
 2: Assembly + C 1

ECSE-426

Microprocessor Systems

 2: Assembly + C 2

Today’s Lecture

 Theory
 Multi-level machines
 Problem-oriented language layer
 Language Choice
 Machine Architecture

 Tutorial
 Introduction to the MSP430
 Registers
 Clocks and Timers

 Appendix
 Report Guidelines

 2: Assembly + C 3

Contemporary Multilevel machines
 5

 4

 3

 2

 1

 0

Microarchitecture Level

Assembly Language Level

Operating System Machine Level

Instruction Set Architecture Level

Problem-oriented Language Level

Digital Logic level

Hardware

Interpreter

OS - Partial
Interpretation

Translation
(Assembler)

Translation
(Compiler)

 2: Assembly + C 4

Problem-oriented Language layer
 Compiled to assembly or instruction set level
 You will be using embedded C
 How does this differ from usual use of C?

 Directly write to registers to control the operation of the processor
 All of the MSP430 registers have been mapped to macros
 Important bit combinations have macros – use these, please !
 Registers are 16 bits, so int type is 2 bytes
 Register values may change without your specific instructions
 Limited output system
 Floating point operations very inefficient, divide + square-root to be

avoided.

 2: Assembly + C 5

Assembly versus C
 Efficiency of compiled code
 Source code portability
 Program maintainability
 Typical bug rates (say, per thousand lines of code)
 The amount of time it will take to develop the solution
 Availability and cost of compilers and other development tools
 Your personal experience (or that of the developers on your team) with

specific languages or tools

 Don’t rule out Java or C++ if you have the memory to play with.

 2: Assembly + C 6

Problem
 Company “Ostrich” has recently re-developed their embedded

software for flagship products
 Developed in assembly, 80 percent working, 2000 lines

of code
 Suddenly realized that the product is far from shippable
 Bugs: system lock-ups indicative of major design flaws or

implementation errors + major product performance issues
 Designer has left the company and provided few notes or

comments

 You are hired as a consultant. Do you:
 Fix existing code?
 Perform complete software redesign and implementation? In

this case, which language?

 2: Assembly + C 7

Points

 Fix existing firmware:
 Major risk: may not

even be possible

 Complete Redesign
 Definitely work, but

may take longer

Languages
Assembly: rarely the right choice. Suffers from lack of
portability and maintainability. Here you are faced with an
unfamiliar assembly language
C: small microprocessor, 8K of ROM and 368 bytes RAM

 2: Assembly + C 8

Approach
 Fix one of the minor bugs and see how long it takes

 22 hours
 Reveals that original author was not proficient in the

assembly language and had no clear master-plan
 Estimation of how many hours you will need for new

design: 2 months
 Language: prefer C, but need to check

 No size or efficiency surprises
 What do you need beyond assembly?

 Extra RAM usage for frequent function calls
 Extra ROM usage: C startup code and compiler-supplied

routines (e.g., no multiplier instruction)
 Any performance impact due to compiler usage

 2: Assembly + C 9

Findings
 Compiler experimentation

 overlays to minimize RAM usage
 C startup code was very small
 Multiply instruction adds a few hundred lines of code
 Existing code: 2K instructions, 4K look-up tables

 The Test
 Fix existing code: 86 hours (no bugs, no performance

improvement)
 Rewrite in C: 185 hours

 C implementation has design and performance improvements
 Maintainable and portable code
 Modular implementation, carefully commented, passed through

a code inspection.
 C code: faster than original assembly, smaller image.

 2: Assembly + C 10

Von Neumann Machine

 Princeton IAS

*Image from : http://wwwcsif.cs.ucdavis.edu/~csclub/museum/items/ias.html

 2: Assembly + C 11

Computer Organization

 Processor
 Microprocessor

 Memory
 Peripherals
 Common Bus

 2: Assembly + C 12

Common Processors

 Still Von Neumann
architecture
 Arithmetic-logic unit
 Registers
 Auxiliary registers

 2: Assembly + C 13

Some
complications…
 Pentium 6

architecture

 2: Assembly + C 14

Dual-core architectures

 2: Assembly + C 15

Harvard Architecture

 Separate Instructions from Data on two Signal Paths
 Full control of instruction bus size (no need to be

multiples of 8 bits.
 Can fetch data and instructions simultaneously

• Useful for DSP applications

 Modern architectures implement a hybrid of both
 Von Newmann at the highest level
 Harvard architecture (modified) as a consequence of

using instruction and data caches

 PIC and AVR microcontrollers are examples of
Harvard architectures.

