ECSE-426

Microprocessor Systems

[— Systees Soard
EC) 2 MeCx Ll Unverai by

3Ly

Lecture 3 1

Lab 1 Experiment Report

O Deadline extended to Sunday, Sept 20" at midnight
Give you a bit more time outside the weekdays.

O Electronic copy (.PDF) will be accepted
No paper copy is needed if you use this method

A single, self-contained PDF document
» Experiment data and source code in Appendix

PDF ONLY (no .DOC, .DOCX, .ODT, etc.)
Submit the electronic copy through WebCT before the
deadline.
O You can also submit a paper report in the
assignment box

This is the alternate option for those who cannot output
a PDF or if you wrote it all by hand.

Lecture 3

Today’s Lecture

O Theory

dJ ISA
» Addressing Modes
» Bytes/Bits ordering

< Interrupts

O Practical Information (MSP430)
4 Clocks
< Interrupts
2 Timers
2 Digital /0

Lecture 3 3

Instruction Set Architecture

O Recall : Abstraction of the Microarchitecture Level
Provide a functional, detailed view of the processor
Abstracts out microprogram details and implementation

O Allows new implementations to be backward
compatible with older designs
Multiple implementations of the same ISA
» E.g. Pipelined vs non-pipelined core
Allows tradeoffs to be done at the hardware level
« Keeping the compiler maintainers, OS sw, users happy
O The ISA is usually defined in a specific document

E.g. MSP430 User Guide
Consistent for all the MSP430 family.

Lecture 3

Example : ARM Cortex-M3

O Cortex-M3
J Thumb?2 instructions

O Low-costs embedded targets
J 32-bit registers, 16-bit instruction set
J 3-stage pipeline, Harvard architecture

2 Atomic bit manipulation
« Read-modify-write in one operation (indivisible)
o Useful in embedded systems
« Allows concurrent access to shared elements

Lecture 3

ARM Cortex-M3 (ctd.)

O Sixteen 32-bit registers
O Note the banking of Stack Pointer (SP)

O LR : Link Register.
J Holds the return address for leaf function call

ro
r1
r2
r3
r4
rs
ré
rv
ré
ro

low registers <

high registers < r10
r11
r2
r13 (SP) | SP_process | SP_main
r14 (LR)
r15 (PC)
Program Status Register xPSR

Source: ARM Cortex-M3 Technical Reference Manual — r2p0, Section 2-4 Lecture 3

|IA-32 Architecture » "ot

EAX
EBX
O EAX — Accumulator for operands and ECX
results data EDX
O EBX — Pointer to data in the DS segment ES|
: EDI
O ECX — Counter for string and loop -
operations cop
O EDX — I/O pointer
O ESI— Pointer to data in the segment JrgmentRegisters
pointed to by the DS register; source pointer cs
for string operations DS
O EDI — Pointer to data (or destination) in the SS
segment pointed to by the ES register; ES
destination pointer for string operations FS
O ESP — Stack pointer (in the SS segment) GS
O Segments allow different areas of memory to Program Status and Control Register
have protection. It allows hardware to 31 0
intercept invalid/forbidden operations. EFLAGS
31 Instruction Pointer 0
EIP

Source : Intel® 64 and [A-32 Architectures Software Developer’s Manual Volume 1
Lecture O E

IA32 Architecture - BCD

BCD Integer — One BCD digit per byte
O Packed BCD - 2 BCD digits per byte
O For the co-processor:

80-Bit Packed BCD in memory are converted to extended
double-precision floating point when used by the co-processor

O Binary operations on BCD, then adjustment Instructions to recover
proper BCD (E.g : DAA)

ADD + DAA : Decimal adjust after addition
SUB + DAS : Decimal adjust after substraction

BCD Integers
7 43 0
Packed BCD Integers

7 43 0
Sign 80-Bit Packed BCD Decimal Integers

[[x |p17,D16,D15 D14,D13,D12, D11 D10, D9, D8, K D7 D6 D5 D4 D3, D2, D1, Do |
7978 7271 0

4 Bits = 1 BCD Digit
Figure 4-9. BCD Data Types Lecture 3

|JA32 Architecture - SIMD

O Single Instruction Multiple Data (SIMD)
MMX, SSE, SSE2, SSSE?2
Manipulate many smaller data units in one instruction
Useful for graphics, DSP and other media applications

