
ECSE426 Microprocessor Systems Fall 2009

Experiment 2: Memory game on the microcontroller – Asynchronous Communication
interfaces

Demos: Oct. 1, 2

Lab Notes: Oct. 4

1 Objectives
This exercise will familiarize you with the Universal Synchronous/Asynchronous

Receiver/Transmitter (USART) peripheral interface and interfacing with a simple external input
device (keypad). Use of timers will be needed to provide accurate timing of the game.

2 Background
Before you start coding, please review the appropriate information from the MSP430x1xx

Family Guide (focus on Chapter 4, Chapter 11 and Chapter 13).

The software program may be implemented in MSP430 assembly code, in C language or a
combination of both languages. You will be required to justify your design language choice.

USART
The USART peripheral interface supports two serial modes with one hardware module. These

modes are the asynchronous (UART) mode (see Chapt. 13 of the MSP430 user guide), and the
synchronous (SPI) mode (see Chap. 14 of the MSP430 user guide). In this lab, you will make use
of the asynchronous mode. In asynchronous mode, the UART connects the MSP430 to an
external system via two external pins, URXD and UTXD. The UART mode allows the
transmission of 7 or 8 bit data (with parity checking); it provides separate transmit and receive
buffer registers, and independent interrupt capability for receive and transmit. See the attached
document for more background on UART.

Timer
Chapter 11 should be your starting point where you will find necessary information about the

timer and how to access its features. The MSP430F149 has 2 timer modules. In this lab, you will
use TimerA. You will not need to use all its features, only the mode capable of generating an
interrupt at specific intervals. The timer will be needed to keep the timing of the game. The
clock source for the TimerA module should come from the low speed (32.768 kHz) oscillator.

Design Notes
For anything that is not explicitly specified, you should decide the best way this system should

behave to enhance its robustness. As in many design applications, there is not necessarily one
right answers. You are given broad specifications and you should work out the details to produce
an elegant solution to the given problem. Since there is a substantial amount of work involved in
this lab, estimate the workload, divide the work, and pace yourself carefully. Please ask questions
early in the design process, as you will find that it is much less stressful to change your system’s
architecture while you are still in the design phase than the day before the demo…

3 Task
Part 1: Use the serial communication with the terminal via the UART interface to implement a

simple memory game. A grid of 8x8 cells should be displayed with an initial configuration of '*'.
Then, using the keypad, the player will enter a row and column to display the letter behind that

Page 1 of 5

cell. The player tries to reveal matching pairs. Once two cells have been displayed for 0.5s, if
they are not identical, the grid is printed again with '*'. If the two cells are identical, the revealed
pairs are left displayed on the grid. The game finished when all the cells have been paired up. At
this point, the elapsed time for the game must be displayed.

Functional Requirements:

(1) The game must be usable. The interface should be made such that its easy to use and
intuitive.

(2) The game time must be accurately tracked. This means that the timers must be kept
running during the game duration. The overall accuracy for a complete game should be 1
second. At the end of the game, the total time for the game should be displayed.

(3) The coordinates in the game must be entered using an external keypad. The terminal
keyboard should also be capable of sending coordinates to the game. The coordinates are
sent by typing the Row, then the Column, then the # key. For example, typing 34# on the
keyboard or keypad should reveal cell at Row=3, Column=4. If one makes a mistake
keying the entry, they can re-type the coordinates. Only the last 2 key presses are kept
and the # key is used to accept the value. The keypad must be interrupt driven (i.e. use
the interrupt features of the I/O module).

(4) The serial link should operate at 57600 bauds, no parity, 8 data bits and one stop bit.

(5) The demo should not depend on the presence of the Rowley tool. Your board should
have only the serial line, keypad and AC adapter present during the demo (no parallel
port connection). Basically, it should be plug and play.

4 Demonstration
The demonstration involves showing your completed source code and a working system

conforming to the aforementioned specifications. Grading will be based on how well the system
satisfies the specifications, robustness, design elegance, and how sensible and well-considered the
design decisions were. There will also be user-interface assessment. Please also prepare a
program flow-chart and system schematics to aid explanations during the meetings and
demonstration sessions. Make sure to record and have available all your performance test results !

