Last Name: {‘:—"Aﬂ\ LE’ ;

First Name:

Student ID: Signature:

Course 304-425B -- Computer Organization and Architecture
Final examination

December 21, 2001, 14:00 - 1700

Examiner: Prof. V. Hayward

Associate Examiner: Prof. J. Ferrie il

INSTRUCTIONS

o This is a closed book examination. Calculators and one or two sheets of notes are allowed.
o Explain every result concisely when asked. Marks will be given for clear, concise solutions.
O State any assumption required for an answer if it is not clear in the text of the question.

0 This exam has 14 pages including this one. It has 7 sections for 25 questions. Each question is indicated by a
bullet sign (*) and carries four (4) marks. The marks add up to 100.

O Please sign this paper at the top of the page, write your name and student number legibly there.

o Put your answers in the space provided and keep all the pages together.

PLEASE NOTE CAREFULLY

o Make sure that the signed paper in its entirety is handed in (along with all signed exam books} at the end of the
examination.

o Make sure that the answers are put in the space provided, answers in any other location will not be
marked.

o You have approximately 180 minutes to complete the exam.

PROBLEMS
SECTION 1: Performance (5 questions)

» Consider adding an enhancement to a machine that would divide the number of load/store instructions by two.
All other instructions would be left unchanged. However, the clock cycle of the machine would be 7% longer
and the average CPI for all instructions would change from 1.1 clock cycle, before enhancement, to 1.2 after
enhancement. What is the minimum percentage of load/stores in the instruction mix produced by an
application would be required to make the enhancement worth implementing, assuming it is free of cost?

Tte wgw L TIME oD = Ic 44 cc £ Tc /2 /ffh;i) 0T cc

A4 < 42 {-{?:-:-:5)’3{57 < :Ei{”;; /’f" ,ﬁjff.g?)
> o> 0.296

» Consider now a five stage pipeline which causes 20% of instructions to stall for one cycle on average. Consider
the memory to be perfect, that is, there is no memory stalls. Assuming that the clock rate is four times faster
than a non-pipelined version of the same CPU, what is the effective improvement in performance?

y AT
CNE STAGE TiE = T C¢rb ¢ y N
e = Tco <€ "14:, & 49 S —— = /{7
a8 4 L Ly
) 4 -~
7 L
5 INSTRUC TIomss CLaoll CY¥eLE THE
OVERLAP REDUCED

» Consider a single pipeline machine like DLX. For a given benchmark suite, measurements show that 10% of
the instructions are unconditional jumps. A first enhancement is proposed in the form of a “jump target
buffer” and a second in the form of “jump folding”. Remember that the jump target address is calculated in
the ID stage and the buffer updated in the EX stage. For these enhancement, the hit rate is 90%. The average
CPI of the base machine is estimated to be 1.5 for all other instructions. All other aspects of the machine are
assumed to be unchanged. Compute the expected speed-up due to the implementation of:

I"" - C-':l"'- 'D.I'!. - X 1 / ...: 0:5-_;..—
© a “jump target buffer” NofimaL - Dok L ob= 0 %2 + 09 % 152455

c?T wew = O (1&,‘1 x 4 + 01 x 2) + 09 + */,fh
= 0l + 435 = A4 44

< “jump folding”
Crr_pEw = O (D + 0.1 kz.)—f-{?'r‘? ¥ 1.5

- 002 + 1.35= 437

» Consider now a machine with a virtual memory and two levels of cache. The performance figures are:
L1: the hit time is 1 cc and the miss rate is 5%
L2: the hit time is 10 ¢c and the miss rate is 2%
MM: the hit time for a block is 40 cc, the miss rate 0.0001%, and miss penalty is 10,000,000 cc

Compute the global average memory access time (AMAT)
AVWAT = HT; + TIR; TP P = ATy,
AT ANY LEVEL Flise. FEnhiTY [DETERTINE BY
ACCESS To HIGHER AFVEL
: ~ 7y
AAT= 4+ 0.05 (10 + 602 (40 + o~ 7))
-4+ 0.05 (10 + 002 50)
iy
= 44+ 005 H = A4.955