O Operate on packed data formats
Horizontal repetition of the same data type

« E.g. Packed Bytes => 16 bytes in a 128-bit register

* One instruction is equivalent to 16 independent operations
on the byte fields, but all in one operation

Example :
« Add Packed Unsigned Integers with Unsigned Saturation
« PADDUSB xmm1,xmm2/m128

Lecture 3

PADDUSB Example

O PADDUSB instruction with 128-bit operands:
DEST[7:0] — SaturateToUnsignedByte (DEST[7:0] + SRC[7:0));
(* Repeat add operation for 2nd through 14th bytes *)

DEST[127:120] ~ SaturateToUnSignedByte (DEST[127:120] +
SRC[127:120]);

O Operates on XMM Registers (SSE2, SSE3, SSSE3)

Core2 architecture, for example.

128-Bit Packed Floating-Point and Integer Data Types

127 0
| | | | Packed Single Precision
XMM7 Floating Point
127 0
XMM6 | Packed Double Precision
MME I I Floating Paint
127 0
AMM4 I I I I I I I I I | | | | | | | | Packed Byte Integers
XMM3 127 0
XMM?2 | | | | | | | | | Packed Word Integers
127 0
XMM1
| | | | | Packed Doubleword Integers
XMMO 127 0
- : | | | Packed Quadword Integers
Figure 10-2. XMM Registers 127 0

Lecture 3 10

ISA - Summary

O The Instruction Set Architecture defines what the
programmer can do with the machine

Stable foundations to build compilers, libraries, etc.

O |ISA vary among architectures and within a line of
product
Share some common registers/operations
More $$$ => more specialized instructions/coprocessor
O Difficult to compare architectures
Million instructions per second (MIPS)...

1 MIPS of MSP430 clearly not equal to 1 MIPS of SSE3
Marketing ?

Lecture 3

11

Addressing Modes

O Immediate
2 All the required information is part of the instruction
J E.g. MOV #4, R5
O Direct (Absolute)
2 From a fixed location in memory
4 E.g. MOV &Label, R5
O Register Indirect
0 Using a register content as a pointer
4 E.g. MOV @R5, R6 ; R5 contains a valid address
O Register Mode

2 Manipulate registers only
4 E.g. MOV R5,R6

Note : MOV width should be specified (MOV.B or MOV.W) Lecture 3 12

Addressing Modes (ctd.)

O Indexed
2 Similar to Indirect Register Mode, but with offset
J MOV 4(SP), R5
* R5 will contain the value at address SP+4
O Symbolic Mode

2 Similar to Direct Addressing Mode
0 Except that the symbol is an offset from the PC
4 E.g. MOV Label, R5

O Indirect with Autoincrement
< Adds automatic increment of pointers

J Faster memory copy, array scanning, etc.
0 E.g. MOV @R5+, R6

Lecture 3

13

Assembly Addressing modes

O MSP430

MODE NAME
Register mode
Indexed mode
Symbolic mode
Absolute mode
Indirect register
Indirect autoinc.
Immediate mode

FORMAT
Rn

X(Rn)
ADDR
&ADDR
@RnN
@RN+
#N

OPERAND

Register Contents

(Rn+X) points to operand
(PC+X) points to operand
ADDR is abs. address

Rn is a pointer to operand

use immediate constant N

Lecture 3

14

Bits and Bytes Ordering

How many ways can it be done ?

Lecture 3 15

Ordering and naming of Bits

O One Byte : 8 bits

2 Which one is most significant ?
« 0x81 =>*"“10000001" ; MSB is on the left, LSB is on the right
« But which bit is what ? Which one is bit 2 ?
* Answer : it depends...