5 Lab Notes
You do not need to hand in a report for this lab, but you do need to submit lab notes. These can

be handwritten (but legible) or typed, as you prefer. These lab notes should consist of 4 sections:
(i) function specifications, (ii) a flow diagram, (iii) methodology/implementation notes, (iv)
performance testing method and results. Each of these sections should be approximately a page;
you should be able to write the notes during lab hours (and they will be marked as though this is
the case).

However, make sure you express yourself concisely and clearly, and keep the presentation
reasonably neat. For example, flow diagrams should still be reasonably professional – not
freehand sketches.

Page 2 of 5

Appendix
Design tips and considerations

* The game should ideally start with a random array of letter pairs. You are free to use the
random generator the way you want, but an easy way is to simply sample the value in a free
running counter by asking the user to type 2 keys with a delay in between. If the counter is
running fast and the user is taking some time between key presses, the delay will be random. You
should have a way to overwrite this random “seed” with a fixed value such that you can test your
game with the same grid multiple times.

* Those routines from stdlib.h are likely to be useful in this experiment:

int rand(void); // Returns a random number when called
void srand(unsigned int seed); // Seed the random number generator

* An efficient method to prepare an array with known elements, but in a random order is to
first fill the array with all the valid elements in order. Then, randomly select two elements in the
array and perform a permutation. Repeat a few times and the array of elements will be
“shuffled”. A function call similar to this will be quite handy:

rnd_element = rand() % NUM_ELEMENTS; // % is the C modulo operator

* You can develop the game in 'C' on your PC. You simply have to make a console project and
the input/output using only getchar() and putchar(). Then you could write a putchar() and
getchar() routine on the MSP430 which have the same functionality. The putchar() and getchar()
routines on the MSP430 have to use the UART (i.e. this is not debug_printf() or its equivalent).
You may use debug_print() at some point to help you design, but in the demo, you have to
removed all those calls.

* An application note will be posted to detail how to interface with a hardware keypad. Its
suggested that all the game logic be debugged and working before integrating the keypad inputs.
This way, you can separate the routines and keep the complexity under control.

* The program can be built around a constant defining the number of element in the grid.
Debugging your program with a smaller (e.g. 4x4) grid is much more efficient (the game should
be a lot easier too...). You only need to recompile and test later for the final 8x8 grid once the
code is stable.

* ANSI control sequences can make screen erasing and cursor control a lot easier and allow
nicer user interfaces. From the UART point of view, its just a regular sequence of characters sent.
However, when received by the terminal program, they affect the way the cursor moves or
modify the text color. For example, sending “<ESC>[2J” (in C : “\x1B[2J”) will clear the
screen. More details on ANSI sequences can be found at:

http://www.termsys.demon.co.uk/vtansi.htm

Page 3 of 5

http://www.termsys.demon.co.uk/vtansi.htm

Notes on USART module (by Milos Prokic)

The Universal Asynchronous Receiver/Transmitter (UART) controller is the key component of
the serial communications subsystem of a computer. The UART takes bytes of data and transmits
the individual bits in a sequential fashion. At the destination, a second UART reassembles the bits
into complete bytes.

There are two primary forms of serial transmission: Synchronous and Asynchronous. MSP430
that McGumps features supports both Synchronous and Asynchronous, hence USART. In this lab
you will be using the Asynchronous mode – Chapter 13 of the UG.

There are two USART – 0 and 1. I suggest you use UART0 that connects to the Dsub9
connector on the McGumps board via the MAX3223 chip. The chip is used to convert MSP430
voltage levels to RS232 compatible. If you decide to use UART1 you’ll have to connect the board
via the 3 pin header located next to the Dsub9 connector – J11.

Asynchronous transmission allows data to be transmitted without the sender having to send a
clock signal to the receiver. Instead, the sender and receiver must agree on timing parameters in
advance and special bits are added to each word which are used to synchronize the sending and
receiving units. UxCTL register in MSP430 is your friend for this lab ☺. You should make sure
that all the bits in this register are properly set.

