P ~
i

Last Name:_ /40 t P First Name:

Student ID: Signature:

Course 304-425B -- Computer Organization and Architecture
Final examination
April 19,2002, 09:00 -- 12:00

Examiner: Prof. V. Hayward Associate Examiner: Prof. F. Ferrie u-e
IRST READ THESE INSTRUCTIONS

¢ This is a closed book examination. Calculators and one or two sheets of notes are allowed.

¢ Hand in your signed paper in its entirety (along with all signed exam books) at the end of the examination.

¢ Explain every result concisely when asked. Marks will be given for clear, concise solutions.

© When a numerical answer is asked, always write the formula(s) and then evaluate using the givens.

© State any assumption required for an answer if it is not clear in the text of the question.

© Please sign this paper at the top of the page, write your name and student number legibly there.

© Put your answers in the space provided, answers in any other location will not be marked.

© This exam has 12 pages, 7 sections for 25 questions. Each question is indicated by a bullet sign (*) and
carries four (4) marks which adds up to 100. You have approximately 180 minutes to complete the exam.

PROBLEMS
SECTION 1: Performance (5 questions)

* Consider that the CPI of an ideal machine is 2 when all the memory references, including fetches are cache
hits. The real machine version A has a unified cache that misses at a rate of 6%. Another real machine
version B has a split cache that misses at a rate of 5% for instructions and 8% for data. The only data access
are by load/stores instructions and these form 30% of all instructions. The miss penalty is 20 clock cycles in
all cases. Evaluate the performance ratio between these two machines, all other parameters being equal.

~

Ned g e N | o . D,) N
CIACHINE & { Yas KarE OATA = { Wa, RATE FEwues = 01
ITACHIVE D e R NMe . M D - 0f
‘LARLTIVE WWss Kae oarazs 008 iss Rag — = (U0
LATH . ¢ 4 > VA TE LEET(—-'-H—;S
alviu ~ -) ' v L/
C va o= ' 'y 0., AA ! MY NA 9 - .
TOEA @ CPLgegy = 2+ 006 20 + 05 006 L0 = 9
. D - 93 ’ - y
rjl)’gil'.r-_."f'—f"r - Al -~ " . B " A A O ~ ¢ :i _.j{r f'?
~ T (N et 90 4) 0,0, —
o .) 30!’: R g ("___ I"[’E-'-i‘ = X ‘|L ¥, C') -*\,L" T D
L WD/Jgr = le = AL ot
” (_ SN B /{ D2 J)

e .

* The designers of a processor consider increasing the depth of its single pipeline from 6 to 9 stages and this
could increase the clock rate by 10%. When the processor had 6 stages, the average number of stalls per
instruction was 0.5, with a deeper pipeline this number increases. What is maximum tolerable average
number of stalls per instruction with the 9 stage pipeline to make the effort worthwhile?

ara (i QTnli Pate — /M PEQR NG
C LL} - -’_-C.{; [.[C SLALL J’\r‘l_TE_é__ Obh YER N Cf
N Ay e i 1 oy | SArte STRUCTICON ¢ DV '-_F"‘ L JAITE
CiNGLE RiPe @+ C P:i\"&:«f_ = | , FoR A SAME INSUEVCTICA (Vb , U
A
/ . n r Y Ny _ | AL RATE) C
A+ (0.5) CC, < (I + 5 (W .I::L\i Cg 710
G L
| r N ATE \ I‘ /
4.5 [+ STALRA a)10 = STALLRATE, < £.HA x 11O -1

* A floating point application was compiled for a RISC processor having floating point instructions. One run
required 20,000 loads/stores, 5,000 branches, 10,000 ALU instructions, 5,000 fixed-point multiplies, 5,000
floating point additions, and 5,000 floating point multiplies. The count of all other instructions was
negligible. The application was used to benchmark a machine with floating point hardware. The following
CPI’s were found: load/stores=2, branches=1.5, ALU=1.2, fixed-point mults=4, FP adds=4, FP mults=8.
The same application run on a machine without floating point hardware but which emulated it with integer
routines gave: 20,000 load/stores, 8,000 branches, 60,000 ALU instructions, 10,000 fixed-point multiply

instructions. The CPI’s were almost the same. What is the speed-up provided by the floating point hardware
assuming that the clock rates were the same?