» We focus now on the performance of a DLX style machine with one level of cache that has a 1 cc hit time, a
5% miss rate, and a miss penalty of 16 cc. We improve this cache so it becomes non blocking and is such that
the CPU can restart as soon as the first word arrives from the MM 4 cc after request. This improvement
concerns the instruction fetches only. The data cache remains blocking and 30% of all instructions are loads.
The data cache is “write through” but has a write buffer that eliminates data stalls for stores. What is the speed

up introduced by the non blocking feature?

CTF, . = CPI_BASE 4 FEeH-Miss-Rae » PENALTY 4 EREQ-L/S « PTAMSS-RA® ¥ PEIRLTY

]

BlotiiNgG CASE
cPr = A0 ¢t 005 16 + O3 005 (£ = 2.0%

NON BLOCA T VG- CASE
CPTpe = AOE 0.05 L+ 05 o.05 M= A44

SU-= 25’5} = //{42
4. 44

END OF SECTION 1 (5 questions)

SECTION 2: Integer Pipelining (4 questions)

Timing analysis reveals that the memory cycles in the standard DLX pipeline are the limiting factor for clock cycle
time improvement. The machine is super-pipelined. Complete instruction fetches takes two stages IA and IE. In
the first stage, the memory addressed is specified, in the second, the instruction is read out. The same technique is
applied to the MEM stage, now split into a MA and a MB stage. The new design is fully pipelined but has This is
symbolically represented by indicating new pipe registers.

IA/IB IB/ID & ID/EX EX/MA MA/MB MB/WB
—
—™ OutAM
—Feagisters] ddr
I u Datd
In iR pata lout "
In X
SUPERPIPELINED DLX
2a+l-c if 2a+120

* We need a sequence of pipelined DLX code ta compute:
q pipe P {Eb +1-2¢ otherwise

Upon entry, a is stored in register R1 and the result is left in register R1, b is in R2, ¢ is in R3. The pipeline
handles all structural and data hazards. The numbers processed are expected to be equally likely to yield
one case or the other. Control hazards are handled via “delayed branch with canceling”. Here is a semi-
optimized sequence:

ADD R4, R1l, R1 2o
ADDI R4, R4, 1 z2a+!
SGE R5, R4, RO <o !

BENEZ R5, SKIP

ADD R3, R3, R3 2

ADD R4, RZ, RZ Z b

ADDI R4, R4, 1 2 b
SXIP SUB R1, R4, B3

Use speculative execution to write an optimized sequence. The machine does not have hardware speculative
features such as boosted instructions or poison bits. (Hint: do not try to manipulate the expressions
compute them as given).

PELAY SipT HAS Two PLACES ANCTHER PossiBILITY
HeVE ool PEPEMOENT SVEY IO
BEFOAE BRANCH T SPECULATIVELY apD G, RILR|
CALOULATE 2 b | oK EXATPLE | A Ré,RG, 1 Zar|
ADD R4, R, RI S6E £5, RG,RO 7
ADPT ®L, R, | 2a | VBRI, Rk, RZ 2a+i-C
SCE g5, Ré, RO BNEZ RE, SiiP
ADD RE. R2,R2 Rewng 2b ADD R3. RIRD zc
BUEZ RA, SiCLP APD R4 RZ,RZ 2b
ADD RS R3 REB 2c¢ o vl o
LT APRT R{,,R,#,l CPhel-2¢
APDE Ré, RE, | Zh+i SUB RL.RG, RZ
SKkiP SuBs RL, R4, RY ' »
Saf e feDE

* Rewrite the untransformed sequence above, assuming now that the pipeline has no bypassing and no canceling
hardware at all, inserting NOPs (no operation instructions) to ensure correct execution.

