
 2: Assembly + C 1

ECSE-426

Microprocessor Systems

 2: Assembly + C 2

Today’s Lecture

 Theory
 Multi-level machines
 Problem-oriented language layer
 Language Choice
 Machine Architecture

 Tutorial
 Introduction to the MSP430
 Registers
 Clocks and Timers

 Appendix
 Report Guidelines

 2: Assembly + C 3

Contemporary Multilevel machines
 5

 4

 3

 2

 1

 0

Microarchitecture Level

Assembly Language Level

Operating System Machine Level

Instruction Set Architecture Level

Problem-oriented Language Level

Digital Logic level

Hardware

Interpreter

OS - Partial
Interpretation

Translation
(Assembler)

Translation
(Compiler)

 2: Assembly + C 4

Problem-oriented Language layer
 Compiled to assembly or instruction set level
 You will be using embedded C
 How does this differ from usual use of C?

 Directly write to registers to control the operation of the processor
 All of the MSP430 registers have been mapped to macros
 Important bit combinations have macros – use these, please !
 Registers are 16 bits, so int type is 2 bytes
 Register values may change without your specific instructions
 Limited output system
 Floating point operations very inefficient, divide + square-root to be

avoided.

 2: Assembly + C 5

Assembly versus C
 Efficiency of compiled code
 Source code portability
 Program maintainability
 Typical bug rates (say, per thousand lines of code)
 The amount of time it will take to develop the solution
 Availability and cost of compilers and other development tools
 Your personal experience (or that of the developers on your team) with

specific languages or tools

 Don’t rule out Java or C++ if you have the memory to play with.

 2: Assembly + C 6

Problem
 Company “Ostrich” has recently re-developed their embedded

software for flagship products
 Developed in assembly, 80 percent working, 2000 lines

of code
 Suddenly realized that the product is far from shippable
 Bugs: system lock-ups indicative of major design flaws or

implementation errors + major product performance issues
 Designer has left the company and provided few notes or

comments

 You are hired as a consultant. Do you:
 Fix existing code?
 Perform complete software redesign and implementation? In

this case, which language?

 2: Assembly + C 7

Points

 Fix existing firmware:
 Major risk: may not

even be possible

 Complete Redesign
 Definitely work, but

may take longer

Languages
Assembly: rarely the right choice. Suffers from lack of
portability and maintainability. Here you are faced with an
unfamiliar assembly language
C: small microprocessor, 8K of ROM and 368 bytes RAM

 2: Assembly + C 8

Approach
 Fix one of the minor bugs and see how long it takes

 22 hours
 Reveals that original author was not proficient in the

assembly language and had no clear master-plan
 Estimation of how many hours you will need for new

design: 2 months
 Language: prefer C, but need to check

 No size or efficiency surprises
 What do you need beyond assembly?

 Extra RAM usage for frequent function calls
 Extra ROM usage: C startup code and compiler-supplied

routines (e.g., no multiplier instruction)
 Any performance impact due to compiler usage

 2: Assembly + C 9

Findings
 Compiler experimentation

 overlays to minimize RAM usage
 C startup code was very small
 Multiply instruction adds a few hundred lines of code
 Existing code: 2K instructions, 4K look-up tables

 The Test
 Fix existing code: 86 hours (no bugs, no performance

improvement)
 Rewrite in C: 185 hours

 C implementation has design and performance improvements
 Maintainable and portable code
 Modular implementation, carefully commented, passed through

a code inspection.
 C code: faster than original assembly, smaller image.

 2: Assembly + C 10

Von Neumann Machine

 Princeton IAS

*Image from : http://wwwcsif.cs.ucdavis.edu/~csclub/museum/items/ias.html

 2: Assembly + C 11

Computer Organization

 Processor
 Microprocessor

 Memory
 Peripherals
 Common Bus

 2: Assembly + C 12

Common Processors

 Still Von Neumann
architecture
 Arithmetic-logic unit
 Registers
 Auxiliary registers

 2: Assembly + C 13

Some
complications…
 Pentium 6

architecture

 2: Assembly + C 14

Dual-core architectures

 2: Assembly + C 15

Harvard Architecture

 Separate Instructions from Data on two Signal Paths
 Full control of instruction bus size (no need to be

multiples of 8 bits.
 Can fetch data and instructions simultaneously

• Useful for DSP applications

 Modern architectures implement a hybrid of both
 Von Newmann at the highest level
 Harvard architecture (modified) as a consequence of

using instruction and data caches

 PIC and AVR microcontrollers are examples of
Harvard architectures.