foR A GIVEN SINGLE BENCHYARK , WE CAN SIHPLIFY BY FiNnpine- THE
TOTAL WUHRER OF NEEPED CLOLK CYCLES,

HC = 20x2 +5 x5 + 1042 + 544 +5x4 + 558 = 4.5 io

/ -
- et I R] R

P — s AJ U XA P FP*
LD/st BR ALY Fix+ e+ ¥
HCC. = zoxz + & x5 ¢ 6022 4+ (024 _ 64 107
e : —
LDfsT BR ALY Fix +
Seeenp = 84 - 4475
139.5

* The compiler for this same processor is now enhanced by a strength reduction optimization feature (e.g.
replacing mults by shifts). Now, half of the fixed-point multiplication are replaced by a sequence of 2 ALU
instructions. The other effects are negligible. What is the now speed-up provided by the floating point
hardware when using this new compiler?

Wit DEW COMPILER , HESE WUHBER BECOHE -

HCCp = 20%2 + 5515 + 25 242 + 25 x4 % 218 5XE 325
5 TS;;; vl "_';;}“:;“' FIxX + o+ %
) 2
#CC = 2012 gy ds + 10t + Bx4 _ f5r 407
LoJor ‘*‘gg“ ALY Eik+
(5‘ { - ,E,é-- = ’{, { 7?
—veeole = 7275

* We focus now on the performance of a machine with virtual memory and one level of blocking cache. The
performance figures are 1 cc hit time and a 5% miss rate for the cache. It takes 30 cc to replace a block. The
virtual memory system misses at the rate of 0.0002% and it takes 5,000,000 cc to resolve a page fault. To
improve the system, a second level cache L2 is introduced that can replace a L1 block in 10 cc. L2 misses at a
rate of 1% and it takes 50 cc to replace a block. What is the speed up introduced by the L2 cache?

HIMFME RaTe PENALTY HTIHE RATE PENALTY

CACHE I 005 ogE T Li f 0,05 SEE L2
MG 30 207 5 p° L2 o ool seEn
M 50 2 58 5 Jo€

AT = 140.05 (30 +10) ATAT = A+ 0.05(jo + 0.0((50 tip))

1
A+0.05 (lo+ 0é) = 452

b

=3

END OF SECTION 1 (5 questions, 5/25 so-far)
2

SECTION 2: Integer Pipelining (4 questions)

IE/ID ID/IEX EX'IMEM MEM/WB
: l Zera? .

OutAT
Registers|
In QutBj

Addr Instr
Qut

-
—
— Addr. Data|

Data Out
In

Data Mem.

Instr. Mem.

16 32
STANDARD DLX PIPELINE

Consider the standard DLX pipe as above and consider it fully bypassed. Recall that basic techniques to handle the
branch are “pure delayed branch” and “delayed branch with canceling”. Now consider the code sequence:
1. LOOP LW R2, O0(R3) \\ load word w

2. SEQI R1, R2, 0 \\ Rl <- 1 if w ==
3. ORI R4, R2, x0F \\ set least significant nibble
4, BNEZ R1, OUT \\ exit if ==
5. SW 0(R3), R4 \\ store modified w
6. ADDI R3, R3, 4 \\ next item
7. J LOOP \\ jump back
* Indicate the 2 instructions after BNEz and show timing for “delayed branch with canceling” when:
The branch is taken:
LW te o> |Ex e |W&| | 4 | |
seer | TF |TIp S |EX VEH WA I
ORI e 5 [Tp ex ren we |] i
eeez | . | . |XTF | TO |)]
o w I R TF [CAXEL
|

1
il k. B oot ot I S FE— | — | N
W D OV | I¥ IO X | rEqH wha|

The branch is not taken:

W IF | To | Ex | MEM|WB |]] N |
seor | JIF |0 | S |ex ver|ws | | | |
ot | | TF | S |ID By |MEM, WA | N |
BNEZ | | tf TD
Sw el TE IO Ex _nE | whH o | |
ADDL ? | IF 't Ex | e WA | |

* For pure branch delay, does the code execute correctly? If yes, state why. If not, place NOp(s) to restore
correctness. Ignore the J instruction and apply no other transformation.

il il

NO , IT wovid NeT . S witL BE FETCHED AND WouvLD
COYIPLEE EXE CUTION |, wHEA TT SHOULD MNOT
.r’ 'bfu.'

