i Last Name: S A ﬂ PLE— First Name:

Student ID: Signature:

Course 304-425B -- Computer Organization and Architecture
Final examination

April 18, 2000, 9:00 -- 12:00

Examiner: Prof. V. Hayward

Associate Examiner: Prof. K. Khordoﬁ/{/ﬂ/’c’/é;->

INSTRUCTIONS
o This is a closed book examination. Calculators and up to two sheets of notes are allowed.
o Explain every result concisely when asked. Marks will be given for clear, concise solutions.
¢ State any assumption required for an answer if it is not clear in the text of the question.

o This exam has 12 pages including this one. It has 7 sections for 24 questions (including a bonus question)
indicated by the bullet sign (¢). The marks add up to 100.

e Please sign this paper at the top of the page, write your name and student number legibly there.

e Put your answers in the space provided and keep all the pages together.

PLEASE NOTE CAREFULLY

e Make sure that the signed paper in its entirety is handed in (along with all signed exam books) at the end of
examination.

e Make sure that the answers are put in the space provided, answers in any other location will not be
marked.

¢ You have approximately 180 minutes to complete the exam.

’/ Section 1: Performance (12 points)

e Apply Amdahl’s law to compute the speed-up factor for a machine to which an enhancement is added to
improve some mode of execution by a factor 10. This mode is used 50% of the time, measured as a percenta

of the original exec time. (4 points)
—— F‘
le: Tg\ [(‘ - FE) -+ 5ZE]
So= Jn _ l — _—_i’;:""': [.82
‘e (\-FE e +22 55

SUe (O

e Derive a variant of Amdahl’s law to compute the speed-up factor for a machine to which an enhancement is
added to improve some mode of execution by a factor 10. However in this question, the mode is used 50% -

the time measured as a percentage of the enhanced exec time. (4 points)
Hint: start from the definition of speed-up: Speed _up = EXECT"Tle“"‘""“"“d , inshort: SU=-%.
ExecTim eenlmnczd Te
Y 1
QU= 4 Te |(1- Fe)+ Fe 5”&]
e Te

- .5+ &5 =485

o Assume that we have a Load/Store machine which behaves with a perfect cache as follows:
ALU ops 40% 1 clock cycle
Load/Stores 30% 2 clock cycles

Branches and others 30% _ 2clock cycles
The machine is modified to add new ALU instructions that have one source operand in memory. These new

register-memory instructions have a clock cycle count of 2. The total number of ALU operations, branches, ar
others instruction remains the same, of course, but the number of loads and stores is divided by two. Is this

enhancement worth implementing? ‘ , (e (4 points)
CPUre . Te . F CPL sl ZF=l Tc, ClAssES ,Ec?t’c_, CHANS
cc
WEW ClasSes | AlUep, op-z_ lz/s B(Lo
vEw C@E'S : . a
New & 7 g : .4_..1/5 ._/_§ %
Ew € .95 .85 -¢5 -£5
NEW .
L. 95 1¢,,,

,Ti‘f_iﬁi’—= fé (.25 e B k2t 52+ 3 xe)= /.45
T;ﬂ&OLD t}&

Peyush
Note

Peyush
Note
CPI of old machine.?

Where does it say that only 15% of old ALUs are modified?

Timing analysis reveals that the memory cycles in the standard DLX pipeline are the limiting factor for clock ¢
time improvement. One design option is to split the memory cycles in an attempt to increase the clock rate. Th
often called super pipelining and is illustrated in the diagram below. Complete instruction fetches takes two st
IA and IB. In the first stage, the memory addressed is specified, in the second, the instruction is read out.
same technique is applied to the MEM stage, now split into a MA and a MB stage. The new design is fully pipeli
This is symbolically represented by introducing two new pipe registers.

EX/MA MA/MB MB/WB

‘Registers

—
>
—»
¥

In OQutB

eng
16 . £7]

SUPERPIPELINED DLX

o Assuming full bypassing/forwarding (including to and from the memory) use the chart below to repor
timing diagram for this code. . Also note that the branch must stall. Show the branch behavior to be del.
branch. Suppose that the jump instructions benefit from branch folding and that there is a hit. (10 points)

LOOP: LW R1, O0(R2)
SW R1, 0(R3)
BEQZ R1, OUT
ADDIT R2, R2, 4
ADDI R3, R3, 4
J LOOP
ouTrT: ...,
LW |IA |TB |TD|EX [HA |NB |WB
sw TA|I®|ED EX|S [MAHUB WD
BEQZ 1 |FA|TB|S | S |[ID[EX | HA|MB WS
ADDI | |TA|S |9 |IBR|TD|Ex [NA| 1S (W
ADDI LA |IB|LD|EX |HA [NB| WH
J ‘ IA ‘IB"'ED
W oA | DA TD|EX | HA | TS| WH
sw (=LA TR TDIEX] S [nandlwd

Peyush
Highlight

Peyush
Highlight

Peyush
Note
Why does it start here?