 2: Assembly + C 16

MSP430 ISA
 A 16-bit RISC processor
 Small set of 27 instructions
 Large register set

 General purpose registers
 Program Counter, Stack Pointer
 Constant Generator

 16-bit memory access
 PC, SP LSB bit set to 0

 Status Register

 2: Assembly + C 17

Address Space

 60K ROM
 2K RAM
 Special Function

Registers (SFRs)
accessed by byte
instructions

Interrupt Vector Table

Flash/ROM

RAM

16-bit Peripherals

8-bit Peripherals

Special Func’n Regs

0FFFFh

0FFE0h

0FFDFh

0200h
01FFh

0100h
 0FFh
 010h
 0Fh

 2: Assembly + C 18

Program Counter

 Tells you where you are in the program
 16 bits, aligned to even addresses

 MOV #LABEL, PC Branch to LABEL
 MOV LABEL, PC Branch to address in LABEL
 MOV @R14, PC Branch indirect to address in R14

0

15 1 0

Program Counter Bits 15-1

 2: Assembly + C 19

Stack Pointer
 Used by CPU to store return addresses of calls and interrupts
 Don’t push and pop the SP and PC !
 SP can also be used by software.
 Initialized into RAM by user, aligned to even addresses

0

15 1 0

Stack Pointer Bits 15-1

 2: Assembly + C 20

Stack Pointer Usage
 MOV 2(SP), R6 ; Item I2 -> R6
 MOV R7, 0(SP) ; Overwrite TOS with R7
 PUSH #0123H ; put 0123H onto stack
 POP R8 ; R8 = 0123H

I1
I2
I3

0xxxh
0xxxh-2
0xxxh-4
0xxxh-6
0xxxh-8

SP

I1
I2
I3

0123h SP

PUSH #0123H

I1
I2
I3

0123h
SP

POP R8

 2: Assembly + C 21

Status Register
 V: overflow, N: negative, Z: zero, C: carry
 JEQ, JN, JZ, JC
 SCG0/SCG1 : Turn off SMCLK, DCO
 OSC OFF, CPU OFF: turn off Oscillator or CPU
 GIE: general interrupt enable (enable maskable interrupts)

C

15 9 8 7 1 0

ZNCPU
 OFF

OSC
OFFSCG0SCG1VRES’d

 2: Assembly + C 22

Constant Generator Registers

 R2 and R3 can generate constants
 Source operand only
 Addressing mode determines the returned constant.
 Available: 0,1,2,4,8, -1 (=FFFFh)
 Advantages:

 No special instructions
 No additional code words
 No code memory access

 2: Assembly + C 23

Watchdog Timer
 Hardware

 used to automatically detect software anomalies
 resets the processor if any occur.

 Implemented as a counter (counts down to zero)
 The embedded software selects the counter's initial

value and periodically restarts it.

 If counter ever reaches zero before software-restart
 software is presumed to be malfunctioning.
 processor's reset signal is asserted.
 processor (and executing software) will be restarted as if

a human operator had cycled the power.

 2: Assembly + C 24

Watchdog Timer
 Timer: perform controlled system restart after software problem

occurs (32 ms reset interval)
 Watchdog mode or interval timer mode.

