ECSE-426
REPORT – LAB 1
Simon Foucher (260 223 197), Alexandru Susma (260 235 940)
Lab Group Number 07
1. FuNCTIONAL SPECIFICATIONS
1.A – Assembly BCD Adder
The adder function is called from C to perform addition on two 32 bit BCDs. Pointers to the address in memory where the numbers are stored are passed to the adder. The numbers are read and each stored in 2 registers. The program is then in charge of deciding what kind of operation it should perform. Checking the numbers signs we branch to appropriate pieces of code. To make addition easier every time we deal with a negative number we remove the sign to avoid overflows. Using the DADD subroutine available we make sure the BCDs are added and the carry is perpetuated correctly. The biggest challenge was to pass the carry from the least significant register to the most significant register. The problem was solved when we learned that DADD does that automatically.
For the cases when we add a negative and a positive number we realized that the operation is equivalent to a subtraction. Reading the MSP430 manual we learned that we can implement a subtraction using 10’s complement and DADD. The number to be subtracted (which is always the one smaller in magnitude) is added with the hex 0x6666, inverted and 1 is added to it. To complete the subtraction, 10’s complement is then added with the 2nd number and the result is the desired one.
1.B - FIR filter
The input and characteristics of the filter are hard coded in the main function of ‘fir.c’. The filter coefficients b0, b1, […], bx for the function y[n] = b0x[n] + b1x[n-1]+...+bNx[n-N] are stored in the array coeffs[]. To maximize portability, the filter order is dynamically computed using the stdio function sizeof() ran on the ‘coeffs’ array, such that there is no need to manually enter it.
The input samples are stored into the array sample[], also located within the main function of ‘fir.c’. Since the length of the sample array is computed dynamically within a subroutine call, it is critical that the last sample entered in the array is ‘\0’ to notify the fir function that the end of the sample has been reached. By doing to, the size of the sample space is also dynamically adjusted by the code as soon as new samples are entered.
Both the samples and filter coefficients are entered as 1000 times greater than they actually are. For example, 1/3 is entered as 333. The data is entered as 7 digit BCDs encoded with 32 bits. The msb (0x80000000) is used as a sign bit; representing a negative number when set and vice versa. The 4th MSB bit (0x10000000) is used to enter an overflow condition when set. Note: If invalid BCD are entered or values which are already overflowed, the system will output an error.
Once these data are entered in the code, the filter is ready to be used. Call a ‘makefile’ in the directory containing the filter file: fir.c, the header file: bcd.h and the assembly adder file ‘bcdadd.m43’. Finally run fir.exe and observe the filter running through the data. The program will terminate once the last sample element have entered the filter. Note: The filter’s output is only displayed when all of its inputs are filled with samples. To observe the filter loading and unloading, you may insert ‘0’s as inputs up/downstream of the actual sample space.
2. IMPLEMENTATION
The FIR filter was implemented using a combination of c and assembler. To speed up the process, the additions were performed in assembly. The remaining functions are implemented in c. Below is a chart describing the relationship between functions, followed by a detailed description of the algorithms used in the functions implemented.

[image: image1.emf]main()

Contains:

Filter coeffs[]

Input Sample[]

Output Value

Initializes the arrays with pre defined values

Calls fir with pointer ref to data

fir()

unsigned long int arg1, arg2: to contain values

sequentially extracted from coeffs[] and

sample[]

for(sample size times)

for(filterorder times)

arg1 <-coef

arg2 <-sample

convert arg1 and arg2 to BCD

bcdmult(&arg1, &arg2, &multResult)

bcdadd(&multResult, outputValue)

Finally displays output of filter

fir(sizeof(coeffs)/4,

coeffs,

inputSamples,

&outputValue);

sizeof()

Defined in

stdio.h

Returns size

of array

convert0xBCD()

Input:pointer to

argument to convert

Function:converts

the 0x argument

into a BCD

convert0xBCD(&arg)

bcdmult(*arg1, *arg2, *multResult)

Validates the args

Resolves sign of final result

Figures out which arg is bigger

For(7 times)

addctr <-LSB of smaller argument

add larger argument to result ‘addctr’ times

shift largest arg <<

shift smallest arg >>

Check for overflow and set oveflow bit if needed

Resolve sign bit

validDataChk()

Makes sure no digit > 9

Checks overflow bit on both

args

validDataChk(*arg1, *arg2)

overflowChk()

Checks overflow bit

overflowChk(*arg)

bcdadd(*arg1, *arg2)

Input: pointers to two 32 bit numbers

Save registers on stack

Extract data from memory using pointers

Determine signs of arguments

Determine magnitude of arguments

If performing a subtraction

convert one arg to 10’s complement

Perform addition

Store result in memory

Restore registers from stack

main(void)

1. Initializes the arrays coeffs[] which will contain the filter coefficients, and samples[], which contains the samples to run in the filter.