= A

%tqu

ID/IEX EXIMA° MAMB MB/WB

IA/1B IB/ID

—P>
—P OutAR
— Register.
lin 0utB|-

SUPERPIPELINED DLX

Consider now a superpipelined version of DLX designed in an effort to increase the clock rate (memory accesses
are performed in two cc instead of one). Like the standard version, it is fully bypassed, including the data memory,
and branches are handled by delayed branches with canceling.
* Using timing diagrams, determine by how much the clock rate should be increased to make the enhancement
worthwhile for this sequence of code (it does string copy):
LOOP: LB R1, O(R2)
SB 0(R3), R1
BEQZ R1, OUT
ADDI R2, R2, 1
ADDI R3, R3, 1

J LOOP // J is folded, so its CPI=0
Standard DLX | > 2 / 5 é
LB _|IF FD JEX | YMERIWR | | L)
S | IE |Td | Ex e wB I R S R L
PEGz | |TE | & | TD |] L I
ApdI |l TF (1D Ex rEr|wlR,]
BDDL | TE 0 T ex |t wA | B
Superpipelined DLX i
LB | Tta | TR ED | EX FMA TR WA T I
1A TR |ID EXx | S A 1B | wh | ! IR
. TAIIR S | S5 ID |(EXx|MA HMB wa| ;
r| o |TA S S IR IDp |EX A _ma|ws |
_ . ; ' A 1Ip | Fo (EXx A | 1771B wA |

Calculate here the minimum required clock rate improvement to make the superpipelined design worthwhile?

/Y SinE QUPERPIPELINING- TAKES 7CC TO EEWTE VS & cc

* Schedule this code for the superpipelined case and state why you could use speculative execution, or why
you could not:

T7'e, PoSSiBLE 1D SPECULATUELY 'ADDT R2" AwD Fue THE
LOAD OELAYy CLoT. THE OTHER ADDT Can FiiL THE BRANCH
PELAY Qo7 ((oved USE 8B Too)
LooP: LB Ri, 0(R2) TT Cant BE VERFIED THAT
APDL R2, R2,) WS WoAKks , BUT THE
5B o(ry), R TWO BRacH DELAY SLOT CAN
Pjt—[:g R I, ooT _ BE ARGUVED 1o BE PRoBLETATIC
ADDE R3, R3] o] |

[coP -
END OF SECTION 2 (4 questions, 9/25 so-far)
d

SECTION 3: Loop Transformations With FP Code (3 questions)

The FPUs are fully pipelined and bypassed. In case of write contention (one write per clock cycle) the earliest
instruction has priority and stalls the contending instruction(s). Assume the following data:

Instruction producing result Instruction using result Latency in clock cycles
Load double any FPU operation 1
completion of any FPU operations Store Double 0
" FP ADD FPU operation 3
FP MULT FPU operation 4
oelays
LOOP: LD F2, O(R1l) _ A[I] = A[I] * c

MULTD F2, F2, FO

SD F2, O(R1)*

LD F4, O0(R2) B[I]
ADDD F2, F2, F4

SD F2, 0(R2)" =

(A[I] + B[I])

ADDI R1, R1l, 8 INTEGER
ADDI R2, R2, 8 INDEX AND
ADDI R5, R5, -1 LOOP

BNEZ R5, LooPp A TOTAL CcoNTROL
* Schedule this loop taking advantage of software pipelining to minimize stalls, but use no other transformation.
For conciseness, ignore the init and cleanup code. Assume that, due to prediction, there is no branch delay.
UsE SP ¥ROF PREVIOUS - SP F2, - ¥(R2)
TTERANCN AND INTEGER D2, %CR__]\ 4
CopE TO FilL DELAYS, nueb P2, ve, RO
RPDL Rl RI, &