 If you debug, you need to stop the watchdog:

 mov.w #WDTPW + WDTHOLD, &WDTCTL

 WDTPW : Watchdog Timer Password
 WDTHOLD: Watchdog Timer Hold

 WDTCTL: Watchdog Timer Control Register

 2: Assembly + C 25

Microp Board Overview
 Processor: MSP430F149
 Programmable Logic Device MAX7128AE
 Power supply +5V DC or through data input
 Parallel and Serial (RS232 C) interface
 Smart Card Media socket
 Hex (LCD) Display
 iButton clip
 40-pin expansion connector
 Prototyping area
 [Reference: Schematics]

 2: Assembly + C 26

MicroP board components

 RSR232 interface (Serial Port) (U3)
 Smart Card Media socket (U11)
 Hex Display (U9)
 iButton clip (U15)
 8MHz crystal (X1) and 32.768KHz crystal (X2)
 40MHz oscillator (U10)
 MSP430F149 MCU (U1)

 2: Assembly + C 27

Board Layout

 Each board has a serial number on the bottom
(viewed from the component side) left of the board.

 Components, headers, resistors and capacitors, and
oscillators are labeled “U”, “H”, “R”, “C”, “X”
respectively.

 Each character is followed by a number indicating
the unique component.

 For example, U8 refers to the MAX7128AE CPLD.

 2: Assembly + C 28

Board Components

 MAX7128AE PLD (U8)
 Serial communication interface (J10)
 Parallel port interface (J20)
 Headers

 2x10 headers (H1) for connection to PLD and HEX
display

 Shrouded straight 40-pin header (H2) for connection to a
daughter card

 1.1 User Manual Notation

 2: Assembly + C 29

MPS430 Block Diagram
 Several families
 Small ISA, large set of peripherals

 Flash, USART, Timers, AD/DA, GPIO
 3xx

 Basic
 1xx

 Rich
 4xx

 LCD
 Our model
MSP430F149

 2: Assembly + C 30

MSP430x Peripherals - IO Pins

 General-purpose and specialized IO
 GPIO Ports

 Input/Output
 Interrupt generation (option)

 2: Assembly + C 31

Jumpers
 Jumpers are labelled “J”, followed by

a number.
 Pin placements
 (a) Jumper block on pin 2 and pin 3

of a 3-pin jumper JXX
 (b) Open connection – no jumper

blocks required (JYY)
 Note that pin 1 on the jumpers is

explicitly labelled and has a square
connector on the board.

 2: Assembly + C 32

Power
 Variety of power supplies.

 The power supply (except when powering from parallel port) is
regulated through a 3.3V regulator and a reset-able 500mA fuse.

 Parasitic power
 Can operate from a regulated 1.8V to 3.6V supply.
 For low power applications, parallel port supplies 2.8V.
 This is not be enough to power for using the CPLD.
 When using power from the parallel port, remember to remove the

CPLD power supply from the board.
 The RS-232C serial interface should also be unplugged.
 Struggle from a Laptop!

 2: Assembly + C 33

Power
 External Wall-mount Supply

 With the use of the 78M33C regulator, MCGUMPS can operate
from an external wall supply. The power connector is a 2.5mm
barrel connector.

 2-input connector terminal block
 Minimum Vin = 4.3V is recommended for the 3.3V regulator.
 Supplied from the standard DC lab power supply.
 Voltage on the input power line should not exceed 10V

because of user safety concerns and the protection of some of
the 3.3V digital lines.

 2: Assembly + C 34

Programming the MSP430
 The MSP430 can be

programmed through JTAG
chain using Altera/Quartus and
also through CrossWorks.

 Jumper settings for MCU via
Crossworks and CPLD via
Altera/Quartus:

 2: Assembly + C 35

Oscillators

 40 MHz (U10) – Pin 83 of CPLD
 8 MHz (X1) – Pins 52 and 53 of MSP430
 32.768 KHz (X2) – Pins 8 and 9 of MSP430

 2: Assembly + C 36

Break ?

 5 minutes
 Next:

 Programming the MSP430
 MSP430 Clocks, Timers
 MSP430 Interrupts
 Embedded C Tips
 Guidelines for experiment reports

 2: Assembly + C 37

Programming the MSP430
 Startup

 Configure McGumps if required.
 Power up the board.
 Connect the board to the terminal.
 Apply power to the board.