O Bit numbering is purely a convention

2 Bit O could be the MSB, Bit 8 the LSB
* No guarantees => Read the documentation

2 Some Telecom documents => No bit O (starts at 1)
2 Sending a byte on a serial line
« Which bit goes out first ?

O Good read:
J http://www.linuxjournal.com/article/6788

Lecture 3

16

Byte Ordering

O Little Endian vs Big Endian
Intel, AMD, MSP430 => Little Endian
PowerPC, Motorola => Big Endian
ARM, MIPS => Programmable (Either one)

O 0x0a0b0c0d (example 32-bit number)

Blg Endian byte addr 0 1 2 3

bit offset 01234567 01234567 01234567 01234567
binary 00001010 00001011 00001100 00001101
hex Oa Ob 0Oc od

byte addr 3 2 1 0
I 1 bit offset 76543210 76543210 76543210 76543210
thtle Endlan binary 00001010 00001011 00001100 00001101
hex Qa @b Oc ed

O Endianness of various parts in a system
CPU, BUS, Device, Network

Example taken from : http://www.linuxjournal.com/article/6788 Lecture 3

17

Dates - Endians

O Little Endian form
1% of September 2009
01/09/2009

O Big Endian form
2009 September 1%
2009/09/01

O Mixed endian form (USA)
September 1%, 2009
09/01/2009

O 9/11 - Ambiguous
Fall of Berlin Wall (November 9, 1989)
NYC Terrorist Attacks

Source : http://en.wikipedia.org/wiki/Calendar_date

Lecture 3 18

Interrupts

O Hardware event (some software exceptions)

triggers the processor to jump from its current program
counter to a specific point in the code.

Unpredictable special events

O Each interrupt
Assigned word long segment at upper end of memory
e Jump to location where interrupt is handled
O Maskable: programmer can decide if the interrupt
causes a jump
O Non-maskable interrupt (like the reset button) is so
Important that it should never be ignored.

Lecture 3

19

Interrupts (2)

Q

Interrupt Service Routine (ISR)

Function that is called (or assembly code that is executed)
when interrupt occurs

Interrupt Flag (IFG)

Bit that triggers the interrupt

Servicing the interrupt resets flag to normal state
Interrupt Enable (IE)

Control bit that tells processor if a particular maskable interrupt
should be ignored

Usually one such bit per interrupt
Interrupt Priority

When two interrupts occur at same time, higher priority
interrupt takes precedence.

e.g. peripheral timer + reset button >> processor ignores the
peripheral timer

Lecture 3

20

Interrupts

O Processing external events
Asynchronous to program execution
Mostly I/O driven, but also timers, SW exceptions
Different from traps (synchronous with program)

* Note : No traps on MSP430

O Example of interrupt
Goal: output line of characters to terminal
Collect characters in buffer
Initialize a pointer (ptr) and a counter (count)
Check if terminal is ready and start I/O
After character is displayed -> interrupt

Lecture 3

21

Interrupts (example cont’d)

Q Hardware

Device controller asserts interrupt line on system bus
When ready, CPU asserts interrupt acknowledge signal

Device controller puts integer (interrupt vector) on data
lines to identify itself

CPU removes the interrupt vector & saves it
CPU pushes PC and PSW onto stack

CPU locates new program counter using the interrupt
vector as index into a table at the bottom of memory.

Lecture 3 22

Interrupts (example cont’d)

Q Software
(1) Interrupt service routine saves all registers
) Read device register to determine terminal number
(3) Read status codes for the interrupt
)
)

Handle a potential I/O error

Increment ptr, decrement count. If count > 0, copy *ptr to
output register

6) If required, output special code to tell device or interrupt
controller that interrupt has been processed

(7) Restore all saved registers.

(8) Execute the return from interrupt (RETI) instruction, restoring
state/mode of CPU.

Note : C Compilers will take care of saving / restoring the
context.

Lecture 3 23

Transparency & Priority

O Transparent Interrupt
J Take actions and run code, but

2 When the dust settles, computer
should be in exactly the same state
as before the interrupt.

O Priority

2 When there are multiple I/O devices,
potential for interrupts to occur
during ISRs

- Assign priority to interrupts and
handle time-critical tasks first.

