
 Lecture 3 1

ECSE-426

Microprocessor Systems

 Lecture 3 2

 Deadline extended to Sunday, Sept 20th at midnight
 Give you a bit more time outside the weekdays.

 Electronic copy (.PDF) will be accepted
 No paper copy is needed if you use this method
 A single, self-contained PDF document

• Experiment data and source code in Appendix
 PDF ONLY (no .DOC, .DOCX, .ODT, etc.)
 Submit the electronic copy through WebCT before the

deadline.

 You can also submit a paper report in the
assignment box

 This is the alternate option for those who cannot output
a PDF or if you wrote it all by hand.

Lab 1 Experiment Report

 Lecture 3 3

Today’s Lecture

 Theory
 ISA

• Addressing Modes
• Bytes/Bits ordering

 Interrupts

 Practical Information (MSP430)
 Clocks
 Interrupts
 Timers
 Digital I/O

 Lecture 3 4

Instruction Set Architecture

 Recall : Abstraction of the Microarchitecture Level
 Provide a functional, detailed view of the processor
 Abstracts out microprogram details and implementation

 Allows new implementations to be backward
compatible with older designs

 Multiple implementations of the same ISA
• E.g. Pipelined vs non-pipelined core

 Allows tradeoffs to be done at the hardware level
• Keeping the compiler maintainers, OS sw, users happy

 The ISA is usually defined in a specific document
 E.g. MSP430 User Guide
 Consistent for all the MSP430 family.

 Lecture 3 5

Example : ARM Cortex-M3

 Cortex-M3
 Thumb2 instructions

 Low-costs embedded targets
 32-bit registers, 16-bit instruction set
 3-stage pipeline, Harvard architecture
 Atomic bit manipulation

• Read-modify-write in one operation (indivisible)
• Useful in embedded systems
• Allows concurrent access to shared elements

 Lecture 3 6

ARM Cortex-M3 (ctd.)
 Sixteen 32-bit registers
 Note the banking of Stack Pointer (SP)
 LR : Link Register.

 Holds the return address for leaf function call

Source: ARM Cortex-M3 Technical Reference Manual – r2p0, Section 2-4

 Lecture 3 7

IA-32 Architecture
 EAX — Accumulator for operands and

results data
 EBX — Pointer to data in the DS segment
 ECX — Counter for string and loop

operations
 EDX — I/O pointer
 ESI — Pointer to data in the segment

pointed to by the DS register; source pointer
for string operations

 EDI — Pointer to data (or destination) in the
segment pointed to by the ES register;
destination pointer for string operations

 ESP — Stack pointer (in the SS segment)
 Segments allow different areas of memory to

have protection. It allows hardware to
intercept invalid/forbidden operations.

Source : Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1

 Lecture 3 8

IA32 Architecture – BCD
 BCD Integer – One BCD digit per byte
 Packed BCD – 2 BCD digits per byte
 For the co-processor:

 80-Bit Packed BCD in memory are converted to extended
double-precision floating point when used by the co-processor

 Binary operations on BCD, then adjustment Instructions to recover
proper BCD (E.g : DAA)

 ADD + DAA : Decimal adjust after addition
 SUB + DAS : Decimal adjust after substraction

 Lecture 3 9

IA32 Architecture - SIMD

 Single Instruction Multiple Data (SIMD)
 MMX, SSE, SSE2, SSSE2
 Manipulate many smaller data units in one instruction
 Useful for graphics, DSP and other media applications

 Operate on packed data formats
 Horizontal repetition of the same data type

• E.g. Packed Bytes => 16 bytes in a 128-bit register
• One instruction is equivalent to 16 independent operations

on the byte fields, but all in one operation
 Example :

• Add Packed Unsigned Integers with Unsigned Saturation
• PADDUSB xmm1,xmm2/m128

 Lecture 3 10

PADDUSB Example
 PADDUSB instruction with 128-bit operands:

 DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
 (* Repeat add operation for 2nd through 14th bytes *)
 DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] +

SRC[127:120]);

 Operates on XMM Registers (SSE2, SSE3, SSSE3)
 Core2 architecture, for example.

