 Used for traditional (CRT) terminals through serial interfaces

 Also used to connect with modems
 Transmits characters at bit rate asynchronous to the other

device
 Need for start bit and stop bit(s) - synchronization

 Timing for each character based on selected parameters of
USART

 Transmit and receive functions use same baud
frequency

 7 or 8 bit data with odd, even or non-parity
 Implementation: independent transmit/receive shift and buffer

registers

 4: Buses/USART 6

UART Character Format
 Character format on the serial line:

 ST: start bit
 D0-D6 (D7) : 7 or 8 data bits ; D0 is least significant bit
 PA : Parity - parity bit, odd, even or no parity
 STP : Stop bit - one or two stop bits.
 9600-N-8-1

 9600 bits per second, No parity, 8 bits of data, 1 stop bit

ST D0...D6 D7 PA STP1 STP2

 4: Buses/USART 7

Physical Interface

 Electronics Industries Association (EIA) – RS-232
 1969 (!)
 Defines the interface

• Mechanical Interface – Shape, size of pins
• Electrical levels – Capacitance, slew rate, etc.
• Connector Pinout

 Does not define the data format
• Character encoding, data frames format, etc. are

defined by the higher level protocol.

 4: Buses/USART 8

Physical Interface

Source : http://en.wikipedia.org/wiki/File:Rs232_oscilloscope_trace.svg

Note the relatively high voltages (nominally -11V to 11V)

When converted digitally, the Mark = +3.3V, Space = 0V
=> Idle is logical '1'

 4: Buses/USART 9

Why study UARTs ?

 Very wide utilization of simple, slow serial links
 Machine-to-machine communication
 Industrial computer communication
 Cellular & Satellite Modems + GPS

• Satellite modems have a low data rate (a few kbps)

 Very simple interface to learn
 Compared that to USB or Firewire...
 You can “see” the data with an oscilloscope

• Send the letter 'A' (0x41) on the UART, you will see:
– Start bit (0) + “10000010” + Stop bit (1) (digital levels)

• Try it on your McGumps board...

 4: Buses/USART 10

USART Communication

 MSP430 Specific Details
 USART Receive Enable (URXEx)

 Enable reception on URXDx (Module enable)
 Receive data buffer UxRXBUF contains the

character moved from RX shift register after
reception is complete.

 USART Transmit Enable (UTXEx)
 Initiate transmission by writing to UxTXBUF
 Data moved to TX shift register when it is

emptied.

 4: Buses/USART 11

UART Baud Rate Generator
 Produce standard baud rates from non-standard clock

frequencies
 Choose the clock source BRCLK
 N = BRCLK/baud rate
 Now write a 16-bit value UxBR into the registers BCR0 and

BCR1. This is floor(N)
 The modulator is used to match the fractional portion (an

iterative process to minimize timing error)
 Values available for standard rates

 4: Buses/USART 12

USART Initialization
 Set SWRST (software reset)

 BIS.B #SWRST, &UxCTL
 Initialize all USART registers keeping SWRST = 1

(including UxCTL).
 Enable USART module via MEx SFRs (URXEx or

UTXEx): Module Enable Special Function Registers.
 Clear SWRST

 BIC.B #SWRST, &UxCTL
 Enable Interrupts via the IEx SFRs (URXIEx or

UTXIEx). Interrupt Enable.

 4: Buses/USART 13

USART Errors
 Framing error (FE bit)

 Low stop bit detected
 Parity error (PE bit)

 Mismatch between number of 1’s and parity bit
 Receive overrun error (OE bit)

 Character loaded into RXBUF before previous
character is read.

 Break Condition (BRK bit or interrupt flag)
 10 or more low bits after missing stop bit.

 Set any of these -> also set RXERR bit.

 4: Buses/USART 14

USART Interrupts
 UTXIFGx Transmit interrupt flag

 Set by transmitter to indicate that UxTXBUF is
ready for another character

 Interrupt request if UTXIEx and GIE are set.
 Automatically reset if interrupt is serviced or if

another character is written to UxTXBUF
 URXIFGx Receive interrupt flag

 Set each time character received and loaded into
UxRXBUF

 Interrupt request if URXIEx and GIE are set.
 Reset if interrupt is serviced or if the character is

read from UxRXBUF

 4: Buses/USART 15

Computer Buses

Source : Wikipedia

 4: Buses/USART 16

Bus

 Common electrical pathway between multiple
devices

 Can be internal to CPU (e.g., data to ALU) or
external (to memory and I/O devices).