Any baud rate is acceptable, as long as it is above(not equal) to 19200 bits/sec and below
115200 bits/sec. For this lab I suggest No Parity, Data – 8 bits, 1 stop bit, and no flow control
(CTS, DTS, DTR etc signals are not present so hardware control is not possible…).

Read about UxTCTL and how to set which of the three clock sources will be feeding the
UART module. Once that is done, make sure you divide it properly to achieve required bits/sec
by writing to UxBR0 and UxBR1. Details about setting the proper values can be found on pages
272-273 of the UG.

I suggest you take a look at the TI FET examples for MSP430x14x provided within the

Crossworks IDE. In particular USART0 – UART 19200 Echo HF XTAL…

As you can see from the example receive is handled by the ISR. This is the desirable way to do
it because you shouldn’t loop and wait on the receive flag thus stalling the microcontroller and
preventing it from doing useful work or going into low power mode. The receive characters come
from the user terminal producing huge delays in terms of the micro controller.

On the other hand transmit can easily done without the ISR, by looping on a flag, why is that?
How do Transmit and Receive interrupts differ?

The MSP430 has two registers that are used for reception and transmission – UxRXBUF and
UxTXBUF. These are one byte registers that you can read the data from (RXBUF) or just write to
TXBUF what you want to be transferred. You do not have to send out bit by bit – it is a hardware
feature. Data from the or to the TXBUF and RXBUF respectively are shifted out or in by shift
registers.

To connect to McGumps you can use any of the following terminal programs:

Built-in Crossworks terminal emulator ==> View->Terminal Emulator

TinyTerm

HyperTerminal

Page 4 of 5

Read below for some extra info regarding the UART (you should be familiar with this from
ICE2);

When a word is given to the UART for Asynchronous transmissions, a bit called the “Start Bit”
is added to the beginning of each word that is to be transmitted. The Start Bit is used to alert the
receiver that a word of data is about to be sent, and to force the clock in the receiver into
synchronization with the clock in the transmitter. These two clocks must be accurate enough to
not have the frequency drift by more than 10% during the transmission of the remaining bits in
the word. (This requirement was set in the days of mechanical teleprinters and is easily met by
modern electronic equipment.)

After the Start Bit, the individual bits of the word of data are sent, with the Least Significant
Bit (LSB) being sent first. Each bit in the transmission is transmitted for exactly the same amount
of time as all of the other bits, and the receiver “looks” at the wire at approximately halfway
through the period assigned to each bit to determine if the bit is a 1 or a 0. For example, if it takes
two seconds to send each bit, the receiver will examine the signal to determine if it is a 1 or a 0
after one second has passed, then it will wait two seconds and then examine the value of the next
bit, and so on.

The sender does not know when the receiver has “looked” at the value of the bit. The sender
only knows when the clock says to begin transmitting the next bit of the word.

When the entire data word has been sent, the transmitter may add a Parity Bit that the
transmitter generates. The Parity Bit may be used by the receiver to perform simple error
checking. Then at least one Stop Bit is sent by the transmitter.

When the receiver has received all of the bits in the data word, it may check for the Parity Bits
(both sender and receiver must agree on whether a Parity Bit is to be used), and then the receiver
looks for a Stop Bit. If the Stop Bit does not appear when it is supposed to, the UART considers
the entire word to be garbled and will report a Framing Error to the host processor when the data
word is read. The usual cause of a Framing Error is that the sender and receiver clocks were not
running at the same speed, or that the signal was interrupted.

Regardless of whether the data was received correctly or not, the UART automatically discards
the Start, Parity and Stop bits. If the sender and receiver are configured identically, these bits are
not passed to the host.

If another word is ready for transmission, the Start Bit for the new word can be sent as soon as
the Stop Bit for the previous word has been sent.

Because asynchronous data is “self synchronizing”, if there is no data to transmit, the
transmission line can be idle.

Page 5 of 5

	1 Objectives
	2 Background
	USART
	Timer
	Design Notes

	3 Task
	4 Demonstration
	5 Lab Notes
	Appendix