ADSENCE oF RENATHV - ApPDT A PEWmAYS
. . N » PPT R2, R?,
Lms THE oPTlony . ADPT RS, €5, ~) LEFT .
OTHER PossiBLE SoruTlon QTARTS LiKE: LD F4/ «-E’(’R'Zj
e S0 Rz g (R)
tg E__ ADPD 2 w2, Fy4
, “ Bres R, LooP
I | —
* Unroll this loop twice (that is, one interation for 1 and 1+1), and schedule it to minimize stalls.
FIRT UNROLL AND RENATTE THEN STHEDULE
LD F2, o(R() > F2, olR)
HuaD F2, F2, Fo LD ¥3, g(ri)
-)0 ¥2, 0(r2) Yoad ¥2, F2, Fo
)V ilo F4, 0(r2) Wb £y, Fg, Fo
APDD 6, F4, F2 LD Fu, o(R2)
* 9D F6, ©(RY) /reee f2 D> Flo, 2(R2)
LD g, B(RY WE Bow HAVE e 8o, R, |
im eg, Fg, FO PARALLEL CopE f*Dll?D Y6, F2, 4 J uip's pone
T4 { D F8, B(R) S0 WE CAN . 'Tzf F‘é’,_‘i:JO ASIESTE AP
LD Fio, g(rR2) . OVERLAD TWO SP FZ ,0(RY) /j soRe e ’s

sp €<, 8(Rv)

AD F2, F2, Fio TERATIONS M
p)) (> Sp V6, 0(R2) /) GTORE. prpops

- Sp FJZ/ 3(!22) - =)
AT RI, R), I Lote, oF OTER E{;;I r’éz ?;(IRZ ".
AL Rz, R2 g SRTovs For A AT Ry ;‘f’ " Powrers
APEE RS, Rs, -2 Geod <cuedue | | Ry e /
PYEZ [Leoop BE2 RS, Loo P/ wo DELAY

-+ Consider computing the dot product of vectors stored in two arrays as in:

Loop

LD F2, O(R1)

LD F4, 0(R2)
MULTD F2, F2, F4
ADDD FO, FO,F2
ADDI R1, R1, 8
ADDI R2, R2, 8
ADDI R3, R3, -1
BNEZ R3, Loop

// A[I]

// B[I]

// A[I] * B[I]

// P += A[I] * B[I]
/T =1I+1

* Schedule it for a VLWI processor that has the following structure (use the same latencies).

Memory Ref 1 | Memory Ref. 2 FPOp 1 FP Op 2 . Integer Op/branch
4p ¥2,0(R) | LD (¥4 ,0(R2) |
| J_
o — L APDE._ R1, R, 8
- Hoap F262,F - _ADRT R2, @28
. i . _ApPL A3 R3 -]
R | _ _ _— - -
|
- ._li. —_—— —_—— ——— e —— —— - -
. I ADD Fo,FO,F2. ' PWE2 R3leop
COMENT © AS EVDENCED BY The EXAIPE VWL PROCESSorS PERRIIT

PooR LY

WITHOUT

Heavy Cope

TRANS Fo RYIATION

END OF SECTION 3 (3 questions, 12/25 so-far)

SECTION 4:Tomasulo’s Algorithm (4 questions)

Consider the pipeline below. The integer unit can be controlled to carry out any type of integer instructions. It has
one FP ADD/SUB unit and one MULT/DIV unit. The load and store buffers have four entries each. The
reservation stations have three entries.

From Memory

v

From Instruction Fetch Unit

v

v

Enteger Regs

fnteger Unit

| |_FP MuLT/DIV | [FP ADD/SUB |

Common Data Bus

nd _FP _RBeas
1oac Inst. =
Burters Operation Bus Quene v
. ‘.‘-““““\\.‘-\\"\\““\\\\\ St
N - A |_Buffers |
\ — I \ I :
‘ ‘ Y
VYV V'Y VY N 4 }
Reservation
Stations To Memory

Assume that the latencies are O for all integer operations, 1 for loads, 4 for the FP add/sub’s, 6 for the
multiplication and 12 for the divides, regardless of the instruction using the result. All units are fully pipelined.
The Common Data Bus is written at the end of the last clock cycle of an operation. An operation that depends on
the written value starts at the next clock cycle. The Common Data Bus can support multiple data transfers. Assume
that a new instruction is fetched at each clock cycle and is issued at the next clock cycle if there is free entry in the
reservations or in the buffers.