 2: Assembly + C 16

MSP430 ISA
 A 16-bit RISC processor
 Small set of 27 instructions
 Large register set

 General purpose registers
 Program Counter, Stack Pointer
 Constant Generator

 16-bit memory access
 PC, SP LSB bit set to 0

 Status Register

 2: Assembly + C 17

Address Space

 60K ROM
 2K RAM
 Special Function

Registers (SFRs)
accessed by byte
instructions

Interrupt Vector Table

Flash/ROM

RAM

16-bit Peripherals

8-bit Peripherals

Special Func’n Regs

0FFFFh

0FFE0h

0FFDFh

0200h
01FFh

0100h
 0FFh
 010h
 0Fh

 2: Assembly + C 18

Program Counter

 Tells you where you are in the program
 16 bits, aligned to even addresses

 MOV #LABEL, PC Branch to LABEL
 MOV LABEL, PC Branch to address in LABEL
 MOV @R14, PC Branch indirect to address in R14

0

15 1 0

Program Counter Bits 15-1

 2: Assembly + C 19

Stack Pointer
 Used by CPU to store return addresses of calls and interrupts
 Don’t push and pop the SP and PC !
 SP can also be used by software.
 Initialized into RAM by user, aligned to even addresses

0

15 1 0

Stack Pointer Bits 15-1

 2: Assembly + C 20

Stack Pointer Usage
 MOV 2(SP), R6 ; Item I2 -> R6
 MOV R7, 0(SP) ; Overwrite TOS with R7
 PUSH #0123H ; put 0123H onto stack
 POP R8 ; R8 = 0123H

I1
I2
I3

0xxxh
0xxxh-2
0xxxh-4
0xxxh-6
0xxxh-8

SP

I1
I2
I3

0123h SP

PUSH #0123H

I1
I2
I3

0123h
SP

POP R8

 2: Assembly + C 21

Status Register
 V: overflow, N: negative, Z: zero, C: carry
 JEQ, JN, JZ, JC
 SCG0/SCG1 : Turn off SMCLK, DCO
 OSC OFF, CPU OFF: turn off Oscillator or CPU
 GIE: general interrupt enable (enable maskable interrupts)

C

15 9 8 7 1 0

ZNCPU
 OFF

OSC
OFFSCG0SCG1VRES’d

 2: Assembly + C 22

Constant Generator Registers

 R2 and R3 can generate constants
 Source operand only
 Addressing mode determines the returned constant.
 Available: 0,1,2,4,8, -1 (=FFFFh)
 Advantages:

 No special instructions
 No additional code words
 No code memory access

 2: Assembly + C 23

Watchdog Timer
 Hardware

 used to automatically detect software anomalies
 resets the processor if any occur.

 Implemented as a counter (counts down to zero)
 The embedded software selects the counter's initial

value and periodically restarts it.

 If counter ever reaches zero before software-restart
 software is presumed to be malfunctioning.
 processor's reset signal is asserted.
 processor (and executing software) will be restarted as if

a human operator had cycled the power.

 2: Assembly + C 24

Watchdog Timer
 Timer: perform controlled system restart after software problem

occurs (32 ms reset interval)
 Watchdog mode or interval timer mode.