Lecture 3 24

Small Interlude

O A few minutes
2 Any questions on the lab ?
2 Do you all have your kits ?
2 Tutorial today (?) and tomorrow
e Check WebCT for the details
O Next : Practical info on MSP430

g MSP430
» Clocks
 Timers
* Interrupts
 Digital 1/0

Lecture 3 25

MSP430 Clocks

O Three clock sources and three clock lines — allows a mix of
slow and fast clocks in the system.

O Low Frequency Crystal Clock (LFXTCLK) —

< Crystal connected to the XIN and XOUT pins with intended
oscillation of 32kHz.

< Always the source of the Auxiliary Clock line (ACLK).

< This source can be turned off with the OSCOFF option in the
Status Register.

Q Crystal 2 Clock (XT2CLK) —
8 MHz crystal connected to the XT2IN and XT20UT pins.

< In general, this signal is meant to be the high-speed clock
source.

- This source can be turned off with the XT2OFF bit of the Basic
Clock system control register 1 (BCSCTL1).

Lecture 3

26

MSP430 Clocks (ctd)

O Digitally Controlled Oscillator Clock (DCOCLK)
2 the only internally generated clock input
2 default clock source for the master clock upon reset.
2 By default this clock runs at about 900kHZ
2 The RSELXx, MODx, and DCOXx bits allow adjustment

Lecture 3 27

Clock Multiplexing Diagram

DITVPTux
O Names above l > St ———

| |
T Auxilary Clock

Multiplexers o

4 Bits in Regs e
O KnOW your _I—;;m,_ D,.,1jF LFOFF QKTiOﬁ
SyStem o o CPUOFF

&y L1
J Takeapen 77T - o | 4ot |[oveer
and trace the P .| L—

|
|
|
S|gna| path : XTZIN Main System Clock
| b
|
|
|

xT20UT XT2 Oscillator
___________ | MO D

TTT1T

Modulajor <7

DCOR SCGO RSELx

SELS DiVSx

DCO
1L 11 Py
aff n
oc 1
—{ DCo Dhivider
Gieneralor -
L~ B n+1 24
P2.5/Rosc SMCLEK

Sub System Clock

Chap 4 — MSP430 Family User Guide

Example - MCLK Selection

Z> BCSCTL2, Basic Clock System Control Register 2

LEXTCLK Divider
Y a—

h d /21478
ACLK

Auxiflary Clock

XT2CLK

Main System Clock

. 7 5 oy 4 3 2 1 0
‘ DIVMx ’ SELS DIVSx DCOR
rw—(0) rw—(0) rw—(0) rw—(0) rw—0 rw—0 rw—0 rw—0
SELMx Bits Select MCLK. These bits select the MCLK source.
7-6 00 DCOCLK
01 DCOCLK
10 XT2CLK when XT2 presenton-chip. LEXT1CLK when XT2 not present
on-chip.
11 LFXT1CLK
DIVMx BitS Divider for MCLK
5-4 00 N
01 /2
10 /4
11 8
SELS Bit 3 Select SMCLK. This bit selects the SMCLK source.
0 DCOCLK
1 XT2CLK when XT2 present. LEXTT1CLK when XT2 not present
DIVSx BitS Divider for SMCLK
2-1 00 N
01 /2
10 /4
11 8
DCOR Bit O DCO resistor select.
0 Internal resistor
1 External resistor

Lecture 3 29

MSP430 Clock Lines

O Master Clock (MCLK)
Source for the MSP CPU core;

Must be working properly for the processor to execute
instructions.

Source is selected with the SELMx bits of the Basic Clock
System Control Register 2 (BCSCTL?2).

The divider is controlled with the DIVMx of the BCSCTL2.

CPU can be turned off with the CPUOFF bit of the Status
Register (SR), but to recover from this state an interrupt must
occur.

O # Submaster Clock (SMCLK) - This clock is the source for
most peripherals, and its source can either be the DCO or
Crystal 2. The source clock is controlled with the SELS and
SCG bits of the BCSCTLZ2 and SR. The divider is controlled by
the DIVSx bits of the BCSCTL2.

Lecture 3

30

MSP430 Clock Lines (ctd)

O # Auxiliary Clock (ACLK) - this clock line’s source is
always LFXTCLK. Itis an option for slower
subsystems to use in order to conserve power. This
clock can be divided as controlled by the DIVAX bits

of the Basic Clock System Control Register 1
(BCSCTL1).