 Modern computers:
 Special-purpose bus(es) between CPU & memory
 Other bus(es) for I/O devices

 Protocols govern operation (e.g., PCI, SCSI, ISA).
 Scalable Interconnect: Infiniband

 4: Buses/USART 17

System Buses/Backplanes

 Systematic way to create extendible and open
hardware systems

 Also: to reduce prices, reuse designs, reach market
 Standardization: the key

 Industry associations (USB, PCI)
 Standardization bodies (IEEE488, Firewire)

 Standard content:
 Physical, Mechanical, Electrical and Logical

 Example: PC Platform
 PCI, PCIe, ISA, USB, RS232, SCSI, IDE, SATA, Ethernet,

Rambus, Infiniband, Hypertransport, AGP

 4: Buses/USART 18

Multiple Buses: PC platform
 Modern Processor (Core i7)

 Integrated Memory
Controller

 DDR3 Memory Bus
 QPI (QuickPath Interconnect)

 Allows Multi-processor
(NUMA)

 Similar to AMD
HyperTransport

 IO Hub (X58)
 Direct Media Interface

(DMI) to SouthBridge
 ICH10 (SouthBridge)

 Slower Peripherals

Source : Intel web site

 4: Buses/USART 19

Bus Principles
 Masters: active devices that can initiate bus transfers)
 Slaves: passive devices that wait for requests
 Most masters produce binary signals too weak to

power a bus.
 Especially on long links
 Connected to bus via a bus driver, essentially an

amplifier.
 Slaves connected via a bus receiver.

 4: Buses/USART 20

Bus principles (cont’d)

 For devices that can be masters or slaves, there are
bus transceivers.

 Often tri-state devices, allowing them to float
(disconnect) when not using the bus.

 Address, data and control lines.
 Design issues: bus width, bus clocking, bus

arbitration, and bus operations.
 Each has substantial impact on speed and

bandwidth.

 4: Buses/USART 21

Bus Width

 Wide buses need more wires, more physical space,
bigger connectors.

 Hence width is expensive, and there is a trade-off
between maximum memory size and system cost.

 Short-sighted designs:
 8088 – 20-bit address bus (1 MB)
 80286 – add 4 more bus lines (16 MB) + extra

control
 80386 – add 8 more. (E-ISA) much messier!

 4: Buses/USART 22

Bus Width (cont’d)

 Data lines also tend to grow over time.
 Two ways to increase bandwidth: decrease cycle

time or increase width.
 Speeding bus up is possible but leads to problems

with bus skew.
 IBM PC data lines: 8->16->32->64
 Multiplexed bus: use same lines for data and

address (address first, data later).
 Wide buses introduce bit skew problems

 Must keep trace length balanced => Difficult!
 Longer Buses => Slower due to handshakes

 4: Buses/USART 23

Parallel Bus clocking
 Synchronous

 Line driven by crystal oscillator (square wave)
 Example: 40 MHz, 40 nsec memory read, 1 nsec

for signal change.
 T1 starts on rising edge of clock
 CPU places address on bus lines
 Asserts MREQ (memory being accessed) and RD.
 T2 is a wait state (memory asserts WAIT)
 T3: memory places data on DATA lines
 At T3 falling edge, CPU strobes DATA and latches;

releases MREQ and RD.

 4: Buses/USART 24

Parallel Bus Clocking
 Synchronous
 One clock goes to all the elements
 Every element “see” the same clock at the same time

 Clock distribution is important
 Data is “launched” on rising edge of clock
 Captured on next edge by the target

• Takes time to exit the chip (Clock to Out, Tco)
• Propagation Delay (Tp) due to limited speed

– About 60% of speed of light on printed boards
– Limited rise time due to capacitance

• Hold time (Th)
– How long the data must be maintained on the input of target

before the clock.

 4: Buses/USART 25

Parallel Bus Clocking (cont.)

 The previous timing apply to each and every signal
lane

 Many lines, many constraints to meet
• Meet timing for the slowest line of the whole bus

 Many target devices
• Higher Capacitance + longer bus = Slower system
• Slow device slows everybody else down

 Workarounds
 Handshakes (send command, wait for ack)
 Multi cycle paths (multiple clocks given to the

target)
• If Tcycle is 20ns, timing is multiple of 20ns

 4: Buses/USART 26

Asynchronous Buses
 Synchronous buses

 waste time (no fractional cycles)
 cannot take advantage of tech. improvements

 Asynchronous
 No master clock
 Bus master asserts address, MREQ, RD; asserts special

signal MSYN (Master Synch.)
 Slave then performs work as fast as it can, then asserts

SSYN (Slave Synch.)
 Master latches data, negates MREQ, RD, address, negates

MSYN.
 Slave negates SSYN.
 Full handshake.

 4: Buses/USART 27

Asynchronous handshake

 4: Buses/USART 28

Bus Arbitration
 Single central bus arbiter

 Devices assert bus request line (wired-OR)
 Arbiter issues a grant by asserting bus-grant

line, wired through all devices.
 Daisy-chaining: device physically closest gets

grant if it made request.
 Priority according to physical location.
 Alternatively -> multiple request/grant lines.

 4: Buses/USART 29

Decentralized Bus Arbitration (1)
 Example 1:

 Each device has individual request line.
 All devices monitor all request lines and can

determine if it had highest priority.
 Example 2:

 Three lines: wired-OR request, BUSY (asserted by
current master), and arbitration line

 Acquire: check to see if bus is idle and IN is
asserted.

 If IN is negated, then it negates OUT.