3 CRGES WOPS
pLU = ALU TA TR TD EX WA MR Wk '4}59‘5‘ Re RI, Rl
I — % L 4 x TA I‘j‘-_&, =D APPT Rl[{ fﬁ'{” |
4 >
SEE R5, R4, RO
ALy - BR TR TR TP Ex WA IB WD ‘ }ENEZ RS akitP
x X X x TA TB :"':D_ 2N !
TEST APD R R3, R3
) R2 , R2
BE PELAY TA IB T - - - G?Ei RY, g
x x Ta TR RN T r4, RG, 4

V% Rl R4, R3

* We now consider the CPU to be fully bypassed and to handle branches with pure delayed branch. Write an
optimized sequence that executes correctly.

NEUNAL SEQUENCE Lok 0 WOVE IV ST ANOTHER TossiBiL ity
BRawcd PELAYETD FoOH BEFRE BRMCH - ﬁ
BRING [NsTRUCTION RROYL nop Ré, R, R
P’L'DD R';.’R\;Rl EALL THROUGH ‘.’—‘:EQUE{\.‘ICE ﬁpi}I Rill!ﬁ:#l i
sce R R4 RO HusT COREATE @ TEMP! 9CE RS, R4, RO
Buez RS, Seap apD RE, RILR) ﬂxf R5, fémg%
Map AP EIJ;R‘:I* 0 1 SUB Rl) 'I'rll'.l q
No? S6E RS, Ry , RO ARD 3, ﬁ‘f‘:ﬂ;:s
APD R3, R} R} 2¢ BuE2 RS, 4P APP Rk, R2,R2
fop RG, R2, Rz zb PP RE, RZ,RL Zb TENp ApPT R¢, R4, |
APDT R4, R%, 1 2bt *ﬁgg 23 R3, R WD Rl R, R3
ape. SuB Ry, R4, R ADPE Rl , RE, | S OTHER COpE

oy R RG, RS

* For the pipeline diagramed above with full bypassing, including around the Ma MB stages, above what is the
load latency for these two cases?

o

LW R1l, 0(R2) £x HA TR |
ADD R1, R1, R1 y x EX 9 ovelE
o

LW Rl, B(R2) Ex HA HB

SW R1l, D(R3} ¥ Ex WA MR | CYCLE

END OF SECTION 2 (4 questions, 9 so-far)
5

SECTION 3: Loop Transformations With FP Code (3 questions)

The problem is evaluate the benefit of loop unrolling. The FPUs are fully pipelined and bypassed. However the FP
division is not pipelined. In case of write contention (one write per clock cycle) the earliest instruction has priority

and stalls the contending instruction(s). Ignore the branch delay and assume the following data:

Instruction producing result Instruction using result Latency in clock cycles
Load double any FPU operation 1
completion of any FPU operations Store Double a
FP ADD FPL cparation 3
FP MULT FPLU operation 4
FP DIV FPU operation 15
LooE: LD F2, 0O(R1) AlI] = A[I] * ¢

MULTD Fd4, F2, FO

5D F4, 0(R1)

LD F4d, 0(R2) B[I] = (B[I] + BII1) / <

ADDD F§, F4, Fd

DIVD F&, F&, FO

s F&, 0(R2)

ADDI R1, RL1, 8 INTEGER

ADDI R2, RZ, B INDEX AND

ADDI RS, RS, -1 LOOP

BNEZ EH3, LCop CONTROL

* Unroll the loop twice, and use other transformation to reduce stalls. For conciseness, ignore the integer code
and schedule the FP instruction as if it did not exist.