Branch folding??

InstrOut

Instr. Mem.

—
—
—»
P

Registers

In OutB

*
16 ' 5

EX/MEM MEM/WB

Addr

DataOut
Dataln

Data Mem.

STANDARD DLX PIPELINE

Recall that there are four basic techniques to handle branches in a pipeline like DLX’s:
(A) flush (or freeze) a number of instructions after the branch; (B) static prediction such as “predict-not-taken
(C) delayed branch which creates “delay slots”; (D) delayed branch with canceling.

Consider now the following sequence to compute the double of the absolute value of a number in memory:

AW

SKIP:

LW R2, O(R3
SLTI R1l, R2,
BEQZ R1, SKIP
SUB R2, RO,
ADD R2, R2,
SW O(R3), r

)
0

R2
R2
2

\\
\\
\\
A\
\\
\\

load number

Rl <-- 1 if a < 0
skip if a > 0
negate

double

store back

Show the timing of this sequence for the DLX pipeline assuming full forwarding and bypassing hardware
assuming a register read and a write in the same clock cycle implicitly “forwards” through the register file (°
first and then read). Use the chart to show the timing of instructions starting at instruction SLTI when the br.
is taken. Fill-in the two blank entries according to the case. (note: a similar question was given last term, howex
is NOT the same question). ' '

(5 points)

e (B)“predict-not-taken”: ‘
P & L
W |TF|TD|EX|NE W
SLTI TF(TO[S [EX|nE{wWd ,
BEQZ IF| S | S |ID|Ex|NE|WH
89% TE(TD
AOD TF| IO &x [NE W

WCoJouk WNPRE

PR
[SEE-

Assuming now that the machine can getect hazards, has Torwaraing nargware, and uses aeiayed oranches (¢

C). Schedule the following code, to minimize the stalls.

(5 points):

LOOP: ® _*SGT R4, R1l, R6 \\ compare Rl with R6
@______.BNEZ R4, OUT \\ 1if R1 > R6
© —s LW R2, O0(R3) \\ Load number
@ SLTI R4, R2, O \\ R4 <- 1 if a < 0
25_‘ BEQZ R4, SKIP \\ skip if a > 0
SUB R2, RO, R2 \\ negate
SKIP: ADD R2, R2, R2 \\ double
ADDI R3, R3, 4 \\ increment pointer
SW 0(R3), =rx2 \\ store back
ADDI R1, R1, 1 \\ increment counter
J LOOP \\ loop back to while test
ouT: AND R2, RO, RO \\ clear R2
@ @ DD,Q'A HAARD
/ i ©®
RRamce D8AY (pECAVED praver): (B) o e

S
©

LoAD HAZARD

HMANY <TRaATE FHES To €l THE <toTs j E6.
\ 11
—. MlovE THE 'ADDT’S UP
—- TOVE THE “Lond” PE FORE B’NEZ FILG 1wo SoT ¢ -
_ rovk The AND BERRE Bue2
_ pouBtE NORBER IR PELAY SLOT (ANOWLEPGE of SEMAT
{EXPmQLEZ
LooP: 86T R4, Rl RC
LB8AD MNUHARAEBR REGARDLESS oF
Lw Re, o(rY) 6 v s o
BNEZ R4, OUT
SLTI Ry, R2,0 PO TEST !N DELAY Slot
ADDX R3, R3, , FILL wiTh APPT
BEQZ R4, SKIP ‘ e
APPT R\, R}, I FiLLt SLorT wiTH ADPI
SUB R2, Re,.R2
sSuKiP: ADD R2, RZ, RYL
SwW o(R3), R2
J LooP
ouT 1 AND R, RO, RO

ToTTTe T AR Y

Consider the pipeline below. The integer units can be controlled to carry out any types of integer instructions an
the FP units any types of floating point operations.

From Memory From+Intr. Unit
+ FP Regs and
Integer Regs
Toad Buffes | Inst. Queue
Operation Bus . *

',»’IIl.llI.I.IIIIIIIIIIIIIIII/II.I/

: ’ Store Bufters

‘' ¥V V¥V ! v VY \J

Reservation
Stations To Memory
Integer Units FP Units
* + Common Data Bus
LOOP: LD F2,0(R1) Consider the code at the left which implement the vector operation:

MULTD F4,F2,F0 Y =a*X+Y where X and Y are vector arrays.
LD F6,0(R2))) . .
ADDD F6,F4,F6 Assume the latencies are O for all integer operations including loads, 4 for
SD 0(R2),F6 additions, 6 for the multiplication regardless of the instruction using
ADDI R1,R1, %8 result. The Common Data Bus is written and read on the same cycle and ¢
ADDI R2,R2, #8 support multiple data transfers (so there is no structural hazard there).
SGTI R3,R1, pOSE
BEQZ R3,LOOP Use “Mem[10+Reg[R1]]” to denote, for example, the value fetched by

first load, “rReg[R11” to denote the value to be held in register R1, and
to denote the value 8.