* By inspection of the code sequences A and B (watch for the suBD) and by completing the timing tables
determine the case in which the second sp completes first and state why, assuming that all the reservations

stations and the store buffers are initially free.

Fetch Code A | Issue'Exec |Write CDB l_?ctch.Codg_B-__ - Issue|Exec Write CDB
CCl LD ___F2. O(R1) cCc2 3-4 |cc4 CCl LD F2. O0(R1) | CC2 |3-4 cc4 B
CC2 LD _ F4. O(R2) ,CC3 4-5 _|cC5 | |cC2 LD _ F4. O(R2) |[CC3 |4-5 CC5
CC3 DIVD F6. F2. F4 CC4 6-18 |CCl8 | |cC3 DIVD F6. F2. F4|cc4 |6-18 ccl8
cc4 sp O(R1)., F6 . ccs /T | | |cca [sD 0(R1). F6 | ccs |/q
CC5 SUBD F6. F2. F6 (if [4-722 |Ce?D CC5 SUBD F2. F2. F6| ((f
CC6 ADDD F4. F4 F4 _Cc(F-17 |ceiz CC6 ADDD F4. F4 F4 | cC/
CC7__MULTD F2. F4. F6,CC2 |24-30|cc3e CC7 MULTD F2. F4. F6| (L
Ccc8 sD 0(R2). F2 'ctcq |3 cCc8 'SD 0(R2Y. F2 | (Cq
. A e s . . DIVD ~
COmmem Df)l‘l'}“ D,:_r: =i [F\r N 1F> ;’.\{3: _‘—_-\._(_” I COml'l'lCI'ltS f‘ﬂf‘\li) § N ‘ ->)
" i . Y, D -~
THAT DIVD —> SURD — TWETD So I (AP
- - — Y T1L— "~ =l v N i .) N o o r
ALL THE [ATENcieS ADPD uP THE : <o There 1S TRz MR RELE LISTT y
CorlPLETE PATA Flow DIAGRAM S | HE MU CaAnv START 5 C¢ EARLIER
| t’: A cc ISSUE + G (¢ LATERCY)
Lo LD2 : LD Lp2
) /i e 1R s\
/ N g fl 1| ,H Ik-() l \A ~ ¥/ s
(<) % DWVD |ExECS &)
y vy SO0 | PRUPNG- PVD r /
. f,,. " A N o — . . |
e T PD | EVECS /
—) +) hl | =X) . V. - /
(\-/\ p TOET | QEROING- AOY, = \;P
/j' I |_“I'-'/f’ I K._.l"
v v

Use "Mem[Reg[R1]]" to denote, for example, the value fetched by the first load, "Reg[R1]" to denote the value
held in register R1, and #8 to denote the value 8.

* Indicate in the tables the state of the reservation stations and of the registers at clock cycle 8 for code B only:

Name Busy |Op. Vj VK Qj Qk
MULTDIV-L | /| DiyD rert [ese[RT] [t [0e6 (RET] — -
MULTDIV-2 | " | [uedd — AAIR -2 ri/oi/-)
MULT/DIV-3 a ! _
ADD/SUB-1 v | 308D vertReclrI]] — | ~ HULT/Div — |
ADDSUB2 | ¢~ | ADDPP Ve pes (R verjEC(RA] — | -
ADD/SUB-3 | }
INT-1 | i |
INT-2 g ! -.
INT-3 |] T

Field | FO_ F2 P4 | F6 FR_ RL_ | R2 R} = R4

Qi _hoojf{,‘?; 2 pofsR2 | HuT/biy-]

* What is the estimated throughput measured in number of floating point instructions per second when the
architecture on the previous page repeatedly executes the code below (a loop unrolled a large number of
times)? Assume same behavior, perfect cache performance, and absence of structural hazards such as shortage
of reservation station entries.