Lecture 3 31

Timers

O Two digital timers, A & B.

O Timer A:

3 capture/compare registers

Interrupts: via overflow, or from one of the capture/compare
registers.

Selectable clock source

Configurable outputs with PWM (pulse-width modulated)
capability
Interval timing

Lecture 3 32

Timer A

O 16 bit timer/counter register, TAR
iIncrements/decrements with each rising edge of clock
Software read/write
Interrupt on overflow.
Clear: TACLR bit (also clears clock divider and count
direction)

O Clock source
ACLK, SMCLK, or externally (TACLK or INCLK)

Lecture 3 33

Timer A

O Start timer

MCx > 0 and clock source active

In up or up/down mode
* write 0 to TACCRO to stop timer
» then write nonzero value to TACCRO to start.

O Modes
Stop: timer halted
Up: zero to TACCRO repeatedly
Continuous: zero to OXFFFFh
Up/down: zero to TACCRO, back to zero

Lecture 3

34

Timer A Modes

O Up mode:
1 Used for periods different from OxFFFFh
2 Timer counts per period is TACCRO0O+1

J TACCRO CCIFG interrupt flag set when timer counts to
TACCRO value

2 TAIFG flag when timer counts to zero

O Continuous mode
d TAIFG flag set when timer counts from OxFFFFh to O

Lecture 3

35

Timer A Modes

O Up/down mode:
Used for symmetrical pulse generation
Counts to TACCRO and back to 0 (repeatedly)

TACCRO CCIFG interrupt flag set when timer counts to
TACCRO value

TAIFG flag when timer counts to zero
Interrupt flags separated by %2 timer period
Supports applications that require dead times.

OFFFFh
TACCRO

TACCRT

TACCRZ o

Oh]]
—- [— —- ll— Dead Time

Output Mode 6: Toggle/Set

Output Mode 2: Toggle/Reset

TAIFG ECUM EQUT Interrupt Events

EQuz EQuU2Z EQuz EQuU2z

Lecture 3

36

Capture/compare blocks

QO Capture mode (CAP =0)

2 Used to record time events (speed computations, time
measurements)

2 Capture occurs on selected edge of input
e Timer value copied to TACCRX register
 Interrupt flag CCIFG is set

O Compare mode (CAP =1)

J Used to generate PWM output signals or interrupts at
specific time intervals

2 When TAR counts to TACCRXx
» Set CCIFG, set internal signal EQUx = 1, latch CCI to SCCI.

Lecture 3

37

Timer A Interrupts

Q

Two interrupt vectors
TACCRO vector for TACCRO CCIFG

TAIV vector for all other CCIFG flags and TAIFG.

In capture mode, a CCIFG flag is set when a time value is

captured. In compare mode, a CCIFG flag is set if TAR

counts to the associated TACCRXx value.

TACCRO CCIFG : highest priority

Dedicated interrupt vector

Lecture 3

38

Timer A Interrupts

O TAIV vector - prioritized
(1) TACCR1 CCIFG
2) TACCRZ2 CCIFG
3) TAIFG (overflow flag)

Lecture 3 39

MSP430 Interrupt
Mechanisms

O Peripheral devices

1 USART, Timers, AD/DA, GPIO
O Pins

J NMI, Reset, P.O, P.1

O A daisy chain of requestors

O On MSP430:
- Closer to processor, the higher priority

O Power-up : highest priority
O See priority table (datasheet).

Lecture 3

40

MSP430 Interrupt
Mechanisms

MSP430x14x

XIN XOUTTCLE figg RETNMI P (=~ = I =1 p5 =]
Rose == Cecilater =i ACLE KE 12 Bit ADC VO Part & WO P B
KTZN
E'!,Ig.l:em _'. 2RICLE KE 8 Chanrels 8 10s BliOs
XT20UT Clock
1 KE <10 s Comd
MCLE £y PO
| ¥
l Tesl
| JTAG -
| CPU 1
| Ircl. 16 Reg =
o
| E3 Ll BV
TMS Multipkys
TCK MY, MPYS iWabchdog Timer BY e A
MAC MACS Timer
o ;?Eé% ALK 15/ 16 Bi el e CC-Feg
w t i |
I_ 16=1 & it

