PS2 Keyboard and Hex Display via SPI slave

Access to the PS2 keyboard and onboard seven-segment displays is accomplished using SPI. By making use of our preexisting SPI comminication code and implementing an SPI slave in VHDL, we can very easily transfer data bidirectionally between the MSP430 and the CPLD. 

We have offloaded much of the keypress processing from the CPU onto the CPLD, allowing us to reduce the size of the interrupt routine. We began by implementing the SPI slave, which is a simple shift register, and then proceeded to develop the processing of the keyboard. 

PS2 Keyboards return values of between 1 and 3 bytes depending on the key pressed, and each code relates to a specific key and action, such as press or release. We chose to use the VHDL to process these key codes, and then use an spi transaction of 3 bytes to retreive the values and convert them into ASCII inside the CPU. While this processing could have been done on the CPLD as well, the total size of the logic must be considered, since at the time we had also not implemented the hex display yet. When a key is pressed, the keyboard transmits the data serially with a start, stop and parity bit. When the last byte is received, the keyboard sends an interrupt to the CPU, will then read the scan codes and return an ascii value.

The wireless is accessed via two methods, wireless_packet_transmit(packet* p) and wireless_packet_receive(packet* p). Transmit will write the contents of the packet into the TX FIFO one byte at a time and then set the cc2500 to TX mode. Receive simply reads a packet from a queue in memory and will return false if no packets are in the queue. 

The system uses the receive interrupt to pull data in from the cc2500, which gives up several benefits.

Primarily it allows up to buffer more packets, which means we are less likely to drop values and wherefore increases reliability. Similarly, it reduces the time spent polling for packets becaue we simply check the queue instead of needing to do an SPI transaction. Another important benefit of this is that it allows us to abstract away several features such as heartbeat processing, which therefore reduces the complexity of the game loop. If we were to extend the protocol, this abstraction also would allow us to implement a reliable transmission protocol such as GoBackN transparently to the user.

We chose to store packet data in a single struct called packet, which contains a union for the body data. A union allows us to store several different data types in the same memory space, while at the same time keeping the values type-safe. This means that we do not need to cast back and forth between types and are protected by the standard compile time type checks. This also means that at transmission time, we simply have to cast our packet to a char* and iterate based on the length and read it back in the same fashion to restore an exact copy of the struct at the other end.

