i Last Name: S A ﬂ PLE— First Name:

Student ID: Signature:

Course 304-425B -- Computer Organization and Architecture
Final examination

April 18, 2000, 9:00 -- 12:00

Examiner: Prof. V. Hayward

Associate Examiner: Prof. K. Khord0¢///<’/'j—("/é+->

INSTRUCTIONS
» This is a closed book examination. Calculators and up to two sheets of notes are allowed.
» Explain every result concisely when asked. Marks will be given for clear, concise solutions.
 State any assumption required for an answer if it is not clear in the text of the question.

* This exam has 12 pages including this one. It has 7 sections for 24 questions (including a bonus question)
indicated by the bullet sign (*). The marks add up to 100.

* Please sign this paper at the top of the page, write your name and student number legibly there.

* Put your answers in the space provided and keep all the pages together.

PLEASE NOTE CAREFULLY

» Make sure that the signed paper in its entirety is handed in (along with all signed exam books) at the end of
examination.

* Make sure that the answers are put in the space provided, answers in any other location will not be
marked.

* You have approximately 180 minutes to complete the exam.

y Section 1: Performance (12 points)
o Apply Amdahl’s law to compute the speed-up

improve some mode of execution by a factor 1
of the original exec time.

— _ e
ee T J0- Fe) - 5UE]

l ~ /1 :L: |.§2

factor for a machine to which an enhancement is added to

0. This mode is used 50% of the time, measured as a percenta
(4 points)

SO:‘ l: = —'__/_5—.
‘e O'FE)“L%FTE)" B 55
1

e Derive a variant of Amdahl’s law to compute the speed-up factor for a machine to which an enhancement is
added to improve some mode of execution by a factor 10. However in this question, the mode is used 50%

the time measured as a percentage of the enhanced exec time. (4 points)
. . ExecTime,,punced - T,
Hint: start from the definition of speed-up: Speed _up = = unenhanced | jp short: SU =
ExeCTlm eenhanced I;

le

T \
quems = L Te,[(l-Fr:)+ Fe SV |

- .5 4 5 =55

e

e Assume that we have a Load/Store machine which behaves with a perfect cache as follows:

ALU ops 40% 1 clock cycle
Load/Stores 30% 2 clock cycles
Branches and others 30% 2 clock cycles

The machine is modified to add new ALU instructions that have one source operand in memory. These new
register-memory instructions have a clock cycle count of 2. The total number of ALU operations, branches, ar
others instruction remains the same, of course, but the number of loads and stores is divided by two. Is this

enhancement worth implementing? , , (O (4 points)
CPUree . te 2 Fc CPLc st >F.=l Tc, CLAssES)ECVL'Q CHAN
cc
VEW CLases | ALlUep, AlVope L/s RO
vEw COE'S : ' 2 2
vew B 's o Whedb 05 oI5 D
Ew T .35 .85 -¢5 -85
NEW :
¢ 85 1¢,,,

f“f_"}r’—: % (,25 ¢ B k2 £ 215

T sup .}«5
2

Timing analysis reveals that the memory cycles in the standard DLX pipeline are the limiting factor for clock ¢
time improvement. One design option is to spht the memory cycles in an attempt to increase the clock rate. Th
often called super pipelining and is illustrated in the diagram below. Complete instruction fetches takes two st
IA and IB. In the first stage, the memory addressed is specified, in the second, the instruction is read out.
same technique is applied to the MEM stage, now split into a MA and a MB stage. The new design is fully pipeli
This is symbolically represented by introducing two new pipe registers.

IA/IB IB/ID ID/EX EX/MA MA/MB MB/WB

‘Registers

ﬁ‘vl

In OutB

()
16 e 3

SUPERPIPELINED DLX

 Assuming full bypassing/forwarding (including to and from the memory) use the chart below to repor
timing diagram for this code. . Also note that the branch must stall. Show the branch behavior to be del
branch. Suppose that the jump instructions benefit from branch folding and that there is a hit. (10 points)

LOOP: Lw R1, 0(R2)
SW R1, 0(R3)
BEQZ R1, OUT
ADDI R2, R2, 4
ADDT R3, R3, 4
J LOOP
ouT: ...
LW |TA IR [TD|EX |HA |[NB |WR
sw TA|TZB (TP | EX|S |MA 1B (WD
BEQZ 1 |BATB|S | S |[ID(EX|HA|MB WS -
ADDI | |TA|S |8 |IB|TD|Ex [HA|NB |WD
ADDI LA |IB|LD|EX | HA [NB|WH
J | ITA|T® ‘ID
LW oA | DA TD|EX [HA | TD|WH
sw TA T® tD/EX| S [nA b |jw

InstrQOut

Instr. Mem.