NOTE: TF HE AMT's WERE BETWEEN) WE

apls \ Il < THE WE Cope WOULD
LD F2, O(R1) DS ANO P's ;) THEN

| - .
2 LD F4, O0(R2) BE PARAUEL AND HENGE LITUTED B5Y
% SUBD F6, F2, F4 STRULTURAL Lir(TRIs SUCH AS FETCH RATE
4 ADDD F8, F2 F6 HOWEVER , BAcH MEW CALCOLATON PEPEVPS
4 ADDI R1, R1, 8 e _ e e
4 MULTD F2, F4, F4 00 HE PRBUVS OVE S22 WE TET
ADDI R2, R2, 8 Fetivtate. THE TOTAL LATENCY.
SD 0(Rl), F8 _
SD 0(R2), F2
LD F2, ... \\ again and again

LD ...

THERE ARE. TWO fARMUEC (AL ULATION L HULTD ANP SUBP > APPD y
RO TAUE ABOVT /4 ciecu CYCLES D lrtPLETE BEFORE
A NEW SERUENCGE. CAN START, 50 WE HAVE ABOL T

2 FLOP’} PER |G Ccc. @R A FiLop PER 4.6 Cc-
Cace ce o MMe Lok Cycre Tin€
WRovsupuT= # R = A

44 CcCTivE

END OF SECTION 4 (4 questions, 16/25 so-far)

R

SECTION 5: Branch predictors (2 questions)

* A machine has a 2-bit branch predictor. Estimate how many correct and how many incorrect predictions are
made while executing the code below per outer iteration, assuming a 100% hit rate and no clashes in the
predictor table (Giving just a number will earn you no marks, do not mind the nonsensical computation).

for(;;) { /* begin for ever */
i=20;
do {
++i;
j=0;
do {
++3;
if (j == 10 || j == 20) /* call it Bl */
A[i] = 3;
} while (j < 100); /* call it B2 */
} while (i < 4); /* call it B3 */
} /* end for ever */
Bl BEHavior T---TNT.__ INT.._TT.. 98 C(orRECT 2 WCORREC_T‘? ,
____""“u-—--—'—“-a.______ s~ e % (_f
o0 s olPECT 1 ;»JC:}AHECT"
B2 BewAvioR T __ . ____ _ __NT... 9q CoRRECT /
———
eo) CORNECT
B3y RedAVIOR TTTN T, 2 coprpect 1 (N CORS
h e S
L
TOTAL = 791 (ORRECT PREDICTIenS AND P HISPREPICTIONS

* Assume now that a machine as a (1,1) correlating predictor. What is its performance when executing the code
below? Report performance in the same manner as above (same remarks).

for(;;) { /* begin for ever */
i=0;
while (i < 100) { /* call it Bl */
if (i % 2 == 0) /* call it B2 */
A[i] = 0;
else
A[i] = 1;
++1;
}
} /* end for ever */
BACH pRRavcxr HAS A PAR oF A BT PREPICTORS, CALL THEM to/P|.
P, 1e USED WHEN THE LAST BRANGH WAS TAUEL Anp Pl wiEn IT WAS NoT.
WORK A FeEw TTERATNONG TO TEST AL CASES -
Cerflen:

Bl B2 Bl B2 B 8z B, B2 B AlwAYs C(oRReciLy
OUTCornE: N N N T NN N T - MEPICTED ARD R2
PrEPITOR: N/N NAL M4 NA NN NAONN WA ALUAYS YIISPREDILTED.
~ P o . , . .) THE S NO EbﬂﬁELqﬂgm/
VEw SATE ¢ NN N4 VA N NNONN NA N - SO PERFORIIS WO RETER

“‘“‘T{J:.,: H@quagiﬁum AN | e PRepicrop

END OF SECTION 5 (2 questions, 18/25 so-far)

Q

SECTION 6: Loop level parallelism (3 questions)

* Consider this loop and list all the dependencies: true data dependencies and name dependencies; and
whether they are loop carried.