 If you debug, you need to stop the watchdog:

 mov.w #WDTPW + WDTHOLD, &WDTCTL

 WDTPW : Watchdog Timer Password
 WDTHOLD: Watchdog Timer Hold

 WDTCTL: Watchdog Timer Control Register

 2: Assembly + C 25

Microp Board Overview
 Processor: MSP430F149
 Programmable Logic Device MAX7128AE
 Power supply +5V DC or through data input
 Parallel and Serial (RS232 C) interface
 Smart Card Media socket
 Hex (LCD) Display
 iButton clip
 40-pin expansion connector
 Prototyping area
 [Reference: Schematics]

 2: Assembly + C 26

MicroP board components

 RSR232 interface (Serial Port) (U3)
 Smart Card Media socket (U11)
 Hex Display (U9)
 iButton clip (U15)
 8MHz crystal (X1) and 32.768KHz crystal (X2)
 40MHz oscillator (U10)
 MSP430F149 MCU (U1)

 2: Assembly + C 27

Board Layout

 Each board has a serial number on the bottom
(viewed from the component side) left of the board.

 Components, headers, resistors and capacitors, and
oscillators are labeled “U”, “H”, “R”, “C”, “X”
respectively.

 Each character is followed by a number indicating
the unique component.

 For example, U8 refers to the MAX7128AE CPLD.

 2: Assembly + C 28

Board Components

 MAX7128AE PLD (U8)
 Serial communication interface (J10)
 Parallel port interface (J20)
 Headers

 2x10 headers (H1) for connection to PLD and HEX
display

 Shrouded straight 40-pin header (H2) for connection to a
daughter card

 1.1 User Manual Notation

 2: Assembly + C 29

MPS430 Block Diagram
 Several families
 Small ISA, large set of peripherals

 Flash, USART, Timers, AD/DA, GPIO
 3xx

 Basic
 1xx

 Rich
 4xx

 LCD
 Our model
MSP430F149

 2: Assembly + C 30

MSP430x Peripherals - IO Pins

 General-purpose and specialized IO
 GPIO Ports

 Input/Output
 Interrupt generation (option)

 2: Assembly + C 31

Jumpers
 Jumpers are labelled “J”, followed by

a number.
 Pin placements
 (a) Jumper block on pin 2 and pin 3

of a 3-pin jumper JXX
 (b) Open connection – no jumper

blocks required (JYY)
 Note that pin 1 on the jumpers is

explicitly labelled and has a square
connector on the board.

 2: Assembly + C 32

Power
 Variety of power supplies.

 The power supply (except when powering from parallel port) is
regulated through a 3.3V regulator and a reset-able 500mA fuse.

 Parasitic power
 Can operate from a regulated 1.8V to 3.6V supply.
 For low power applications, parallel port supplies 2.8V.
 This is not be enough to power for using the CPLD.
 When using power from the parallel port, remember to remove the

CPLD power supply from the board.
 The RS-232C serial interface should also be unplugged.
 Struggle from a Laptop!

 2: Assembly + C 33

Power
 External Wall-mount Supply

 With the use of the 78M33C regulator, MCGUMPS can operate
from an external wall supply. The power connector is a 2.5mm
barrel connector.

 2-input connector terminal block
 Minimum Vin = 4.3V is recommended for the 3.3V regulator.
 Supplied from the standard DC lab power supply.
 Voltage on the input power line should not exceed 10V

because of user safety concerns and the protection of some of
the 3.3V digital lines.

 2: Assembly + C 34

Programming the MSP430
 The MSP430 can be

programmed through JTAG
chain using Altera/Quartus and
also through CrossWorks.

 Jumper settings for MCU via
Crossworks and CPLD via
Altera/Quartus:

 2: Assembly + C 35

Oscillators

 40 MHz (U10) – Pin 83 of CPLD
 8 MHz (X1) – Pins 52 and 53 of MSP430
 32.768 KHz (X2) – Pins 8 and 9 of MSP430

 2: Assembly + C 36

Break ?

 5 minutes
 Next:

 Programming the MSP430
 MSP430 Clocks, Timers
 MSP430 Interrupts
 Embedded C Tips
 Guidelines for experiment reports

 2: Assembly + C 37

Programming the MSP430
 Startup

 Configure McGumps if required.
 Power up the board.
 Connect the board to the terminal.
 Apply power to the board.