—
B
—
P

Registers

In OutB

*
16 o2 3

ID/EX

EX/MEM MEM/WB

Addr

DataOut

Dataln

Data Mem.

STANDARD DLX PIPELINE

Recall that there are four basic techniques to handle branches in a pipeline like DLX’s:
(A) flush (or freeze) a number of instructions after the branch; (B) static prediction such as “predict-not-taken
(C) delayed branch which creates “delay slots”; (D) delayed branch with canceling.

Consider now the following sequence to compute the double of the absolute value of a number in memory:

AU WP

SKIP:

LW R2, O0(R3
SLTI R1l, R2,
BEQZ R1, SKIP
SUB R2, RO,
ADD R2, R2,
SW O(R3), r

)
0

R2
R2
2

\\
\\
\\
A\
\\
\\

load number

Rl <-- 1 if a < 0
skip if a > 0
negate

double

store back

Show the timing of this sequence for the DLX pipeline assuming full forwarding and bypassing hardware
assuming a register read and a write in the same clock cycle implicitly “forwards” through the register file (
first and then read). Use the chart to show the timing of instructions starting at instruction SLTI when the br.
is taken. Fill-in the two blank entries according to the case. (note: a similar question was given last term, howes
is NOT the same question). ' '

(5 points)

e (B)“predict-not-taken”: ‘
S

LW TF |TOIEX|NE WD

SLTI TF|TO[g [EX|neEWD] [|

BEQZ IF| S| S [ID| x| NE|WH

898 TF[ID

AOD tfF| 0] &x [NE Wi

Assuming now that the machine can detect hazardas, has Torwaraing naraware, and uses aetayed branches (C
C). Schedule the following code, to minimize the stalls.

(5 points):

1. LOOP: ® _*SGT R4, R1, R6 \\ compare R1 with R6
2. @ e BNEZ R4, OUT \\ if R1 > R6
3. © — LW R2, O(R3) \\ Load number
4. @ SLTI R4, R2, O \\ R4 <- 1 if a < 0
5. 25_‘ BEQZ R4, SKIP \\ skip if a > 0
6. SUB R2, RO, R2 \\ negate
7. SKIP: ADD R2, R2, R2 \\ double
8. ADDI R3, R3, 4 \\ increment pointer
9. SW 0(R3), r2 \\ store back
10. ADDI R1, R1, 1 \\ increment counter
11. J LOOP \\ loop back to while test
12. OoUT: AND R2, RO, RO \\ clear R2
@ © DATA HA24RD
4 Dok, ©
aranck DBAY (pECAveDd BRanct):(B) oK, peeps

O
©

LOAD RAZARYD

HMANY STRATR HES To ©ile THE RoTS E6.
. fove THE “aDpT’S UP
_ neve THE toaD” BEFRE BugZ . FIUS Two SteTs.
_ rouk THhE AND BERRE Buey
_ pouBtE NMORBER 1K PELAY SLOT (UNOWLEPGE of SEMAT
KEXPmQLE]
LooP: 86T R4, RI, RG
LW R2, 0CQ3) LBAD MUHRER %EQ%%%EICEDS(ET%‘
BNEZ R4, OOT
SLTI Ry, R2, 0 PO TEST !N DELAY Slot
APPT R3, R3, FILL wH APPT
BEQz R4, SKIP ‘ o
" ADDT R\, R, 1 FILL SLOT wITH APPI
sSuB R2, Ro,.R2
sKiP: ADD R2, RZ, RYL
SW o(R3), R
J LooP
ouT 1 AND R2, RO, RO

R — ~ A

Consider the pipeline below. The integer units can be controlled to carry out any types of integer instructions an
the FP units any types of floating point operations.