 Lecture 3 11

ISA – Summary

 The Instruction Set Architecture defines what the
programmer can do with the machine

 Stable foundations to build compilers, libraries, etc.

 ISA vary among architectures and within a line of
product

 Share some common registers/operations
 More $$$ => more specialized instructions/coprocessor

 Difficult to compare architectures
 Million instructions per second (MIPS)...
 1 MIPS of MSP430 clearly not equal to 1 MIPS of SSE3
 Marketing ?

 Lecture 3 12

Addressing Modes
 Immediate

 All the required information is part of the instruction
 E.g. MOV #4, R5

 Direct (Absolute)
 From a fixed location in memory
 E.g. MOV &Label, R5

 Register Indirect
 Using a register content as a pointer
 E.g. MOV @R5, R6 ; R5 contains a valid address

 Register Mode
 Manipulate registers only
 E.g. MOV R5,R6

Note : MOV width should be specified (MOV.B or MOV.W)

 Lecture 3 13

Addressing Modes (ctd.)
 Indexed

 Similar to Indirect Register Mode, but with offset
 MOV 4(SP), R5

• R5 will contain the value at address SP+4

 Symbolic Mode
 Similar to Direct Addressing Mode
 Except that the symbol is an offset from the PC
 E.g. MOV Label, R5

 Indirect with Autoincrement
 Adds automatic increment of pointers
 Faster memory copy, array scanning, etc.
 E.g. MOV @R5+, R6

 Lecture 3 14

Assembly Addressing modes

 MSP430

MODE NAME FORMAT OPERAND

Register mode Rn Register Contents

Indexed mode X(Rn) (Rn+X) points to operand
Symbolic mode ADDR (PC+X) points to operand
Absolute mode &ADDR ADDR is abs. address
Indirect register @Rn Rn is a pointer to operand
Indirect autoinc. @Rn+
Immediate mode #N use immediate constant N

 Lecture 3 15

Bits and Bytes Ordering

How many ways can it be done ?

 Lecture 3 16

Ordering and naming of Bits

 One Byte : 8 bits
 Which one is most significant ?

• 0x81 => “10000001” ; MSB is on the left, LSB is on the right
• But which bit is what ? Which one is bit 2 ?
• Answer : it depends...

 Bit numbering is purely a convention
 Bit 0 could be the MSB, Bit 8 the LSB

• No guarantees => Read the documentation
 Some Telecom documents => No bit 0 (starts at 1)
 Sending a byte on a serial line

• Which bit goes out first ?

 Good read:
 http://www.linuxjournal.com/article/6788

 Lecture 3 17

Byte Ordering

 Little Endian vs Big Endian
 Intel, AMD, MSP430 => Little Endian
 PowerPC, Motorola => Big Endian
 ARM, MIPS => Programmable (Either one)

 0x0a0b0c0d (example 32-bit number)
 Big Endian

 Little Endian

 Endianness of various parts in a system
 CPU, BUS, Device, Network

byte addr 0 1 2 3
bit offset 01234567 01234567 01234567 01234567
 binary 00001010 00001011 00001100 00001101
 hex 0a 0b 0c 0d

byte addr 3 2 1 0
bit offset 76543210 76543210 76543210 76543210
 binary 00001010 00001011 00001100 00001101
 hex 0a 0b 0c 0d

Example taken from : http://www.linuxjournal.com/article/6788

 Lecture 3 18

Dates – Endians

 Little Endian form
 1st of September 2009
 01/09/2009

 Big Endian form
 2009 September 1st

 2009/09/01

 Mixed endian form (USA)
 September 1st, 2009
 09/01/2009

 9/11 - Ambiguous
 Fall of Berlin Wall (November 9, 1989)
 NYC Terrorist Attacks

Source : http://en.wikipedia.org/wiki/Calendar_date

 Lecture 3 19

Interrupts

 Hardware event (some software exceptions)
 triggers the processor to jump from its current program

counter to a specific point in the code.
 Unpredictable special events

 Each interrupt
 Assigned word long segment at upper end of memory

• Jump to location where interrupt is handled

 Maskable: programmer can decide if the interrupt
causes a jump

 Non-maskable interrupt (like the reset button) is so
important that it should never be ignored.