 Resetting and Aborting Programs
 The MCU can be reset by pressing the reset button (SW1).
 This operation has the effect of restarting the program currently loaded

on the MCU.
 If the program running on the MCU has to be aborted, the board has to

be powered down by removing the power connection.

 2: Assembly + C 38

Flashing LED Example

1) Start (Rowley Associates Limited) CrossWorks MSP430 1.2.
and create new solution.

2) In New Project window,
1) choose TI FET Projects folder under Project Types

2) choose FET430P 140 C Project under templates

3) A demo that flashes the LED is shown in the main.c tab in the
main frame.

4) To compile, Build -> Build Solution. In the Output frame, the
build log indicates that build is complete.

 2: Assembly + C 39

Flashing LED Example (ctd)

1) Ensure that the jumpers are set-up to enable programming of
the MSP430 MCU.

2) Ensure that the parallel port 1 is connected to the board.
Choose Target -> Connect FET on LPT1 to connect to the
MSP430 microprocessor.

3) Choose Debug->Start Debugging to download flashing LED
example on to MSP430 microprocessor. The LED should start
flashing.

Note: In the above example, the energy needed for operation is
taken from the parallel port (parasitic power).

 2: Assembly + C 40

 2: Assembly + C 41

 2: Assembly + C 42

MSP430 Clocks
 Three clock sources and three clock lines – allows a mix of

slow and fast clocks in the system.

 Low Frequency Crystal Clock (LFXTCLK) –
 Crystal connected to the XIN and XOUT pins with intended

oscillation of 32kHz.
 Always the source of the Auxiliary Clock line (ACLK).
 This source can be turned off with the OSCOFF option in the

Status Register.

 Crystal 2 Clock (XT2CLK) –
 8 MHz crystal connected to the XT2IN and XT2OUT pins.
 In general, this signal is meant to be the high-speed clock

source.
 This source can be turned off with the XT2OFF bit of the Basic

Clock system control register 1 (BCSCTL1).

 2: Assembly + C 43

MSP430 Clocks (ctd)

 Digitally Controlled Oscillator Clock (DCOCLK)
 the only internally generated clock input
 default clock source for the master clock upon reset.
 By default this clock runs at about 900kHZ
 The RSELx, MODx, and DCOx bits allow adjustment

 2: Assembly + C 44

MSP430 Clock Lines
 Master Clock (MCLK)

 Source for the MSP CPU core;
 Must be working properly for the processor to execute

instructions.
 Source is selected with the SELMx bits of the Basic Clock

System Control Register 2 (BCSCTL2).
 The divider is controlled with the DIVMx of the BCSCTL2.
 CPU can be turned off with the CPUOFF bit of the Status

Register (SR), but to recover from this state an interrupt must
occur.

 # Submaster Clock (SMCLK) - This clock is the source for
most peripherals, and its source can either be the DCO or
Crystal 2. The source clock is controlled with the SELS and
SCG bits of the BCSCTL2 and SR. The divider is controlled by
the DIVSx bits of the BCSCTL2.

 2: Assembly + C 45

MSP430 Clock Lines (ctd)

 # Auxiliary Clock (ACLK) - this clock line’s source is
always LFXTCLK. It is an option for slower
subsystems to use in order to conserve power. This
clock can be divided as controlled by the DIVAx bits
of the Basic Clock System Control Register 1
(BCSCTL1).

 2: Assembly + C 46

Timers

 Two digital timers, A & B.
 Timer A:

 3 capture/compare registers
 Interrupts: via overflow, or from one of the c/c registers.
 Selectable clock source
 Configurable outputs with PWM (pulse-width modulated)

capability
 Interval timing

 2: Assembly + C 47

Timer A

 16 bit timer/counter register, TAR
 increments/decrements with each rising edge of clock
 Software read/write
 Interrupt on overflow.
 Clear: TACLR bit (also clears clock divider and count

direction)

 Clock source
 ACLK, SMCLK, or externally (TACLK or INCLK)

 2: Assembly + C 48

Timer A

 Start timer
 MCx > 0 and clock source active
 In up or up/down mode

• write 0 to TACCR0 to stop timer
• then write nonzero value to TACCR0 to start.