2. Allocates memory space for output
3. Calls fir and passes it the filter order (calculated using sizeof(coeffs)), pointers to the first elements of the 2 arrays and a pointer to the memory space in which to write the result.

bcdadd(bcd32_t *arg1, bcd32_t *arg2);

Inputs:

· arg1: the first number to be added.
· arg2: the second number to be added

Algorithm:

1. Saves the current values from the registers on the stack and it copies the two arguments passed into 4 registers (2 per number).
2. Using masking and branching, the program determines the signs of the two arguments passed and branches to the appropriate piece of code. There are 4 possible cases (2 positives, 2 negatives, positive-negative and negative-positive). Using the built in subroutine DADD, the first two cases become trivial. For the case with two negatives the sign is removed from one of the numbers to avoid overflowing during addition. For the cases when the two signs are different the program will remove the sign from the negative number and then determine which number is larger in magnitude. The smaller number in magnitude is then transformed into 10’s complement and added to the other number. To get 10’s complement a number is added with hex value 0x6666. After that the bits are inverted and 1 is added to the least significant bit. The result is equivalent to a subtraction and it is exactly the result we are looking for.

3. The output of the addition is stored on top on the 2nd argument.

4. Restore the register from the stack and return to caller.
fir(unsigned int filterOrder, bcd32_t* coeffs, bcd32_t* inputSamples, bcd32_t* outputValue)
Inputs:

· filterOrder: order of the filter.
· coeffs: pointer to a table of bcd32_t numbers. (first bcd32_t in the table is b0, second is b1 and so on).
· inputSamples: pointer to a table of bcd32_t numbers which represent the input samples to the filter.
· outputValue: ptr to a free bcd32_t location to write resulting output from the filter.

Algorithm:

1. Initializes an array index pointer for the filter coefficients (coefPtr), a counter (i), a temporary memory location to store result while is is being computed (multResult) and an integer to calculate the size of the sample(sampleSz). We also initialize arg1 and arg2, which will be used to store data extracted from the arrays. This was implemented since the data in the arrays is stored in binary format, and our filter uses BCDs, so modifying these arguments enables us to leave the original arrays untouched.

2. Scan the sample array until we reach the null terminating character and calculate its size and store it in ‘sampleSz’. (It is impossible to use sizeof() to measure an array within a subroutine call when only passing a pointer). This step was implemented to allow more flexibility in the code.
3. We repeat the following ‘sampleSz’ number of times (using ‘i’ to count):

a. Reset output value
b. Repeat the following ‘filterOrder’ number of times:

i. Extract the first coefficient of the filter and store it in arg1

ii. Extract the most recent sample and store it in arg2
iii. If we reached the end of the sample, return
iv. Convert arg1 and arg2 into BCD by calling: convert0xBCD(&arg)
v. Multiply arg1 and arg2 by calling: bcdmult(&arg1, &arg2, &multResult)
vi. Add this arithmetic result to an accumulator that adds all the required samples filtered by calling: bcdadd(&multResult, outputValue);
c. Once all the filter coefficients have been paired with a sample and that the accumulator has accumulated all those results, the output of the filter is printed on the screen

4. The process repeated until the filter runs into the end of the sample array
bcdmult(bcd32_t* arg_a, bcd32_t* arg_b, bcd32_t* result){

Inputs:

· *arg_a, *arg_b: addresses of arguments to multiply

· *result: address of where to write result

Algorithm:

1. Run a data integrity check to ensure proper BCDs are entered by calling validDataChk(arg_a, arg_b).
2. Return with *result = 0 if one of the operands = 0. This saves extra calculations in this case.
3. Resolve the sign of the final result based on whether we are multiplying ‘--’, ‘+-’, ‘-+’, ‘++’ .
4. Find largest multiplicand. Since mult calls addition repeatedly, this test is ran to minimize the number of operations required on average. i.e. 12345 * 12 will call the adder (1 + 2) = 3 times instead of (1+2+3+4+5) = 16 times.
5. Since the sign of the final result is already taken care of, the MSB of arg1 is cleared to avoid data corruption during addition (if arg 1 is negative, it is added as a positive number by the adder, then the sign bit will be appended as needed after the operations)

6. Actual multiplication, starting at the least significant digit

I- Mask the least Significant BCD digit of arg2

II- Perform that number of additions of result + arg1

III- Shift arg1 left and arg2 right by 4 bits (1 BCD Digit)
IV- Repeat 7 times to cover all 7 BCDs