 Lecture 3 20

Interrupts (2)

 Interrupt Service Routine (ISR)
 Function that is called (or assembly code that is executed)

when interrupt occurs
 Interrupt Flag (IFG)

 Bit that triggers the interrupt
 Servicing the interrupt resets flag to normal state

 Interrupt Enable (IE)
 Control bit that tells processor if a particular maskable interrupt

should be ignored
 Usually one such bit per interrupt

 Interrupt Priority
 When two interrupts occur at same time, higher priority

interrupt takes precedence.
 e.g. peripheral timer + reset button >> processor ignores the

peripheral timer

 Lecture 3 21

Interrupts

 Processing external events
 Asynchronous to program execution
 Mostly I/O driven, but also timers, SW exceptions
 Different from traps (synchronous with program)

• Note : No traps on MSP430

 Example of interrupt
 Goal: output line of characters to terminal
 Collect characters in buffer
 Initialize a pointer (ptr) and a counter (count)
 Check if terminal is ready and start I/O
 After character is displayed -> interrupt

 Lecture 3 22

Interrupts (example cont’d)
 Hardware

(1) Device controller asserts interrupt line on system bus
(2) When ready, CPU asserts interrupt acknowledge signal
(3) Device controller puts integer (interrupt vector) on data

lines to identify itself
(4) CPU removes the interrupt vector & saves it
(5) CPU pushes PC and PSW onto stack
(6) CPU locates new program counter using the interrupt

vector as index into a table at the bottom of memory.

 Lecture 3 23

Interrupts (example cont’d)
 Software

(1) Interrupt service routine saves all registers
(2) Read device register to determine terminal number
(3) Read status codes for the interrupt
(4) Handle a potential I/O error
(5) Increment ptr, decrement count. If count > 0, copy *ptr to

output register
(6) If required, output special code to tell device or interrupt

controller that interrupt has been processed
(7) Restore all saved registers.
(8) Execute the return from interrupt (RETI) instruction, restoring

state/mode of CPU.

Note : C Compilers will take care of saving / restoring the
context.

 Lecture 3 24

Transparency & Priority

 Transparent Interrupt
 Take actions and run code, but
 When the dust settles, computer

should be in exactly the same state
as before the interrupt.

 Priority
 When there are multiple I/O devices,

potential for interrupts to occur
during ISRs

 Assign priority to interrupts and
handle time-critical tasks first.

 Lecture 3 25

Small Interlude

 A few minutes
 Any questions on the lab ?
 Do you all have your kits ?
 Tutorial today (?) and tomorrow

• Check WebCT for the details

 Next : Practical info on MSP430
 MSP430

• Clocks
• Timers
• Interrupts
• Digital I/O

 Lecture 3 26

MSP430 Clocks

 Three clock sources and three clock lines – allows a mix of
slow and fast clocks in the system.

 Low Frequency Crystal Clock (LFXTCLK) –
 Crystal connected to the XIN and XOUT pins with intended

oscillation of 32kHz.
 Always the source of the Auxiliary Clock line (ACLK).
 This source can be turned off with the OSCOFF option in the

Status Register.

 Crystal 2 Clock (XT2CLK) –
 8 MHz crystal connected to the XT2IN and XT2OUT pins.
 In general, this signal is meant to be the high-speed clock

source.
 This source can be turned off with the XT2OFF bit of the Basic

Clock system control register 1 (BCSCTL1).