 Modes
 Stop: timer halted
 Up: zero to TACCR0 repeatedly
 Continuous: zero to 0xFFFFh
 Up/down: zero to TACCRO, back to zero

 2: Assembly + C 49

Timer A Modes

 Up mode:
 Used for periods different from 0xFFFFh
 Timer counts per period is TACCR0+1
 TACCR0 CCIFG interrupt flag set when timer counts to

TACCR0 value
 TAIFG flag when timer counts to zero

 Continuous mode
 TAIFG flag set when timer counts from 0xFFFFh to 0

 2: Assembly + C 50

Timer A Modes

 Up/down mode:
 Used for symmetrical pulse generation
 Counts to TACCR0 and back to 0 (repeatedly)
 TACCR0 CCIFG interrupt flag set when timer counts to

TACCR0 value
 TAIFG flag when timer counts to zero
 Interrupt flags separated by ½ timer period
 Supports applications that require dead times.

 2: Assembly + C 51

Capture/compare blocks
 Capture mode (CAP = 0)

 Used to record time events (speed computations, time
measurements)

 Capture occurs on selected edge of input
• Timer value copied to TACCRx register
• Interrupt flag CCIFG is set

 Compare mode (CAP = 1)
 Used to generate PWM output signals or interrupts at specific

time intervals
 When TAR counts to TACCRx

• Set CCIFG, set internal signal EQUx = 1, latch CCI to SCCI.

 2: Assembly + C 52

Timer A Interrupts
 Two interrupt vectors
 TACCR0 vector for TACCR0 CCIFG
 TAIV vector for all other CCIFG flags and TAIFG.

 In capture mode, a CCIFG flag is set when a time value is
captured. In compare mode, a CCIFG flag is set if TAR
counts to the associated TACCRx value.

 TACCR0 CCIFG : highest priority
 Dedicated interrupt vector

 2: Assembly + C 53

Timer A Interrupts
 TAIV vector - prioritized

(1) TACCR1 CCIFG

(2) TACCR2 CCIFG

(3) TAIFG (overflow flag)

 2: Assembly + C 54

Interrupts
 Processing external events

 Asynchronous to program execution
 Mostly I/O driven, but also timers, SW exceptions
 Different from traps (synchronous with program)

 Example of interrupt (like exp. 3)
 Goal: output line of characters to terminal
 Collect characters in buffer
 Initialize a pointer (ptr) and a counter (count)
 Check if terminal is ready and start I/O
 After character is displayed -> interrupt

 2: Assembly + C 55

Interrupts (example cont’d)
 Hardware

(1) Device controller asserts interrupt line on system bus

(2) When ready, CPU asserts interrupt acknowledge signal

(3) Device controller puts integer (interrupt vector) on data
lines to identify itself

(4) CPU removes the interrupt vector & saves it

(5) CPU pushes PC and PSW onto stack

(6) CPU locates new program counter using the interrupt
vector as index into a table at the bottom of memory.

 2: Assembly + C 56

Interrupts (example cont’d)
 Software

(1) Interrupt service routine saves all registers
(2) Read device register to determine terminal number
(3) Read status codes for the interrupt
(4) Handle a potential I/O error
(5) Increment ptr, decrement count. If count > 0, copy *ptr to

output register
(6) If required, output special code to tell device or interrupt

controller that interrupt has been processed
(7) Restore all saved registers.
(8) Execute the return from interrupt (RETI) instruction, restorting

state/mode of CPU.

 2: Assembly + C 57

Transparency & Priority
 Transparent Interrupt

 Take actions and run code, but
 When the dust settles, computer should

be in exactly the same state as before the
interrupt.

 Priority
 When there are multiple I/O devices,

potential for interrupts to occur during
ISRs

 Assign priority to interrupts and handle
time-critical tasks first.