From Memory From+Intr. Unit
+ FP Regs and
Integer Regs
Toad Buffes | Inst. Queue
Operation Bus B *

',»’IIl.llI.I.IIIIIIJIIIIIIIII/II.I/

; - Store Bufters

; /

:' ¥V V ¢ v VY \ |

Reservation
Stations To Memory
Integer Units FP Units
* + Common Data Bus
LOOP: LD F2,0(R1) Consider the code at the left which implement the vector operation:

MULTD F4,F2,F0 Y =a*X+Y where X and Y are vector arrays.
LD F6,0(R2) _ . o _
ADDD F6,F4,F6 Assume the latencies are O for all integer operations including loads, 4 for
SD 0(R2),F6 additions, 6 for the multiplication regardless of the instruction using
ADDI R1,R1, #8 result. The Common Data Bus is written and read on the same cycle and «
ADDI R2,R2, #8 support multiple data transfers (so there is no structural hazard there).
SGTI R3,R1, POYE
BEQZ R3,LOOP Use “Mem[10+Reg[R1]]” to denote, for example, the value fetched by

first load, “reg[R11” to denote the value to be held in register R1, and
to denote the value 8.

To illustrate operation, the table below indicates the status of the pipeline once the instructions of the first iterati
have issued (that is at clock cycle 8), starting from a blank state.

Instruction Status including the CC counts spent in each stage

Instruction Issue Execute Write Result
LD 1 2 3

MULTD 2 3--7 8

LD 3 4 5

ADDD 4 8--2? 4 - 10 ?? 1l

SD 5 2?2 ¢ ??

ADDI 6 7 8

ADDI 7 8 22 9

SGTI 8 ? 9 ?2? o

CALL TYul v ——
INT A T 2 T 3 4
o Indicate in the table below the state of the reservation stations. (4 points)
Reservation Stations

Name Busy Op Vj Qj Qk
FPyY & Y HulFD nemforrsclri]] REE[Fol - o
FPy 2 Y ADDD — nen [o+ REG fra]l FRI -
INT A Y ADDL _Q&6[rRA #2 —_ -~
INT 2 ~y ADDL _peef@el &3 — =
Wi 3 Y _S¢TT - ___BoyE (NTU4LL

e Indicate in the table below the status of the registers. (2 points)

Register Status

Field FO F2 F4 F6 R2 R3

Qi €l €V 2 INTS INT2_INTD

e Indicate in the table below the state of the store buffers (2 points)

Store Buffers

Field Store 1 Store 2 Store 3

Qi FPU 2

Busy N

Address QML

Ignoring the branch delay, now show the new state of the machine, one clock cycle later (this means a new load
has been issued).

e Indicate in the table below the state of the reservation stations. (4 points)
Reservation Stations

Name Busy Op Vj Vk Qj Qk

EPV 2 Y ADDD RES [Fud (e gelra)) - -

INTe 2 Y AOPL R R £ -~ =

TN R Y TL 1 DovE - - —

e Indicate in the table below the status of the registers. (2 points)
Register Status

Field FO F2 F4 F6 R1 R2 R3

Q1 [A] FoV 2 NT2 INTS

e Indicate in the table below the state of the store buffers (1 points)

Store Buffers

Field Store 1 Store 2 Store 3

Qi FPVZ

Busy y

Address o+ (2]

’

Section 4. Unrolling (S points)

Consider a standard FP pipeline as in the mid-term:

EX

M3 | M4

IF iD

Al

D1] D2

...not pipelined

Consider again the loop of the previous question:

LOOP: LD F2,0(R1)_, 400
MULTD F4,F2,FQ 3ce
LD F6,0(R2) ..o
ADDD F6,F4,F6 { co
sD 0(R2),F6
ADDI R1,R1, #8
ADDI R2,R2, #8
SGTI R3,R1, DONE
BEQZ R3, LOOP

MEM ID

D15

Dl§

e Unroll this loop twice and schedule it for minimal execution time on average when run on the pipeline above

Ignore the branch delay and assume

1o f2, 0CR)

Lp Fg, o(R2)
ADDD F6, Fé&,FL

sD o(re),Fé

LD FZ, g(RY)
Hwp Flo, F2, Fo
Ld Fz, g (r2)
gWD Fr, Flo ,F12
A T

ADDX #l6
Tl |
REQL LooP

UMRoLL

thatallb icted. i
at TWr%nchegs‘_ ag, chrrectly predicted (5 points)

o Fz, orD
Ly 76, glRL) grartT M
MWD FY 2, FO A5 BARD

woup Fo, ¢3, Fo TOSURLE
Lo %, 0(RY)
Lp *nr,g (R2)
wop 74, F£
APPD FR,FiO, FIZ
so o(RY), €6
30 8w),FZ
- ‘ wo BHE
§ WTecer c""f‘—g G ToRE
SCHE DU N ¢

SCHEOVLE.