 Lecture 3 27

MSP430 Clocks (ctd)

 Digitally Controlled Oscillator Clock (DCOCLK)
 the only internally generated clock input
 default clock source for the master clock upon reset.
 By default this clock runs at about 900kHZ
 The RSELx, MODx, and DCOx bits allow adjustment

 Lecture 3 28

Clock Multiplexing Diagram

 Names above
Multiplexers

 Bits in Regs

 Know your
system

 Take a pen
and trace the
signal path

Chap 4 – MSP430 Family User Guide

 Lecture 3 29

Example – MCLK Selection

 Lecture 3 30

MSP430 Clock Lines

 Master Clock (MCLK)
 Source for the MSP CPU core;
 Must be working properly for the processor to execute

instructions.
 Source is selected with the SELMx bits of the Basic Clock

System Control Register 2 (BCSCTL2).
 The divider is controlled with the DIVMx of the BCSCTL2.
 CPU can be turned off with the CPUOFF bit of the Status

Register (SR), but to recover from this state an interrupt must
occur.

 # Submaster Clock (SMCLK) - This clock is the source for
most peripherals, and its source can either be the DCO or
Crystal 2. The source clock is controlled with the SELS and
SCG bits of the BCSCTL2 and SR. The divider is controlled by
the DIVSx bits of the BCSCTL2.

 Lecture 3 31

MSP430 Clock Lines (ctd)

 # Auxiliary Clock (ACLK) - this clock line’s source is
always LFXTCLK. It is an option for slower
subsystems to use in order to conserve power. This
clock can be divided as controlled by the DIVAx bits
of the Basic Clock System Control Register 1
(BCSCTL1).

 Lecture 3 32

Timers

 Two digital timers, A & B.
 Timer A:

 3 capture/compare registers
 Interrupts: via overflow, or from one of the capture/compare

registers.
 Selectable clock source
 Configurable outputs with PWM (pulse-width modulated)

capability
 Interval timing

 Lecture 3 33

Timer A

 16 bit timer/counter register, TAR
 increments/decrements with each rising edge of clock
 Software read/write
 Interrupt on overflow.
 Clear: TACLR bit (also clears clock divider and count

direction)

 Clock source
 ACLK, SMCLK, or externally (TACLK or INCLK)

 Lecture 3 34

Timer A

 Start timer
 MCx > 0 and clock source active
 In up or up/down mode

• write 0 to TACCR0 to stop timer
• then write nonzero value to TACCR0 to start.

 Modes
 Stop: timer halted
 Up: zero to TACCR0 repeatedly
 Continuous: zero to 0xFFFFh
 Up/down: zero to TACCRO, back to zero

 Lecture 3 35

Timer A Modes

 Up mode:
 Used for periods different from 0xFFFFh
 Timer counts per period is TACCR0+1
 TACCR0 CCIFG interrupt flag set when timer counts to

TACCR0 value
 TAIFG flag when timer counts to zero

 Continuous mode
 TAIFG flag set when timer counts from 0xFFFFh to 0

 Lecture 3 36

Timer A Modes
 Up/down mode:

 Used for symmetrical pulse generation
 Counts to TACCR0 and back to 0 (repeatedly)
 TACCR0 CCIFG interrupt flag set when timer counts to

TACCR0 value
 TAIFG flag when timer counts to zero
 Interrupt flags separated by ½ timer period
 Supports applications that require dead times.

 Lecture 3 37

Capture/compare blocks

 Capture mode (CAP = 0)
 Used to record time events (speed computations, time

measurements)
 Capture occurs on selected edge of input

• Timer value copied to TACCRx register
• Interrupt flag CCIFG is set

 Compare mode (CAP = 1)
 Used to generate PWM output signals or interrupts at

specific time intervals
 When TAR counts to TACCRx

• Set CCIFG, set internal signal EQUx = 1, latch CCI to SCCI.