 Resetting and Aborting Programs
 The MCU can be reset by pressing the reset button (SW1).
 This operation has the effect of restarting the program currently loaded

on the MCU.
 If the program running on the MCU has to be aborted, the board has to

be powered down by removing the power connection.

 2: Assembly + C 38

Flashing LED Example

1) Start (Rowley Associates Limited) CrossWorks MSP430 1.2.
and create new solution.

2) In New Project window,
1) choose TI FET Projects folder under Project Types

2) choose FET430P 140 C Project under templates

3) A demo that flashes the LED is shown in the main.c tab in the
main frame.

4) To compile, Build -> Build Solution. In the Output frame, the
build log indicates that build is complete.

 2: Assembly + C 39

Flashing LED Example (ctd)

1) Ensure that the jumpers are set-up to enable programming of
the MSP430 MCU.

2) Ensure that the parallel port 1 is connected to the board.
Choose Target -> Connect FET on LPT1 to connect to the
MSP430 microprocessor.

3) Choose Debug->Start Debugging to download flashing LED
example on to MSP430 microprocessor. The LED should start
flashing.

Note: In the above example, the energy needed for operation is
taken from the parallel port (parasitic power).

 2: Assembly + C 40

 2: Assembly + C 41

 2: Assembly + C 42

MSP430 Clocks
 Three clock sources and three clock lines – allows a mix of

slow and fast clocks in the system.

 Low Frequency Crystal Clock (LFXTCLK) –
 Crystal connected to the XIN and XOUT pins with intended

oscillation of 32kHz.
 Always the source of the Auxiliary Clock line (ACLK).
 This source can be turned off with the OSCOFF option in the

Status Register.

 Crystal 2 Clock (XT2CLK) –
 8 MHz crystal connected to the XT2IN and XT2OUT pins.
 In general, this signal is meant to be the high-speed clock

source.
 This source can be turned off with the XT2OFF bit of the Basic

Clock system control register 1 (BCSCTL1).

 2: Assembly + C 43

MSP430 Clocks (ctd)

 Digitally Controlled Oscillator Clock (DCOCLK)
 the only internally generated clock input
 default clock source for the master clock upon reset.
 By default this clock runs at about 900kHZ
 The RSELx, MODx, and DCOx bits allow adjustment

 2: Assembly + C 44

MSP430 Clock Lines
 Master Clock (MCLK)

 Source for the MSP CPU core;
 Must be working properly for the processor to execute

instructions.
 Source is selected with the SELMx bits of the Basic Clock

System Control Register 2 (BCSCTL2).
 The divider is controlled with the DIVMx of the BCSCTL2.
 CPU can be turned off with the CPUOFF bit of the Status

Register (SR), but to recover from this state an interrupt must
occur.

 # Submaster Clock (SMCLK) - This clock is the source for
most peripherals, and its source can either be the DCO or
Crystal 2. The source clock is controlled with the SELS and
SCG bits of the BCSCTL2 and SR. The divider is controlled by
the DIVSx bits of the BCSCTL2.

 2: Assembly + C 45

MSP430 Clock Lines (ctd)

 # Auxiliary Clock (ACLK) - this clock line’s source is
always LFXTCLK. It is an option for slower
subsystems to use in order to conserve power. This
clock can be divided as controlled by the DIVAx bits
of the Basic Clock System Control Register 1
(BCSCTL1).

 2: Assembly + C 46

Timers

 Two digital timers, A & B.
 Timer A:

 3 capture/compare registers
 Interrupts: via overflow, or from one of the c/c registers.
 Selectable clock source
 Configurable outputs with PWM (pulse-width modulated)

capability
 Interval timing

 2: Assembly + C 47

Timer A

 16 bit timer/counter register, TAR
 increments/decrements with each rising edge of clock
 Software read/write
 Interrupt on overflow.
 Clear: TACLR bit (also clears clock divider and count

direction)

 Clock source
 ACLK, SMCLK, or externally (TACLK or INCLK)

 2: Assembly + C 48

Timer A

 Start timer
 MCx > 0 and clock source active
 In up or up/down mode

• write 0 to TACCR0 to stop timer
• then write nonzero value to TACCR0 to start.