Section 5: Branch predictors (15 pouits)

Consider this infinite loop and its assembly code translation

a=1; ADDI R1, RO, 1 // init a
b =1; ADDI R2, RO, 1 // init b
while (1) { /* for ever */ Bl: BNEZ R1l, ELSE
if (a == 0) ADDI R1l, RO, 1
a=1; Jd B2
else ' ELSE: ADDI R1, RO, O
a = 0; B2: BEZ R1, B3
if (a '= 0) ADDI R2, RO, 0
b=0; B3: BNEZ R2, Bl
if (b == 0) ADDI R2, RO, 1
b =1; Jd B1

} .
In the table below, the successive values of a and b are listed. Notice the period two. The sequence of taken (T) an
not taken (N) branch outcomes is also given in the table below.)

b

1 Bl outcome:
1 B2 outcome:
1 B3 outcome:
1 Bl outcome:
1

0

1

1

B2 outcome:
B3 outcome:
Bl outcome:
And so-on. . . B2 outcome:

sl lelelel P
hhizlzlZPBEPP

o A machine has a 2-bit branch predictor mechanism. What is the performance of this predictor while executin
this code in the steady state in terms of correct predictions(s) per iteration? A concise explanation must be
given to get the marks. (5 points)

Cacn BRANCH (B, 82, B3) HAS A TWO wir PREDICTOR
Bl SEQUENCE: T, N,T, N .--

Bz SEQ\)E\)CE: T} N) T} NO---
s SequEnc: T, N, T, N -

- [
ONE CoRRECT PREPICTION OUTT ofF TwO : 907.' /L
« A machine has a (1,1) correlating branch predictor. What is its performance while executing the same code

the steady state in terms of correct prediction(s) per iteration? Fill the table below to get the marks. (5 point:
LAST PRANM NOT TAWENg [~ L AST RRANCH TAUEN

Bl prediction bits: NN Bl prediction: ™ Bl outcome: T UPDATE ko
B2 prediction bits: T - B2 prediction: T B2 outcome: T Nno UPORTE
B3 prediction bits: NN B3 prediction: N B3 outcome: T UPDATE
Bl prediction bits: TN Bl prediction: N Bl outcome: N vo vPDAT
B2 prediction bits: TT B2 prediction: T B2 outcome: N LODATE M
B3 prediction bits: NT B3 prediction: N B3 outcome: N wo 0PDA
Bl prediction bits: TN Bl prediction: T B1 outcome: Y~ o vev
B2 prediction bits: NT B2 prediction: N B2 outcome: T LPPATE

B3 prediction bits: NT B3 prediction:‘T‘ B3 outcome: T No L¥D

Average number of correct predictions?

2/,

for the code below, supposing that there is a hit in the buffer (that is: predicted taken), but the prediction is

incorrect. (5 points)
1. SLTI R5, R1l, O \ \\ compare Rl with 0
2. BNEZ R5, SKIP \\ if R1 >= 0 skip
3. SUBI R1, RO, R1 \\ negate
4. SKIP: MULT R1, R1, R1 \\ double
5. SW R1, O(R7) \\ store it
6. AND R1, RO, RO \\ clear R1
SLTI |T¢| 1D | EX e | W
BNEZ IF| S |ID|EX|NE (W
nor re | \ON %»»?r?éf
#
I SUBL.. : L TE Y
nuet ' IF
Kile nvt

Section 6: Loop level parallelism (15 points)

Consider this loop:

for (1 = 1; 1 < 100; ++1i) {
a(fi - 1] = c(i - 1] + n; /* 81 */ !
b{il = m + cli]; /* S2 */
afi]l = al[i]l + bIlil; /* 83 */

}

o List all the dependencies: output dependencies, anti-dependencies, and true data dependencies and indicate :

each dependency the pair of statements and which are “loop carried”
Sl o~ 53

Sy - S|
52- $3

L oot CARRIED

lLoopP CR RRAED

Qutput Dependencies:
P pe SANE

Anti Dependencies:
Data Dependencies
Rewrite the loop so it becomes parallel. Solve this problem in two different ways:

» First use software renaming, not changing the structure of the loop:
looP CARRED (QEPENDENCIES (NVOLVE alc) . THaT s
ALWATS WRUTEN, WEVER READ « CAL T TEnPC]
w (—)E
tEl'lP Lc. -l= C—[‘- 1] em
bfrl= m + v}
J af] = afi]+ b0
e Second tra.nsforrn the loop without renaming so it becomes parallel:
afelzclod +m
Ja(i=t ; <<, ttd) {
b = me [}
a za.l = q[t'] + b 614
afcl=s cl3 +m,