 Lecture 3 38

Timer A Interrupts

 Two interrupt vectors
 TACCR0 vector for TACCR0 CCIFG
 TAIV vector for all other CCIFG flags and TAIFG.

 In capture mode, a CCIFG flag is set when a time value is
captured. In compare mode, a CCIFG flag is set if TAR
counts to the associated TACCRx value.

 TACCR0 CCIFG : highest priority
 Dedicated interrupt vector

 Lecture 3 39

Timer A Interrupts

 TAIV vector - prioritized
(1) TACCR1 CCIFG
(2) TACCR2 CCIFG
(3) TAIFG (overflow flag)

 Lecture 3 40

MSP430 Interrupt
Mechanisms
 Peripheral devices

 USART, Timers, AD/DA, GPIO

 Pins
 NMI, Reset, P.0, P.1

 A daisy chain of requestors
 On MSP430:

 Closer to processor, the higher priority
 Power-up : highest priority
 See priority table (datasheet).

 Lecture 3 41

MSP430 Interrupt
Mechanisms

 Lecture 3 42

MSP430 Interrupt Processing
 Table definition:

 Lecture 3 43

MSP430 Interrupt Priorities

 Lecture 3 44

Interrupt Advice

 Always use RETI (in assembly)
 Ensure unused interrupts are disabled
 Make ISRs fast (stack issues with nesting)

 Only change flags, copy data, return to main to do main processing
 Consider polling as an alternative

 stack overflow
 race condition

 ISRs in C
 Example: few routines

• IAR Convention

 Rowley is similar
• Same information for the compiler, different syntax

 Lecture 3 45

MSP430 Priorities
 # 15 non-maskable: External reset, power up, watchdog timer reset,

invalid flash memory activation
 # 14 non-maskable: oscillator fault, flash memory access violation,

NMI
 # 13 maskable: timer B capture compare register 0
 # 12 maskable: timer B capture compare registers 1-6, timer B

interrupt
 # 11 maskable: comparator A interrupt
 # 10 maskable: watchdog timer interrupt
 # 9 maskable: USART0 receive interrupt, I2C interrupt
 # 8 maskable: USART0 transmit interrupt
 # 7 maskable: A/D converter interrupt
 # 6 maskable: timer A capture compare register 0 interrupt
 # 5 maskable: timer A capture compare registers 1-2 interrupt
 # 4 maskable: port 1 interrupts
 # 3 maskable: USART1 receive interrupt
 # 2 maskable: USART1 transmit interrupt
 # 1 maskable: port 2 interrupts
 # 0 maskable: D/A converter interrupt

 Lecture 3 46

Stack – Quick review

 The stack is memory whose contents are kept in last
in first out (LIFO) order.

 Stack pointer is always updated to point to the most
recent element added to the stack.

 This allows the processor to call functions and track
interrupts.

 When something is pushed onto the stack, the stack
pointer is incremented and the pushed data is
written to that location.

 When you copy out of the stack and decrement the
stack pointer, this is called popping something off
the stack.

 Lecture 3 47

Events upon interrupt

1. The current instruction completes.
2. Program counter pushed onto the stack.
3. The status register is pushed onto the stack.
4. The highest priority interrupt waiting to occur is selected.
5. Single source interrupts have their interrupt request flags reset

automatically. Multiple source interrupt flags do not do this so
that the interrupt service routine can determine what the
precise cause was.

6. Status register cleared (except SCG0 bit). Brings processor out
of any low-power modes. Also disables interrupts (GIE bit).

7. The content of the interrupt vector is loaded into the program
counter. Processor executes the instruction at the particular
memory location (jump to ISR)

 Lecture 3 48

ISR example
 Example: fet140_wdt01.c by Mark Buccini

// Watchdog Timer interrupt service routine
void watchdog_timer(void) __interrupt[WDT_VECTOR]
{
 P1OUT ^= 0x01; // Toggle P1.0 using exclusive-OR
}

 Always void (no arguments). Name does not matter.
 __interrupt[] is keyword indicating that routine is an interrupt
 WDT_VECTOR is macro from msp430 header file
 Every interrupt vector has a macro defined for it
 5 cycles to exit: pop status register and all other settings + PC.