 Modes
 Stop: timer halted
 Up: zero to TACCR0 repeatedly
 Continuous: zero to 0xFFFFh
 Up/down: zero to TACCRO, back to zero

 2: Assembly + C 49

Timer A Modes

 Up mode:
 Used for periods different from 0xFFFFh
 Timer counts per period is TACCR0+1
 TACCR0 CCIFG interrupt flag set when timer counts to

TACCR0 value
 TAIFG flag when timer counts to zero

 Continuous mode
 TAIFG flag set when timer counts from 0xFFFFh to 0

 2: Assembly + C 50

Timer A Modes

 Up/down mode:
 Used for symmetrical pulse generation
 Counts to TACCR0 and back to 0 (repeatedly)
 TACCR0 CCIFG interrupt flag set when timer counts to

TACCR0 value
 TAIFG flag when timer counts to zero
 Interrupt flags separated by ½ timer period
 Supports applications that require dead times.

 2: Assembly + C 51

Capture/compare blocks
 Capture mode (CAP = 0)

 Used to record time events (speed computations, time
measurements)

 Capture occurs on selected edge of input
• Timer value copied to TACCRx register
• Interrupt flag CCIFG is set

 Compare mode (CAP = 1)
 Used to generate PWM output signals or interrupts at specific

time intervals
 When TAR counts to TACCRx

• Set CCIFG, set internal signal EQUx = 1, latch CCI to SCCI.

 2: Assembly + C 52

Timer A Interrupts
 Two interrupt vectors
 TACCR0 vector for TACCR0 CCIFG
 TAIV vector for all other CCIFG flags and TAIFG.

 In capture mode, a CCIFG flag is set when a time value is
captured. In compare mode, a CCIFG flag is set if TAR
counts to the associated TACCRx value.

 TACCR0 CCIFG : highest priority
 Dedicated interrupt vector

 2: Assembly + C 53

Timer A Interrupts
 TAIV vector - prioritized

(1) TACCR1 CCIFG

(2) TACCR2 CCIFG

(3) TAIFG (overflow flag)

 2: Assembly + C 54

Interrupts
 Processing external events

 Asynchronous to program execution
 Mostly I/O driven, but also timers, SW exceptions
 Different from traps (synchronous with program)

 Example of interrupt (like exp. 3)
 Goal: output line of characters to terminal
 Collect characters in buffer
 Initialize a pointer (ptr) and a counter (count)
 Check if terminal is ready and start I/O
 After character is displayed -> interrupt

 2: Assembly + C 55

Interrupts (example cont’d)
 Hardware

(1) Device controller asserts interrupt line on system bus

(2) When ready, CPU asserts interrupt acknowledge signal

(3) Device controller puts integer (interrupt vector) on data
lines to identify itself

(4) CPU removes the interrupt vector & saves it

(5) CPU pushes PC and PSW onto stack

(6) CPU locates new program counter using the interrupt
vector as index into a table at the bottom of memory.

 2: Assembly + C 56

Interrupts (example cont’d)
 Software

(1) Interrupt service routine saves all registers
(2) Read device register to determine terminal number
(3) Read status codes for the interrupt
(4) Handle a potential I/O error
(5) Increment ptr, decrement count. If count > 0, copy *ptr to

output register
(6) If required, output special code to tell device or interrupt

controller that interrupt has been processed
(7) Restore all saved registers.
(8) Execute the return from interrupt (RETI) instruction, restorting

state/mode of CPU.

 2: Assembly + C 57

Transparency & Priority
 Transparent Interrupt

 Take actions and run code, but
 When the dust settles, computer should

be in exactly the same state as before the
interrupt.

 Priority
 When there are multiple I/O devices,

potential for interrupts to occur during
ISRs

 Assign priority to interrupts and handle
time-critical tasks first.