 4: Buses/USART 30

Decentralized bus arbitration (2)
 Example 2 (Bus acquisition):

 Check to see if bus is idle and IN asserted.
 If IN is negated then it can’t become master, and it

negates OUT.
 If IN asserted: negate OUT -> deprive downstream
 At end of cycle, only one device has IN asserted and

OUT negated.

 4: Buses/USART 31

Reducing Bus Width – Serial I/O
 Recent advances are substantial

 PCIe 1.1 => 2.5 Gbps per pair
 PCIe 2.0 => 5.0 Gbps per pair
 Future PCIe 3.0 => 8 Gbps per pair (yet twice the performance

due to change in coding)
 High Speed Serial Interfaces

 A few differential signal pairs running at very high data rates
 Replaces a wide bus by a few signal pairs

 Clock and data on the same pair
 Protocols similar to networking

 Flow control, classes of traffic
 Similar trend with Parallel ATA to SATA

 Sata 1.5 Gbps, 3.0 Gbps, 6.0 Gbps
• Increased bandwidth to use of latest solid state disks

 USB 1.1 (1.5 Mbps / 12 Mbps), USB 2.0 (480 Mbps)

 4: Buses/USART 32

Serial Buses – Bandwidth per
pin

Source : Budruk & Al., PCI Express System Architecture

 4: Buses/USART 33

Serial Buses – Clock and Data
 Signals are sent differentially to increase immunity to noise
 Clock is embedded with data

 Needs encoding to avoid long sequences of '0' or '1'
• Those will mess up clock recovery

 8B10B encoding is a well used code
• Developed by IBM in 1983

• Take 8-bit data => transform into a 10-bit symbol
• Keep track of number of zeros and ones and balance

numbers on average to keep DC balance.
• 8B10B used in PCIe, Firewire, SATA, GigE, DVI/HDMI,

USB 3.0.
 Clock is recovered at the receiver

 Need a phased-locked loop (PLL) to achieve this
 Uses the transitions of bits to keep synchronization

 4: Buses/USART 34

Serial Buses (contd.)
 High speed serial buses - why not used earlier ?

 Requires high integration and cheap
transistors because of added complexity

 Still used only where high performance is needed
 Small microcontroller systems tend to stay with

parallel buses for memory and fast peripherals
• Easier to debug
• Cheaper to produce

 Serial buses are used on microcontrollers too
 For low pin count, slow interfaces

• SPI (4 lines + 1 line for each additional slave)
• I2C (2 lines, many slaves)
• 1-Wire (1 line, many slaves possible)

 4: Buses/USART 35

PCI, PCI Express
 ISA at 8.33 MHz; max. bandwidth of 16.7 MB/sec; video

alone = 135 MB/sec.
 Intel designed PCI bus in 1990
 Dominant standard

 Not only PCs, but also communication systems,
embedded systems

 Originally 33 MHz and 32 bit -> 133 MB/sec
 PCI 2.2 -> 66 MHz and 64 bit -> 528 MB/sec
 Not good enough for a memory bus. Not compatible

with ISA cards.
 PCI Express is gaining grounds

 Shift from parallel bus to high-speed serial links
 PCI is still a dominant player due to large base

 4: Buses/USART 36

PCI Express Organization

Source : Budruk & Al., PCI Express System Architecture

 4: Buses/USART 37

PCI Express Bus Transactions

 All links are point to
point

 To reach multiple
endpoints, traffic must
use switches

 Supports interesting
features:

 Hotplug
 Link Training
 Power Saving

Source : Budruk & Al., PCI Express System Architecture

 4: Buses/USART 38

PCI Express - Architecture
 Bus arbitration is more

abstract
 Using network

messages
 Much more scalable

 Can mix different
speeds

 Backward compatible
 Bandwidth can scale

 On same connector,
x1, x2, x4, x8, x16

 Rate is negociated
 Future looks good for PCIe

Source : http://en.wikipedia.org/wiki/PCI_Express

 4: Buses/USART 39

Work for this week
 Read Lab Experiment #2 handout
 Attend tutorial given by the TA in the lab

 Useful information on how to use UART and
Timers

 Obtain the keypad if not already in your kit
 Discuss a strategy to meet Experiment #2 objectives

 Prototype the algorithm/game on PC
 Get UART and Timers working

 Don't hesitate to use the TA for guidance
 They will not give you “the answer”
 They will guide you in finding it

• Best return on your education investment...

	ECSE-426 USART and Buses
	Slide 2
	Slide 3
	Slide 4
	Asynchronous Transmission
	UART Character Format
	Slide 7
	Slide 8
	Slide 9
	USART Communication
	UART Baud Rate
	USART Initialization
	USART Errors
	USART Interrupts
	Slide 15
	Bus
	System Buses/Backplanes
	Multiple Buses: PC platform
	Bus Principles
	Bus principles (cont’d)
	Bus Width
	Bus Width (cont’d)
	Bus clocking
	Slide 24
	Slide 25
	Asynchronous Buses
	Asynchronous handshake
	Bus Arbitration
	Decentralized Bus Arbitration (1)
	Decentralized bus arbitration (2)
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	PCI Bus
	Slide 36
	Slide 37
	Slide 38
	Slide 39