CRSEMATION ST 2

INPE PEMPENT

CRLCULATIORS

IE 2 pivD

PIVe WOT PIPRUNED , PEST wWE Can HOPE 19 ﬁg ce,
RACIC deoP GCRATEGY . STPRT WiTH B e -
* C ﬁ:ua- Isilepma ‘“;Ef.s:-rm LOOP CAY SOFTWARE PIWELINE e
ﬁf‘* Al G e StmiLe . ioTe OF TuaT VERSION ©f EVEN CRIGINAL ONE
wrp Al = € FocsipitiMES |, BT HE PIVPS . _
g HJ{:“ =1 CAwnoT OVERLAY. D T, 0(RL) Birl
ap AL T > Fh,dR2) BT Lp Flo, 8(R? rrf
L &[] LD Flo, 8(R2) Blced Ao F6, F4,F4
i . . AP FE, £, F AP0 El6, Fio, Flo
o) A2 BISHRI T Aveo g, g, Fio Lo 2, 0(R) AGT
A . LD F2, ocri) ATE D FF‘?)I ;_-?::’m .] AT
pwo () /¢ | LD Fi2, BCR1) A[Te > Fiz, 3 .
i5 V o : SP Ry, -l (@) Blir-73
‘ | Ve Ha, ¥, FO VD Fi4 , FE, FO
sp BIF WD Fi, B2, Fo oy B TO
2l ce _| hume e, g2, Fo Noan ¥4, F2 Fo
IN OTHER WORPS, J ::’E Fﬁw OfRT) SPw6, o(RY)
7 FETCHES AND oo g‘fg«‘ Efﬁé} SPOFE, R _
A STALS i5 \L <p F:&fcf?éz%) =P F20, -7 (R2) B {z-1
VL eP Po.F(R2) WD rro, FIE, FO

* Calculate the number of clock cycles to perform the basic computation, comparing the untransformed loop with

the unrolled one:

LT CYCLES 230 CVES
I:,lnI VE © F. TAWE “E\R T fﬂ I«FE’
A FEW

* Suppose now that the machine is a super-scalar, dual issue machine with two pipelines: one to process integer,
branches and all load/stores instructions, and the other to process all the FP instructions.

© Use the chart below to show a schedule that maximizes throughput of one single loop accounting for
integer code. Assuming that the branch is folded and that there is a hit. You may use more registers if

needed.

Integer Instruction

|FP_Instruction

ool ZooP A0 F‘?_q' G ER2) |

ce2 £p F2, 0 RI) | -
cc3 __APPT R, R, R | AP FE, FZF®

ect _ ADPT R, 2. % D> w4, F2, O)
ces . fAppE A5 R~ BiVD F£ =, Fo

foa: £D %, - (A1)

ooy B sSD i%: ——‘.RZ’ [R2)

ccs BNE2 R& Loep
oo

ce1n S F6, ~2CRY) A FL L FFFR

coil SD Fh, R (RI) MuiD F4 52, F0

cc12 LD FR, 0 (R2) AT N 7 = o

cC13 LD F2 , o (Ri) .
ccle APNT EF‘; R —| —

cols RbRT RI; Ri, L —

ocls APRT {2, R2, | S

cc17 BUEL R<. SiiP —
Ccc18 - _—

cole B .
cc20 WiH SoFT PiPELNIN G) -

ceal)

eczz - _

co23 B

cc2a o

ce2s .

26 o ~ -
ce27 .

a8 0 N B
ce3o

< Explain in a few words the transformation(s) that you have used:

AVOID
45

e RENGTED F4 To F7F 7o
o PERFORNE DivD AS @ARLY
Allpw Fol TIORE DUERLAP

ooT AT f}Ef}gﬂJ ﬁEﬂr’ f-}a’

Ppss/ B, To

END OF SECTION 3 (3 questions, 12 so-far)

7

fecopms; ™AT

| praace EECTOL

R TRATICR LIy
PELAYS EXECS

SECTION 4:Tomasulo’s Algorithm (4 questions)

Consider the pipeline below, The integer unit can be controlled to carry out any type of integer instructions. It has
one FP ADD/SUB unit and one MULT/DIV unit, The load and store buffers have four entries each. The
reservation stations have three entries.