 2: Assembly + C 58

MSP430 Interrupt Mechanisms
 Peripheral devices

 USART, Timers, AD/DA, GPIO

 Pins
 NMI, Reset, P.0, P.1

 A daisy chain of requestors
 On MSP430:

 Closer to processor, the higher priority
 Power-up : highest priority
 See priority table (datasheet).

 2: Assembly + C 59

MSP430 Interrupt Mechanisms

 2: Assembly + C 60

MSP430 Interrupt Processing

 Table definition:

 2: Assembly + C 61

MSP430 Interrupt Priorities

 2: Assembly + C 62

Interrupt Advice
 Always use RETI
 Ensure unused interrupts disabled
 Make ISRs fast (stack problems with nesting)

 Only change flags, return to main
 Consider polling as alternative

 stack overflow
 race condition
 boundary conditions

 ISRs in C
 Example: few routines
 (IAR compiler convention)

 2: Assembly + C 63

Some Programming Tips

 More comprehensive next week, but to get you
going

 Modular design
 Use header files and comment them!!
 Should be a driver for each peripheral

 Commenting is critical
 Top of each function – explain inputs, outputs, purpose.

 Use the pre-defined labels for registers etc.

 2: Assembly + C 64

Embedded C tips

 C preprocessor
 #define, #ifndef, #if, #ifdef, #else …etc

 Used to prevent multiple includes
 #ifndef _TIMER_H_
 #define _TIMER_H_

 #endif

 2: Assembly + C 65

C preprocessor
 Complex macros

 Passing parameters
 Padding of parameters

 Widely used in Firmware
drivers

#define SET_VAL(x) LCD_Settings.P##x
#define SET(x, val) SET_VAL(x) = val
#define DEF_SET(x) SET(x, DS_P##x)

#define MIN(n,m) (((n) < (m)) ? (n) : (m))

#define MAX(n,m) (((n) < (m)) ? (m) : (n))

#define ABS(n) ((n < 0) ? -(n) : (n))

 2: Assembly + C 66

Global variables

 Distinguish global variables from local by choosing
appropriate naming convention
 Example: RX_Buffer_Gbl
 Stick to your convention throughout the program

 Use global variables as Software flags
 Example: PACKET_RECEIVED – use capitals

 Have them all in ONE place

 2: Assembly + C 67

Report Guidelines

 Section 1: Functional Specifications
 Section 2: Implementation
 Section 3: Performance Analysis

 2: Assembly + C 68

Functional Specifications
 Function: void posadd(int *a, int *b, int *c)
 Purpose: Adds two positive integers and writes the

sum to a specified memory location.
 Inputs: a,b – pointers to memory locations storing

two positive 16-bit integers in 2’s-complement
binary.

 Output: *c = *a + *b. Write result of sum to memory
location pointed to by c. Result is 16-bit 2’s
complement binary.

 Special Cases/Error Conditions:
 Negative input (*a<0 OR *b < 0) : set *c = -1.
 Overflow (*a + *b > 2^15-1) : set *c = -2.

 2: Assembly + C 69

Functional Specifications

 Write for the user.
 No implementation details.
 Be precise!
 User should be able to look at functional specs and

know exactly how to include your function.

 2: Assembly + C 70

Implementation

 Include a concise explanation of your solution.
 What is the flow of the program?
 What hardware is used? How is it used?
 What flags are set?
 How is configuration performed? How are interrupts

handled?
 Answer any other questions you consider pertinent.
 If you have made decisions, include a brief

justification/explanation. For example, why did you
use a 10 ohm resistor instead of a 10 Kohm?

 2: Assembly + C 71

Implementation (2)

 If your deliverable involves a user interface, include
a subsection discussing the user interface and
clearly explain the reasoning behind each decision.

 e.g., why did you include a menu rather than a
command line?

 Properly prepared flow diagrams are highly
encouraged

 Carefully prepared diagrams are expected when
new hardware is connected (Lab 4).

 2: Assembly + C 72

Performance Analysis
 Include a concise description of the tests you

performed to verify correct behaviour and discuss
the performance.