7. Detect if an overflow occurred and flag appropriately it
8. Append proper sign bit to result according to step 2.

validDataChk(bcd32_t* arg1, bcd32_t* arg2)
Inputs:

- 2 Alleged BCD numbers
Returns:

· 0 if both arguments are valid BCDs

· 1 if arg1 is at fault

· 2 if arg2 is at fault

Algorithm:

1. We begin with a frame containing the mask 0xF, and the max BCD value 0x9

2. Mask both arguments with the mask and check that they are <= 9. If not, return appropriate error code

3. Shift the frave left by 4 bits (1 BCD digit)

4. Repeat 2 and 3 seven times to check all BCD digits

5. Check overflow bit of both arguments by calling overflowChk.
convert0xBCD(bcd32_t* arg)
Inputs:
· A pointer to a 32 bit hex value (28 usable bits) to be converted to BCD
Algorithm:

1. Shift the binary number left one bit into the result register.

2. If the binary value in any of the BCD bit columns in the result register >= 5, add 3 to that BCD value.

3. Repeat 16 times, then copy the result register into the memory location pointed by *arg.
3. Performance Analysis
To enhance the overall performance of the system, we applied the design principle of making the common case fast. Since the adder got called repeatedly, both to perform the multiplication as well as by the accumulator embedded within the filter function, it was implemented in assembly.
The performance of the various functions used is outlined as followed. The filter function’s execution requires roughly 4 instructions times sample size times the filter order, plus a bit of overhead. It calls twice a function to convert 0x to BCD. These function calls are by far the most expensive of the system, as they requires roughly 1200 assembly instructions each. Fortunately, converting hex data into BCD it is not absolutely necessary for the proper operation of the filter. It has been implemented to give the user the freedom of entering data as integers, instead of putting the burden of converting those values into valid BCDs to the user. It also ensures that data fed to the filter and its related function is already in adequate BCD format, since the conversion is done internally.
We also implemented a valid data check function, which runs in roughly 30 assembly lines of code. It is also not absolutely necessary since, as mentioned earlier, the conversion to BCD is done internally. We chose to implement this function none the less in case the user wishes to get rid of the hex to BCD converter and enter the data in binary BCD manually. Since this is a tedious and error prone task, the valid data check will already be in place to avoid bad data being fed to the filter.

Finally, the multiplication called by the filter requires roughly 50 clock pulses times the time to perform the addition. On average, an addition requires $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$instructions.
For testing purposes we used different numbers to make sure the program responds correctly to all of them. In all the cases whenever the expected result was not observed at the output, we corrected the code until it did. We tested corner cases such as negative values, overflown number, invalid BCDs and variable sizes of filter coefficients as well as samples. In all cases, the filter behaved according to theoretical models, which leads us to believe that it is up to par with the design specs. Also, because of the redundant data integrity checks performed, the design is robust and should output an error message in case of invalid data being inputted by the user or resulting from internal computational errors.
RefERENCES
No other references than the provided lab guidelines were used.
PAGE
7

_1314881552.vsd
main()

Contains:
Filter coeffs[]
Input Sample[]
Output Value

Initializes the arrays with pre defined values

Calls fir with pointer ref to data

fir()

unsigned long int arg1, arg2: to contain values sequentially extracted from coeffs[] and sample[]

for(sample size times)
for(filterorder times)
	arg1 <- coef
	arg2 <- sample
	convert arg1 and arg2 to BCD
	bcdmult(&arg1, &arg2, &multResult)
	bcdadd(&multResult, outputValue)

Finally displays output of filter

fir(sizeof(coeffs)/4,
	coeffs,
	inputSamples,
	&outputValue);

sizeof()
Defined in stdio.h
Returns size of array

convert0xBCD()

Input: pointer to argument to convert

Function: converts the 0x argument into a BCD

convert0xBCD(&arg)

bcdmult(*arg1, *arg2, *multResult)

Validates the args

Resolves sign of final result

Figures out which arg is bigger

For(7 times)
 addctr <- LSB of smaller argument
 add larger argument to result ‘addctr’ times
 shift largest arg <<
 shift smallest arg >>

Check for overflow and set oveflow bit if needed

Resolve sign bit

validDataChk()

Makes sure no digit > 9

Checks overflow bit on both args

validDataChk(*arg1, *arg2)

overflowChk()

Checks overflow bit

overflowChk(*arg)

bcdadd(*arg1, *arg2)

Input: pointers to two 32 bit numbers

Save registers on stack

Extract data from memory using pointers
Determine signs of arguments
Determine magnitude of arguments
If performing a subtraction
	convert one arg to 10’s complement
Perform addition
Store result in memory
Restore registers from stack