From Memory

Loacd

i Ffmre

R R R R R R R W, W W,

Cperation Bus

From Instriction Fetch Unitc

Y

Inst.,
Tueue

1"‘.1.11“‘-;\“\.“\

v

[nteger Regs
pnd FP Regs

Store

B f oo

L] o
L1 bl ;
¥ v
N N \
¥ ¥
. ¥ Y VY Y Y Y Y
Reservation Ta Memory
Stations
£ m = TlHiF = R EAntatl =B _armiem 1

v

v

Cammon Data Bus

Assume that the latencies are 0 for all integer operations, 1 for loads, 4 for the FP add/sub’s, 6 for the
multiplication and 25 for the divides, regardless of the instruction using the result. All units are fully pipelined.
The Common Data Bus is written at the end of the last clock cycle of an operation. An operation that depends on
the written value starts at the next clock cycle. The Common Data bus cannot support multiple data transfers. In
case of contention for the bus, the instswedan the earliest issued instruction has priority.

Consider now the following sequence of code assuming that a new instruction is fetched at each clock cycle and
issued at the next clock cycle if there is free entry in the reservations or in the buffers. A table to indicate timing is

partially filled.

* Complete this table first:

fetched Instr. | Operands [ssue 'Exec Write
cCl LD |F2., 0(R1] cc2 _lgca-4 [adnd!
coz LD |F4, 4(R1] [aelk] _locd-s oS
cc3 MULTD |F2, F2. F4 |CC4 _ lcce-12 cciz _
CC4 DIVD |F4. F2. F6 |CC5 e - e B e R
€C5 SUBD |F6. F4. F2 |CCE a3q. 4 e 43 0
CCh _ADDD |F8, F2, F2 |C¢7 Weit -7 CCiT
cC7 ADDI |R1, R1, 8 |(r< G ccd
[lat:} SD |F4,8(R1) e d _cc 34 WEVER
I
o | _ - ——

AT Ccc 7 LOARS CEHPLETED ec HUuTD COMPETED
HusT> EYECUTES . PR BXEQUTFES
pive TaspeP, WaTNe ol “UJ“” ; _ SUBD TSEUED, WAITING-
QURD |eSuER, WAMNE FOR PIVP AND TUGD FOR DD

Ny 155 CWATING R TWETD ARDD ExECUTES
ApBRY ISsueP , WaHITING- ¥ AOTE (et CLETED

8

W CLVEP, Wi £

Use "Mem[Reg(R1]1" to denote, for example, the value fetched by the first load, "Reg [R11" to denote the value
held in register r1, and #23 to denote the value 8.

+ Indicate in the tables below the state of the reservation stations and of the registers during clock cycle 7.

Name Busy Op. Vj |Vk Qi |Qk
MULTDIV-L | v | e e lRee [Ru) ven[ree[Rila] '
MULTDIV-2 v DIYP ' Ret [FC1 LT e - |
MULT/DIV-3 : | | '
ADD/SUB-1 V| SBP ' HuiT/piv-2 HuT/eiv -
ADD/SUB-2 o/ ADDD | - e /ow- | HuT/eiv =1
ADD/SUB-3 |
INT-1 o
INT-2 .
INT-3 ! | |
Field "FO . F2 F4 | F6 | FB Rl | R2 | R3 R4
Qi Muir/ei -\ HuT/bw-2. &Dﬂ/ﬁua-}l i
« Indicate in the table below the state of the reservation stations and of the store buffers during clock cyele 14,
Name Busy Op. Vi Vk Qj Qk
MULT/DIV-1 - . _
MULTDIV-2 v PID fEefrel REe [P
MULT/DIV-3 ' . _
ADD/SUB-1 SUBD _ ~ RE6 [¥21 Tra/piv-7
ADD/SUB-2 ADDD | REefpr]. REG P21
ADD/SUB-3 L _
INT-1 _
INT-2
INT-3
Field N Store-1 Store-2 Store-3 Store-4
Qi Mo /Pl -2 !
Busy _ v
Address 24 REGLRL]

« Explain in 20 words or less the motivation and the function of a reorder buffer:
» YTAUES IT PosSiBlE Tp EXCUE INSTRUCTIONS ﬂfﬂiﬁTrthag
T.E. BEFORE A BRanch OUT o Is Hwown , HoLPmG RESUCTS
REfeRE wAmTING TREN- ,
a(rmfs’l‘ﬁuc.ﬂow Have AN ExTrRa "cerruT” f?f%?r'\