[AL N E B

MSP430 Interrupt Processing

O Table definition: Qmmm)

ORG
DW

ORG
DW

ORG
DW

ORG
DWW

ORG
DW

OFFEQh

Invalid_Interrupt

OFFEZh

Invalid_Interrupt

OFFE4h
Port]l _Interrupt

JFFE6h
Portl_Interrupt

OFFESh

Invalid_Interrupt

Current Instruction
Completed

User defined I5H

push PC+2

Imterrupt wector of

the highest priority

activated interrupst
loaded to P

Appropriate
int=rrupt flag resst
[zingle souce
flags only)

push SH

GIE, CPLICH,
OSCOf, 8051,
C.M¥and £ are

ressl.

pop SR ol —
These two steps ars carried
out automatically as pars
of the reti instruction, at
the end of the |15H

pop FC p—

Return to program
Flow

Figure 3.1:

Interrupt Processing

Lecture 3 42

MSP430 Interrupt Priorities

CPU

Pricirity

GMIRS

High

_ Lo

GIE

MMIRS

2

PUC ,;

PLIC

CSCau
Flash ACCY

Crouit

Resal M

- .

Bus
Grant

WIT Sacurly Key

Fla=h Bacurky Key 4
TKEY Ny

LV

LV

MA&B - 5L5BE

<fhf’

—

Lecture 3

43

Interrupt Advice

O Always use RETI (in assembly)
O Ensure unused interrupts are disabled
O Make ISRs fast (stack issues with nesting)
Only change flags, copy data, return to main to do main processing
O Consider polling as an alternative

stack overflow interrupt [0x02] void dummy_Port2_Interrupt{void)
race condition {

O ISRsin C et
Example: few routines |

 |AR Convention interrupt [0x04] void dummy_ USART tx_Interrupt(void)

while (1)
i
Rowley is similar !

« Same information for the compiler, different syntax

Lecture 3

44

MSP430 Priorities

COC0O0O0O0O0OO0OCOO0O 0O 0O O

15 non-maskable: External reset, power up, watchdog timer reset,
invalid flash memory activation

14 non-maskable: oscillator fault, flash memory access violation,

NMI

13 maskable: timer B capture compare register O
12 maskable: timer B capture compare registers 1-6, timer B

Interrupt

HHFEHFFHFHFHFHHTFHFHRH

11 maskable: comparator A interrupt

10 maskable: watchdog timer interrupt
9 maskable:
8 maskable:
7 maskable:
6 maskable:
5 maskable:
4 maskable:
3 maskable:
2 maskable:
1 maskable:
0 maskable:

USARTO receive interrupt, 12C interrupt
USARTO transmit interrupt

A/D converter interrupt

timer A capture compare register O interrupt
timer A capture compare registers 1-2 interrupt
port 1 interrupts

USARTL1 receive interrupt

USART1 transmit interrupt

port 2 interrupts

D/A converter interrupt

Lecture 3

45

Stack - Quick review

The stack is memory whose contents are kept in last
In first out (LIFO) order.

Stack pointer is always updated to point to the most
recent element added to the stack.

This allows the processor to call functions and track
Interrupts.

When something is pushed onto the stack, the stack
pointer is incremented and the pushed data is
written to that location.

When you copy out of the stack and decrement the
stack pointer, this is called popping something off
the stack.

Lecture 3

46

Events upon interrupt

a H~ w0 DhPe

The current instruction completes.

Program counter pushed onto the stack.

The status register is pushed onto the stack.

The highest priority interrupt waiting to occur is selected.

Single source interrupts have their interrupt request flags reset
automatically. Multiple source interrupt flags do not do this so
that the interrupt service routine can determine what the
precise cause was.

Status register cleared (except SCGO bit). Brings processor out
of any low-power modes. Also disables interrupts (GIE bit).