 Lecture 3 49

Digital I/O

 See chapter nine of the user guide
 Six digital I/O ports – P1 to P6
 Each port has 8 pins
 Each pin is individually configurable for input or

output

 Ports 1 and 2 have interrupt capability
 Can be individually enabled
 Configured to provide interrupt on rising/falling edge
 All P1 I/O lines source a single interrupt vector
 All P2 I/O lines source a separate, single interrupt vector

 Lecture 3 50

Digital I/O (ctd)

 Input PxIN
 value of the input signal at the corresponding I/O pin (if pin is

configured to input)
 Effectively read-only

 Output PxOUT
 The value to be output on the corresponding pin

 Direction PxDIR
 Each bit selects the direction of the corresponding I/O pin
 Bit = 0 >> input; Bit = 1 >> output
 How do we switch the three pins (P1.7, P2.2, and P2.3) to

be outputs?

 Lecture 3 51

Examples

 Suppose three LEDs are connected to P1.7, P2.2 and P2.3.
 LEDs are turned on by setting their corresponding register bits

low.

 How do we switch the three pins to be outputs?

 How would be turn on the three LEDs without modifying any
other bits in the register?

 A button is connected to P2.0. The buttons are high (=1) by
default and go low if the button is pressed.

 Write a polling scheme for the button.

 Lecture 3 52

Digital I/O (3)
 Pins can be multiplexed with other peripheral

module functions
 PxSELx – set to 0 to choose digital I/O and set to 1

to choose peripheral function

 P1 and P2 interrupts
 PxIFG, PxIE and PxIES registers
 PxIFG register can be tested to determine the source of

a P1 or P2 interrupt (which pin).
 To enable interrupts, need to set the PxIE bit to 1 (and

the GIE bit)
 PxIES determines whether low-to-high transition or high-

to-low triggers interrupt
 Any external interrupt event should be at least 1.5 times

MCLK or longer

 Lecture 3 53

Notes : Assembly Timing

 Depends on addressing mode
 Each Type I and Type II instruction has a specified

number of cycles.
 Remember to allow for the time to enter and exit the

function if you are being precise in your timing.

 Lecture 3 54

Your work this week

 Complete Experiment 1 + Demo
 Get a MicroP Hardware Kit

 Attend tutorial to know how to program it and how to use
interrupts

 Next Experiment will use hardware

 Review Lecture 2 and Lecture 3 for the class Quiz
 Quiz is relatively easy if you listened in class and did the

Experiment.

	ECSE-426 Microprocessor Systems
	Slide 2
	Today’s Lecture
	Instruction Set Architecture - Review
	Example - ARM Cortex M3
	Cortex M3 - Continued
	IA-32 Architecture
	IA32 Architecture - Part 2
	IA32 - SIMD
	SIMD - PADDUSB Example
	ISA - Summary
	Addressing Mode
	Addressing Modes - cont
	MSP430 Addressing Modes
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Interrupts
	Interrupts (2)
	Slide 21
	Interrupts (example cont’d)
	Slide 23
	Transparency & Priority
	Slide 25
	MSP430 Clocks
	MSP430 Clocks (ctd)
	Slide 28
	Slide 29
	MSP430 Clock Lines
	MSP430 Clock Lines (ctd)
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	MSP430 Interrupt Mechanisms
	Slide 41
	Slide 42
	MSP430 Interrupt Priorities
	Slide 44
	MSP430 Priorities
	Stack
	Events upon interrupt
	ISR example
	Digital I/O
	Digital I/O (ctd)
	Slide 51
	Digital I/O (3)
	Assembly timing
	Slide 54