 2: Assembly + C 58

MSP430 Interrupt Mechanisms
 Peripheral devices

 USART, Timers, AD/DA, GPIO

 Pins
 NMI, Reset, P.0, P.1

 A daisy chain of requestors
 On MSP430:

 Closer to processor, the higher priority
 Power-up : highest priority
 See priority table (datasheet).

 2: Assembly + C 59

MSP430 Interrupt Mechanisms

 2: Assembly + C 60

MSP430 Interrupt Processing

 Table definition:

 2: Assembly + C 61

MSP430 Interrupt Priorities

 2: Assembly + C 62

Interrupt Advice
 Always use RETI
 Ensure unused interrupts disabled
 Make ISRs fast (stack problems with nesting)

 Only change flags, return to main
 Consider polling as alternative

 stack overflow
 race condition
 boundary conditions

 ISRs in C
 Example: few routines
 (IAR compiler convention)

 2: Assembly + C 63

Some Programming Tips

 More comprehensive next week, but to get you
going

 Modular design
 Use header files and comment them!!
 Should be a driver for each peripheral

 Commenting is critical
 Top of each function – explain inputs, outputs, purpose.

 Use the pre-defined labels for registers etc.

 2: Assembly + C 64

Embedded C tips

 C preprocessor
 #define, #ifndef, #if, #ifdef, #else …etc

 Used to prevent multiple includes
 #ifndef _TIMER_H_
 #define _TIMER_H_

 #endif

 2: Assembly + C 65

C preprocessor
 Complex macros

 Passing parameters
 Padding of parameters

 Widely used in Firmware
drivers

#define SET_VAL(x) LCD_Settings.P##x
#define SET(x, val) SET_VAL(x) = val
#define DEF_SET(x) SET(x, DS_P##x)

#define MIN(n,m) (((n) < (m)) ? (n) : (m))

#define MAX(n,m) (((n) < (m)) ? (m) : (n))

#define ABS(n) ((n < 0) ? -(n) : (n))

 2: Assembly + C 66

Global variables

 Distinguish global variables from local by choosing
appropriate naming convention
 Example: RX_Buffer_Gbl
 Stick to your convention throughout the program

 Use global variables as Software flags
 Example: PACKET_RECEIVED – use capitals

 Have them all in ONE place

 2: Assembly + C 67

Report Guidelines

 Section 1: Functional Specifications
 Section 2: Implementation
 Section 3: Performance Analysis

 2: Assembly + C 68

Functional Specifications
 Function: void posadd(int *a, int *b, int *c)
 Purpose: Adds two positive integers and writes the

sum to a specified memory location.
 Inputs: a,b – pointers to memory locations storing

two positive 16-bit integers in 2’s-complement
binary.

 Output: *c = *a + *b. Write result of sum to memory
location pointed to by c. Result is 16-bit 2’s
complement binary.

 Special Cases/Error Conditions:
 Negative input (*a<0 OR *b < 0) : set *c = -1.
 Overflow (*a + *b > 2^15-1) : set *c = -2.

 2: Assembly + C 69

Functional Specifications

 Write for the user.
 No implementation details.
 Be precise!
 User should be able to look at functional specs and

know exactly how to include your function.

 2: Assembly + C 70

Implementation

 Include a concise explanation of your solution.
 What is the flow of the program?
 What hardware is used? How is it used?
 What flags are set?
 How is configuration performed? How are interrupts

handled?
 Answer any other questions you consider pertinent.
 If you have made decisions, include a brief

justification/explanation. For example, why did you
use a 10 ohm resistor instead of a 10 Kohm?

 2: Assembly + C 71

Implementation (2)

 If your deliverable involves a user interface, include
a subsection discussing the user interface and
clearly explain the reasoning behind each decision.

 e.g., why did you include a menu rather than a
command line?

 Properly prepared flow diagrams are highly
encouraged

 Carefully prepared diagrams are expected when
new hardware is connected (Lab 4).

 2: Assembly + C 72

Performance Analysis
 Include a concise description of the tests you

performed to verify correct behaviour and discuss
the performance.