END OF SECTION 4 (4 questions, 16 so-far)
g

SECTION 5: Branch predictors (2 questions)

Consider this nested loop: for (i = 0; i < 100; ++i) - loo
for (3 = 0; 7 < 10; ++3)- foot
if (§ % 2 == 0)- f L0
if (1% 2 == 0)— T0C
aljl = 0;
el=ze
alil = 1;

* A machine has a 2-bit branch predictor. Estimate how many correct and how many incorrect predictions are
made while executing this code, assuming a 100% hit rate and no clashes in the predictor table (Hint: start with
the inner most code and work your answer step by step, giving just a number will earn you no marks).

& ; . HJQPQEPJE‘}E;@ JE&HHET PREPIe o
TRUER "TF" VISTED Boo TINEs Wil PATERN TTITT NNNKNN T.. . \

loo |l 400

FiReT IF VISTED foco TrES Wik PATERN TNTN - - - A oo =Y
INNER .1F_UR.', Visrep Jooo THES Exi TG Joe TES, {00 -’-;’gir:?
R e : 14
CUTER FoR WISITED /00 TINES BExiTe @NCE : | {
2éoo visms o £ WHICH © Tpq | 1899

HISPRE DicTiews, | CORREBCT
PREDLE TLoNS

Recall that a (1,2) predictor refers to a correlating predictor that implements correlation by choosing among two
different 2-bit predictors. We consider a certain sequence of code that causes three branches B1, B2, 83 to be
visited with the outcomes listed in the table (T taken, N not taken, hint, there is no obvious pattern). Each branch is
visited 4 times. Assume that prior entering the sequence, all the predictors are in the state that would result from a
series of taken branches and this applies to both predictors of each branch.

Branch | Bl I B2 | B3 l B2 81 I 83 | 81 ! B3 B2 | B3 Bl | m2
- .._.__—.___-...I... E— i__ : S i_._ _...__i i — - = S

fecz BRacy |Outeeme P I P !ET WY 2T W (AT ol g7
I RPN T i Tame oo T
TAKEN |Predictor 1| 570 pro | orTd | Pro | P | PTI |Guod | BT | STO) [prt | B0y pry

N oradice T, | PTO .| [Piey [Py | PTog | [PTOy | ey | PTRQ P

NOT TAREN |FEeAiemor 21910 [5rn B0 [pry Hlpri Pl pw¥ | P o ¥ | PTI oo #| o1 |80

* Work out the number of correct and incorrect predictions for each of the three branches. This can be done by
filling in the table above. There is no need to restate the details of 2-bits predictors but nevertheless indicate the
functions you assigned to Predictor 1 andto Predictor 2. To clarify your work, use the symbols
PTO, PT1, PNO, PN1 to refer to the states of a 2-bit predictor and specify concisely what they mean.

T
T« N £ RewT, £ wrong

o
< J)al

TF=F'S

END OF SECTION 35 (2 questions, 18 so-far)
10

SECTION 6: Loop level parallelism (3 questions)

Consider this loop:
for (i = 1; i < 100; ++1i) {
ali - 1] = e[i - 1] + n: f* 51 %/
b[i] = m + c[i]; /* 52 */
ali] = a[i] + b[il: /* 83 */

1

Rewrite the loop so it becomes parallel. Solve this problem in two different ways:

» First use software renaming, not changing the structure of the loop:
LOooP COPRIEDR « OUTIVT BPREPEMDERN(CY 4 TVERWRTES =3, ywaA aldd L -
LOEP CARRED ANTI- DEPENPEA (Y S3 MU READ EEfoRE S WRITEZ