for (i = 0; i < 100; ++1i) {

c[(i] = a[i] + c[i]; /* S1 */
b[i] = c[i + 1] + a[i]; /* 82 */
cl{i + 1] = a[i + 1] + a[i + 1]; /* S3 */
afi + 1] = b[i + 1] + b[i + 1] /* sS4 x/
} ~ y
PATA DEDENDENCGES ANTI- DE PRRODENCE S OUTRIT-DEPEN PENCIES
2 DePenps on S (Le) 32 DEPEMDS ON 3*:‘; S DeEPEMDS on S/ (L0)
| | S nwooq
<Y i ol Q’(' (&C) g2 i S (ZCJ
g2 w84 (Le) sq M 32 o

LC: LooP CARRIED

* Use software renaming and/or other transformation(s) so that it becomes parallel:

& = o~ i _) . LEAcT EFFORT SOLTon *
RER\:};EnE ﬁ%mﬁé‘é’fﬁ? koY= T[o]+ 2):”1 NOTI(ED —HAT THE OMY&EM
INVOLVED i NANE DPPEUDENCES, Y[el = c[q-r (e | négnsw%topgpsg;m?fe&&
‘EHE-N START LooP AT S For(tL 1) LKieo -++L)£ doer ©. -
l;g;igf:z ggrﬁﬁjgpbggﬁbw z[l= OLZ;] +afil; ! cfo1= afo7+C[oT

. . = T[J= b7+ by, | T4F
X[L—]:'T' L'}TZ . - / | bfel= X]+q[0‘(
\/[L]‘-: cél_}f‘_g"’[‘-]’] XLL'J: l[i:_z’*'ZJ:[J/- ‘. WC{:‘E’ Ldf‘:’c}‘rftijg

L+ 2 Yil‘l: (.E{,'ﬂj;. T[‘,}; [Cfel= aycl+a 5l

2l = Ll[l‘-uj +q [m‘_& % ' l}‘ - L ‘r' ‘
Tlied = b e+ b [eai] : = | aLd=bL7+b[]

HoED L * 2fwe]= afligls alidd; | e§ey e a1t cfiT

Tliool = blwel+ bi}oo;[/; .' blel = x Fi+J+ qﬁj\
A

| Clicod = a[ieoq+ A ool
aJiwol= b [ico7 + bjiedl:

* Can this loop be transformed to become parallel. Why or why not?:

for (i = 1; i < 100; ++i) {
afi] = a[i - 1] + a[i]; /* 81 */
bli] = af[i] + a[i + 1]; /* 82 */
}

Sz /5 OATA PEPENpENT oON S/, So THEY CMNoT AU W PARALLEL. .
3l IS LooP~ CARRIED PEPENPENT oN S, So OWE ITERATION HMUST
TERTINATE. BEFORE ANOTYER OVE CaJ START . WO PARALLELISIT,

END OF SECTION 6 (3 questions, 21/25 question so-far)
N

SECTION 7: Memory Hierarchy (4 questions)

32

Consider the organization of the Cheap’O computer memory hierarchy. Notice that the CPU produces 4§ bit
virtual addresses and the memory is byte addressed. A “load byte” instruction requests the byte stored at address
“0A1B 2C08”.From the content of the TLB, and of the cache, determine the value of the byte that is returned.

* As the request works its way through the hierarchy, specify the values of

1.

Set Associative Cache (4 sets of 4 blocks)

“Cheap’O Computer” micro-architecture, memory hierarchy, Version 2, Rev. 5

1

Data Address OAl1B 2C08
. Page frame # Of 1B2C
. Page Offset 05 (PhYS ADPR. Fog)
. Cache Tag EFO
. Cache Index : (1o) 2
. Cache Block Offset (CL), = O
. Byte returned CcC (,OA?-,:;-.;:,?;;;I.‘-,.-- S BE NINBRER w - |/
cc Db Ee FE)
<32>
Page Frame # Page Offset DataAddr. CPU Dataln
< 24> <8>
YV RW Tag Phys. Frame #
111|1] 987654 yi
Cache Address Format
1111 FABBAF 89 Translation
Lookasid Black
oKasiae
P[] omsac i Boffer Tog Index | Offset
111 1] oacss 01 <12> <2> <2>
<24> <8>
V Tag Data V Tag Data V Tag Data YV Tag Data
0 1| m2 [oonzss| |1 | OF | ccooeere|| 1] 89 | saoomss | |1] 456 | aasseers
St 10| aas assseerr| |1 | F0 | asoomse || 1| B | oomizzss |1] 789 | ccooeere
“et2 |1 | 678 |seoomss| 1| 234 |aassesr7|[1] B0 | coomeerr [1] e | oomizzs
Set3 10| oms [ccooeere| [1] 567 [oonzasa|| 1| 123 | adssesrz | [1 | oer | ss9onass