 Tables are often the best way to display your results
(input, condition tested, output of program).

 For the labs, there will be other performance
analysis that is appropriate (for example, in Lab 1
you should explore the number of cycles that your
routines consume).

 2: Assembly + C 73

Performance Analysis (2)
 In later labs, where your deliverable involves a user interface,

include a user survey.
 Poll at least 8 people, at least 4 from the lab and at least 2 from

outside.
 Your poll should consist of at least 5 questions.
 Include the survey as an appendix to your report.
 Ask reasonable questions and provide a user response of 1-10.
 Include in your report a table specifying min/max and mean

scores.
 Also include the most pertinent comments, e.g., “the menu

system was very easy to learn, but became tiresome because
it was slow when I had some expertise”.

 2: Assembly + C 74

Performance Analysis (3)
 Example (incomplete, but you should get the idea):
 Table 1: Performance verification of function library (correctness)

Function: Condition Input Output Cycles

posadd: normal *a =21, *b =22 *c = 43 1000

posadd: negative *a = -2, *b = 3 *c = -1 500

posadd: negative *a = 3, *b = -2 *c = -1 500

posadd: overflow *a = 2^15-1
*b = 2^15-1

*c = -2 1500

 2: Assembly + C 75

Performance Analysis (4)

Function:
Condition

Min. cycles Max. cycles Mean cycles Variance

posadd: normal 500 2200 1000 1e5

posadd: negative 300 1100 500 2e5

posadd: overflow 700 1800 1300 1e5

Table 2: Speed testing of function library (10 random cases
per row of table).

 2: Assembly + C 76

References

 Reference all material you have used.
 Where you make use of document [1] include such

notation in the text.
 References should be in the format specified in

Section 4 of the report guidelines.
 If you do not know information, seek it out; if you

cannot find it after a reasonable search, then ask me
or the teaching assistants.

 The fact that a user guide has no date or author on
the front cover is no excuse for you not to track the
information down.

 2: Assembly + C 77

Appendix - Code

 Code : very well documented, small-font (10 or 11
point), 2 pages per sheet (landscape).

 If you have reused unchanged code from previous
labs, do NOT include it in your report (just retain the
header files).

 Keep the code well-organized, so that I can quickly
locate your new work.

	ECSE-426 Microprocessor Systems
	Today’s Lecture
	Contemporary Multilevel machines
	Problem-oriented Language layer
	Assembly versus C
	Problem
	Points
	Approach
	Findings
	Von Neumann Machine
	Computer Organization
	Common Processors
	Some complications…
	Dual-core architectures
	Slide 15
	MSP430 ISA
	Address Space
	Program Counter
	Stack Pointer
	Stack Pointer Usage
	Status Register
	Constant Generator Registers
	Watchdog Timer
	Slide 24
	Microp Board Overview
	MicroP board components
	Board Layout
	Board Components
	MPS430 Block Diagram
	MSP430x Peripherals - IO Pins
	Jumpers
	Power
	Slide 33
	Programming the MSP430
	Oscillators
	BREAK
	Programming MSP430
	Flashing LED Example
	Flashing LED Example (ctd)
	Slide 40
	Slide 41
	MSP430 Clocks
	MSP430 Clocks (ctd)
	MSP430 Clock Lines
	MSP430 Clock Lines (ctd)
	Timers
	Timer A
	Slide 48
	Timer A Modes
	Slide 50
	Capture/compare blocks
	Timer A Interrupts
	Slide 53
	Interrupts
	Interrupts (example cont’d)
	Slide 56
	Transparency & Priority
	MSP430 Interrupt Mechanisms
	Slide 59
	MSP430 Interrupt Processing
	MSP430 Interrupt Priorities
	Interrupt Advice
	Some Programming Tips
	Embedded C tips
	C preprocessor
	Global variables
	Report Guidelines
	Functional Specifications
	Slide 69
	Implementation
	Implementation (2)
	Performance Analysis
	Performance Analysis (2)
	Performance Analysis (3)
	Performance Analysis (4)
	References
	Appendix - Code