[$8 = m+ CM/ 10
ab)ic'ls- af 1t bC‘!{],

(5 points)

Qii] > afc-3

(5 points)
AL~} oF NEXT

(5 points)

i
Section 7: Memory Hierarchy (18 points)

A cache system has B blocks of N words and total storage capacity L (for valid bits, tags, and data) measured in
bits. Recall that the degree of associativity A is defined as the number of blocks per set. Assume further that the
memory address space is 92 and that the memory is word addressed (each word has W bits). Call H the hit time, M
the miss rate, and P the miss penalty measured in clock cycles.

Consider now this contrived but interesting example (read the whole section before starting). The benchmark test is

to visit (read only) all the addresses in the address space exactly once.

o Calculate the AMAT of the cache system for this test as a function of B, N, W, Z, H, and P starting from a
blank cache (all the valid bits are off). In developing the formula, take the case of a direct mapped cache, or

equivalently A =1, that is M sets. : (6 points)
AMAT= H + n?y 2* wowrps VISITED
"r ' Nnisy AATE 7 o
N WORDS 2_&
NUNBER of MNISSES © —5— \
| ® _"_" RETE = 5
£ ACcESSES ©
Blouts NUNBER © $e5 ¢ 2
L
P 20
HAT=z Ha* —= 24 —= 7
v A N Z
Locaury pogs nor APRLY SINCE
ALl LOCATIONGS VIGITED ONCE
e Work out the result for B=16, N= 4,A=1,Z=32,W=32,H= 2,and P =20. (4 points)
4 wmss , 3 TS N cLocw CYCLEBS

4Lxrt 2O FoR EAcH BlocK ofF & WOeRD

AVERAG—E ACcESS TIHE = ?Zf:: 7 <c¢

Note that these last two questions are independent. You can solve the numerical example by reasoning it out and
then derive the formula, or you can develop the formula first and then plug the numbers in.

e Bonus question!: Solve the same problems for A =2 (5 + 5 points

HORE 4SSO CLATL vIiTY poES NOT CHANGE RESOLT .

11

VO LUV LLUOOLLE, LIVAG DLEAWD A22 Waewas pra==== -

ZPU requests this

A o

In any case, indicate below the values returned to the CPU.

30: PHYS. ADDR. 3ACS 244 ; (No&Y - 2
40: PHYs . ADPR. R35CI2Y; INPEX:
14: PHYS. ADPR. BTBF 244 ; IvpEY: 2) Th

»

J

TAG : BACS2

sequence of addresses:3AC54230, A35C2340, and S7BF2344. If there is a miss,
ate a replacement by showing which tag gets changed and assume the blocks continue to

hold the same
(4 points)

HISs j RETURN 2.2 OR D

(; TAG : ASSCL Miss ; RETVRN (-1 oR Bt

6:E7BF2; MSs; RETURN DD oR 2.2

ACLORDING TO

<1l6> <16> LRV
Page Frame # Page Offset |.g - <32> - CPU- <32>
DataAddr. Dataln
3 A C 5 4 2 3 0
<32> *
< /6> <12>
VRW Tag Phys.
PPP} 2pBO| 2BA
LLp c 4 4
34 > 2 Translation Lookaside Buffer
LLPl A35C 123
L £ 5s7BF| 244
< 20> < 3 > < 5 >
Tag Index 2222t Cache Addresses Format
<2g>
< 20> <1024> < 20> <1024>
vD Tag Data VD Tag Data
110 CB442 [0 I 0 1[0] 24542 Fovene i iiveveenn
1lo 937-55)‘ 1. 1 1ol 24442 |E. -+
L33
l 0 %‘. 2 2 l 0 M 5 Note: this means that
1[0] 29831 [3-- - e 3 110 24442 [Covvvvveeeennn all the bytes in each
block have the same
1101 13542 - S 4 110t 24cc2 B._ value. In this case: “8”
110 F4B42 L T 5 110 22242 -
110 00000 - B e 6 110] 22342 19-.--c vt
110l 21212 i 2O 7 110l 2FrFFF |8. - - - v el

Set Associative Cache

52
el
F2

(8 sets of 2 blocks)
Write Back, Write Allocate