The content of the interrupt vector is loaded into the program
counter. Processor executes the instruction at the particular
memory location (jump to ISR)

Lecture 3

47

ISR example

O Example: fet140_wdtO1.c by Mark Buccini

[/ Watchdog Timer interrupt service routine
void watchdog_timer(void) __interruptfWDT_VECTOR]

{
P1OUT *= 0x01; // Toggle P1.0 using exclusive-OR

}

O Always void (no arguments). Name does not matter.

O interrupt[] is keyword indicating that routine is an interrupt
O WDT_VECTOR is macro from msp430 header file

O Every interrupt vector has a macro defined for it

Q

5 cycles to exit: pop status register and all other settings + PC.

Lecture 3

48

Digital I/O

© O 0O O

O

See chapter nine of the user guide
Six digital I/O ports — P1 to P6
Each port has 8 pins

Each pin is individually configurable for input or
output

Ports 1 and 2 have interrupt capability
Can be individually enabled
Configured to provide interrupt on rising/falling edge
All P1 I/O lines source a single interrupt vector
All P2 I/O lines source a separate, single interrupt vector

Lecture 3

49

Digital I/0 (ctd)

O Input PxIN

value of the input signal at the corresponding I/O pin (if pin is
configured to input)

Effectively read-only

O Output PxOUT
The value to be output on the corresponding pin

O Direction PxDIR
Each bit selects the direction of the corresponding I/O pin
Bit = 0 >> input; Bit = 1 >> output
How do we switch the three pins (P1.7, P2.2, and P2.3) to
be outputs?

Lecture 3 50

Examples

O Suppose three LEDs are connected to P1.7, P2.2 and P2.3.

O LEDs are turned on by setting their corresponding register bits
low.

O How do we switch the three pins to be outputs?

O How would be turn on the three LEDs without modifying any
other bits in the register?

O A button is connected to P2.0. The buttons are high (=1) by
default and go low if the button is pressed.

O Write a polling scheme for the button.

Lecture 3

51

Digital 1/0 (3)

Q

Q

Pins can be multiplexed with other peripheral
module functions

PXSELX — set to O to choose digital I/O and setto 1
to choose peripheral function

P1 and P2 interrupts
PxIFG, PxIE and PxIES registers

PXIFG register can be tested to determine the source of
a P1 or P2 interrupt (which pin).

To enable interrupts, need to set the PxIE bitto 1 (and
the GIE bit)

PXIES determines whether low-to-high transition or high-
to-low triggers interrupt

Any external interrupt event should be at least 1.5 times
MCLK or longer

Lecture 3

52

Notes : Assembly Timing

O Depends on addressing mode
O Each Type | and Type Il instruction has a specified
number of cycles.

O Remember to allow for the time to enter and exit the
function if you are being precise in your timing.

Lecture 3 53

Your work this week

O Complete Experiment 1 + Demo

O Get a MicroP Hardware Kit

Attend tutorial to know how to program it and how to use
interrupts

Next Experiment will use hardware

O Review Lecture 2 and Lecture 3 for the class Quiz

Quiz is relatively easy if you listened in class and did the
Experiment.

Lecture 3 54

	ECSE-426 Microprocessor Systems
	Slide 2
	Today’s Lecture
	Instruction Set Architecture - Review
	Example - ARM Cortex M3
	Cortex M3 - Continued
	IA-32 Architecture
	IA32 Architecture - Part 2
	IA32 - SIMD
	SIMD - PADDUSB Example
	ISA - Summary
	Addressing Mode
	Addressing Modes - cont
	MSP430 Addressing Modes
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Interrupts
	Interrupts (2)
	Slide 21
	Interrupts (example cont’d)
	Slide 23
	Transparency & Priority
	Slide 25
	MSP430 Clocks
	MSP430 Clocks (ctd)
	Slide 28
	Slide 29
	MSP430 Clock Lines
	MSP430 Clock Lines (ctd)
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	MSP430 Interrupt Mechanisms
	Slide 41
	Slide 42
	MSP430 Interrupt Priorities
	Slide 44
	MSP430 Priorities
	Stack
	Events upon interrupt
	ISR example
	Digital I/O
	Digital I/O (ctd)
	Slide 51
	Digital I/O (3)
	Assembly timing
	Slide 54