 Tables are often the best way to display your results
(input, condition tested, output of program).

 For the labs, there will be other performance
analysis that is appropriate (for example, in Lab 1
you should explore the number of cycles that your
routines consume).

 2: Assembly + C 73

Performance Analysis (2)
 In later labs, where your deliverable involves a user interface,

include a user survey.
 Poll at least 8 people, at least 4 from the lab and at least 2 from

outside.
 Your poll should consist of at least 5 questions.
 Include the survey as an appendix to your report.
 Ask reasonable questions and provide a user response of 1-10.
 Include in your report a table specifying min/max and mean

scores.
 Also include the most pertinent comments, e.g., “the menu

system was very easy to learn, but became tiresome because
it was slow when I had some expertise”.

 2: Assembly + C 74

Performance Analysis (3)
 Example (incomplete, but you should get the idea):
 Table 1: Performance verification of function library (correctness)

Function: Condition Input Output Cycles

posadd: normal *a =21, *b =22 *c = 43 1000

posadd: negative *a = -2, *b = 3 *c = -1 500

posadd: negative *a = 3, *b = -2 *c = -1 500

posadd: overflow *a = 2^15-1
*b = 2^15-1

*c = -2 1500

 2: Assembly + C 75

Performance Analysis (4)

Function:
Condition

Min. cycles Max. cycles Mean cycles Variance

posadd: normal 500 2200 1000 1e5

posadd: negative 300 1100 500 2e5

posadd: overflow 700 1800 1300 1e5

Table 2: Speed testing of function library (10 random cases
per row of table).

 2: Assembly + C 76

References

 Reference all material you have used.
 Where you make use of document [1] include such

notation in the text.
 References should be in the format specified in

Section 4 of the report guidelines.
 If you do not know information, seek it out; if you

cannot find it after a reasonable search, then ask me
or the teaching assistants.

 The fact that a user guide has no date or author on
the front cover is no excuse for you not to track the
information down.

 2: Assembly + C 77

Appendix - Code

 Code : very well documented, small-font (10 or 11
point), 2 pages per sheet (landscape).

 If you have reused unchanged code from previous
labs, do NOT include it in your report (just retain the
header files).

 Keep the code well-organized, so that I can quickly
locate your new work.

	ECSE-426 Microprocessor Systems
	Today’s Lecture
	Contemporary Multilevel machines
	Problem-oriented Language layer
	Assembly versus C
	Problem
	Points
	Approach
	Findings
	Von Neumann Machine
	Computer Organization
	Common Processors
	Some complications…
	Dual-core architectures
	Slide 15
	MSP430 ISA
	Address Space
	Program Counter
	Stack Pointer
	Stack Pointer Usage
	Status Register
	Constant Generator Registers
	Watchdog Timer
	Slide 24
	Microp Board Overview
	MicroP board components
	Board Layout
	Board Components
	MPS430 Block Diagram
	MSP430x Peripherals - IO Pins
	Jumpers
	Power
	Slide 33
	Programming the MSP430
	Oscillators
	BREAK
	Programming MSP430
	Flashing LED Example
	Flashing LED Example (ctd)
	Slide 40
	Slide 41
	MSP430 Clocks
	MSP430 Clocks (ctd)
	MSP430 Clock Lines
	MSP430 Clock Lines (ctd)
	Timers
	Timer A
	Slide 48
	Timer A Modes
	Slide 50
	Capture/compare blocks
	Timer A Interrupts
	Slide 53
	Interrupts
	Interrupts (example cont’d)
	Slide 56
	Transparency & Priority
	MSP430 Interrupt Mechanisms
	Slide 59
	MSP430 Interrupt Processing
	MSP430 Interrupt Priorities
	Interrupt Advice
	Some Programming Tips
	Embedded C tips
	C preprocessor
	Global variables
	Report Guidelines
	Functional Specifications
	Slide 69
	Implementation
	Implementation (2)
	Performance Analysis
	Performance Analysis (2)
	Performance Analysis (3)
	Performance Analysis (4)
	References
	Appendix - Code