Howevea o T ALWAYS WRTTTEN , NEveR REsp , (AL 1T T (-0

ff"-zf-—) {

Tl—T = i en EACH TTERATION. §
Ble7= w4+ cfcl; INPEPENDENT FERcH
Afed= afil+ bk (1, THE PREVIDUL ONE

s

» Second transform the loop without renaming the variables so it becomes parallel:
onLyY ONE DaTA DEPENPENCE , S2» 8% START witHd CECOND STATERELT
) _ e . BCID To BUMNATE
afed = cfol+m: ok amiy 0E

e (c=1, 0499, +n'_} {
bicl= /m + Cli—"lj,f QPLH' {IL:!) i{lDi}#};'f'T{.J]{

o] =alkid+ i3, . |
L fa'j.: {'[-L"_-J‘-Fm J C_E,Lt--’[j = LEL-H] ‘ﬂ)

5 b[i1 = m e+ cLi);

Lrgg7= m+ ¢ [Fad 5’

& [ﬂr.’fj.; a If.“]'_jl-l'- b Leall Q[‘fiﬂil - ub[‘i‘{"_a -+ h[c[;{_l
Consider now this loop: for (1 = 1; i < 100; ++i) {

n=ali] + n:

}

* Can it be transformed to become parallel? Explain.

Mo NeLLY NG, BECAVLE EACH ITER4TIN DEPENDL O

THE PRevikyl ONE .

However, Since t7's & Ruswnine Surt , WITH
Pre covwod TRANCFORIATIONS | FARTIAL Cuns (oucp BE
CoHPUTED (N PARALLEL.

END OF SECTION 6 (3 questions, 21 question so-far)
11

53

SECTION 7: Memory Hierarchy (4 questions)

Consider this hierarchical memory design, along with the following facts: It is word addressed and the words are

32 bit long. The physical memory has a capacity of | Megabyte. The cache blocks have 4 words. The page size is
| kByte

{fij} < E;? >
Page Frame # | Page Ofiset |% <32> CPU <32
DataAddr. Dataln
=32> +
<«l4> <|0> WORD APPRESSEDR, | PACE = 26¢ Worpg
Tag Phys. = 2% woeps

PUYSICAL APDRESSED
Translation Lookaside Buffer Heve 12 BITS
OF WHICH § BITS
FeR THE OFFSET

o O O] O] <=
L3 v i Y o
o oo e =

4 SETS 4 woRps

<l§> <> <2
Tag Index glr?:; Cache Addresses Format
< % =

,Il-q} < |7i=

VD Tag Data
Set-0 pp D i) j'P
Set-1 PP DD 0D 5D
Set-2 pp 5D 3 —
Set-3 pp DD 13 ¥

Set Associative Cache (4 sets of 4 blocks), Write Back, Write Allocate

» Fill all the missing field size specifications (< =) on the diagram above.

» Compute the total size of the page table: # PAGES » SIZE OF FREE TABLE ENTRY
Size (PTE)= Slz (PERA BrS) + 2128 (pirty BIT) + SI2E (TA¢) + S2e (Pwvs. £ &)

= 3 t r + 2¢ + /o

¥ PAFES . VIRTUAL ADPER. sPACE 277 CH 16 Teys

Size (MGée TARE) = go Hlsytes,

* Consider a benchmark such that all the addresses in the address space are sequentially read once for the
machine described above. [t starts from a blank cache,

< What is the number of cache misses?
NO [oCauTy , SO ONE CACHE Tiss PER Bleck

7 -+
APPRESS SPACE = 277 |, SIZE oF Rlotic= 2° WorDS

> 30
= 277 CACHE TScES

< What is the number of page faults?

¥
SimjtArey, PACE SIZE 15 2 WORPS

=> 2 ' PAKE RS

* Answer these yes/no questions

< “A victim cache” is a method to reduce the miss rate in caches [yes/no]: Y£5

< Software pipelining is used to minimize the number of page faults [yes/nol: NO (TLP)

@ “Loop fusion” is a software technique to speed up recursive code [yes/no]: NO (BETER USE © :: é’,;ms}

< “Interleaved Memory™ makes it possible to pipeline block replacement in caches [yes/no]: -~ YE¢

END OF SECTION 7 (4 questions)
AND
END OF EXAM (and end of the 25 questions)

13