In robotics and graphics, a common case is the product of a vector by a 4x4 matrix that can be coded as follows.
Whether this is coded inline as shown, or as nested loops, has no bearing on the answer since, in this question, we
are interested in cache operation. (p, a and T are floats).

p[O0] = T[O][0]) * a[0] + T(O]J[(1] * a[l]+ T[O][2] * a[2] + T[O][3] * a[3];
p(l] = T(1]1(0] * a[0] + T{1l](1] * a[l]+ T[1][2] * a[2] + T[1][3] * a(3];
p[2] = T[2][0] * a[0] + T(2](1] * a[l]+ T[2][2] * a[2] + T[2][3] * a[3];
P[3] = T[3][0] * a[0] + T[3][(1] * a[l]+ T[3][2] * a[2] + T[3][3] * a[3];

The compiler arranges the elements of the matrix row-wise such that T(ij[3j] is contiguous to T[i][j+1].
Suppose also that the cache blocks are just four floats long and that data is properly aligned. Assume that:

1. there is no conflict replacements,

2. the cache is “write through”,

3. it is “no-allocate”,

4. it is blocking,

* The hit-time is 1 CC and the penalty (b * 4), where b is the block size in floats. The cache is just big enough
to hold 32 floats. Would it better to have 8 blocks of 4 floats, or 4 blocks of 8 floats? Justify your answer
quantitatively. - ')

CASE §x¢ : WHEN Tlolfe3 (2 ZoANED , A ROW IS LOADED (/N oNE Block
wHeN efo7 IS LOADED, VECTOR a 156 ZOADED /N A SECown RZocCL
THEN) T[I(0] , T [20[07], avo T[2T(5] ALLOHE % IoRE BLOCkS .
TTAL 22 ACCESSES w5 PENALTIES: 30+ Bxl6= 1/2 c¢ TO PERFORM ACCcESS TO HMULTIPLY
Cast 4xy @ WHEN T[] (s LOAPED , TWO Rows ARE LOANDED /N onE BLock
WHEN a (0 18 LOoADED, VECTOR a IS (LOADED /N A BlLocli
THEN T (1 (o7 ALLOCATE ONE TRE Blocy FOR TWo RowS
TOIAC 22 ACCESSES With 3 Peuacmes 32+3x32 = /2§cc To PERRR SANE WiINBE OF
AECESSES | CLONCLUCI/ION |, STALL RBrocis BETER .

* For the case of 8 blocks of 4 floats, which of these two improvements would be preferable: reducing the

penalty to 6 CC by adding a non-blocking feature, or making the cache “write allocate™?

FIRST BN AaNcEREMT - 2 + 52 b= 62 cc FoR REAPS

SECOND BN HANCEMENT CAUSES pm EXTRA PENALTY wieN Plod is
WRITEN 3y S@ COunTue THE WRITES 3¢+ 6xif = 32 cc

TT 1S ONLuEBeYy THAT 4 WRITES ARE WORTH 70 €C.
THS (S DUE TO THE FAar THAT THERE ARE T7ANY ORE
READS TN WARITES .

* Answer these yes/no questions

> “A reorder buffer” is a method to reduce the miss penalty in caches [yes/no]: NO

NO (Blowe AT :
Voo CAGIE BLOLK Size)
) _) =S (BUT APPLIES TO

~ “Protection” is a software technique to speed up recursive code [yes/no]: VT AS wiELL)

@ “Blocking in matrix computations” is used to minimize the number of page faults [yes/no]:

© A write buffer” makes it possible to pipeline block replacement in caches [yes/no]: pJO

END OF SECTION 7 (4 questions) and END OF EXAM (and end of the 25 questions)

17