To illustrate operation, the table below indicates the status of the pipeline once the instructions of the first iterati
have issued (that is at clock cycle 8), starting from a blank state.

Instruction Status including the CC counts spent in each stage

Instruction Issue Execute Write Result

LD 1 2 3 =)
MULTD 2 Gty 8 '
LD 3 4 5

ADDD 4 8--22 4 - 10 ??

SD 5 ?2? £ ??

ADDI 6 7 8

ADDI 7 8 22 9

SGTI 8 ?q 2? o

Peyush
Note
If 0 Latency means an integer operation can start at the next issue...then latency 6 should mean next mul can only start at 7 th issue after 1st MUL issue....3--7? I think it should be 3--8..?

CALL. TYul vew - R
INT A T 2 T 3 4
o Indicate in the table below the state of the reservation stations. (4 points)
Reservation Stations

Name Busy Op Vj Vk Qj Qk
Py & Y Hul¥D nemMo+RELRIT] AL [Fol = —
FPU 2 Y ADDD — Henfo+REG [R2T] FhU) =
I A Y ADDL REc[RN #2 —_ ~
INT 2 v ADDT _eeefl &8 —_ -
vl _3 Y T (= - foyx (T4

o Indicate in the table below the status of the registers. (2 points)

Register Status '

Field FO F2 F4 F6 R1 R2 R3

Qi 320 | 0oV 2 INT' (NT2 INTR

o Indicate in the table below the state of the store buffers (2 points)

Store Buffers

Field Store 1 Store 2 Store 3

Qi FPU 2

Busy Y

Address oeRr])

Ignoring the branch delay, now show the new state of the machine, one clock cycle later (this means a new load

has been issued).

¢ Indicate in the table below the state of the reservation stations. (4 points)
Reservation Stations
Name Busy Op Vj Vk Qj Qk
EPv 2 Y ADDD REG [Fu) Yien (P ge6lra} - -
INTw2 Y ADDT Ree/R2] # & — -
y Tharic! Y Setz res/p4]) PovE.. - =
¢ Indicate in the table below the status of the registers. (2 points)
= Register Status
Field FO 2 F4 F6 R1 R2 R3
Qi LD| FoV 2- INT 2 INTS
¢ Indicate in the table below the state of the store buffers (1 points)
Store Buffers
Field Store 1 Store 2 Store 3
Q1 Fov 2
Busy y
Address o+ (2]
= 7

Peyush
Highlight

Peyush
Note
8th hasnt been issued yet...if has then Register status for F4 should not be FPU1. or Vice versa

Peyush
Highlight

Peyush
Note
This is wrong.....FPU1 write and LD1 issue does not happen on same cycle according to the instruction status given.

’ Section 4. Unrolling (5 points)

Consider a standard FP pipeline as in the mid-term:

EX

IF iD MEM ID

Al

D1 | D2 |...not pipelined| D15 D1§

Consider again the loop of the previous question:

LOOP: LD F2,0(R1) 4-0“.
MULTD F4,F2,F0 3 ce
LD F6,0(R2) .
ADDD ~ F6,F4,F§ “ 1 ce
SD 0(R2),F6
ADDI R1,R1,#8
ADDI R2,R2, #8
SGTI R3,R1, DONE
BEQZ R3, LOOP
e Unroll this loop twice and schedule it for minimal execution time.on average when run on the pipeline above
Ignore the branch delay and assume that all branches are correctly predicted. (5 points)
(/o) Two SVeEPS (RD
Joo?y LP €2, OCH LD F2,0
noerD Fl’) ¥, Fo LD FQ) QCR'L) START M
Lp F¢, 0(';1‘) WD ¥4, F2, FO A5 EBARD
ApDD FG) Fé, 7 . oY Floj Fg) Fo PossiplE
sp o(r),Fé . - LD % o (R2))
P Fr,g (R2)

Hw Flo, Fg, Fo
LD F2,4(r2)
AD Ep Flo ,FI12

pmDp 74, FE
APPD FR, FiO, FI2

SY _ g(ed),®y sb o(R2Y, €6

pol 1

ADDT E /A 0 3w),FIZ

%Trl : - ‘ conn BHE
s Loop e cooef Euie

VNReLL 8 SCHEDVLE.

Section 5: Branch predictors (15 poinw)

Consider this infinite loop and its assembly code translation

a =
b =
whi

}

/* for ever */

1;

1;

le (1) {

if (a == 0)
a=1;

else
a= 0;

if (a != 0)
b = 0;

if (b == 0)
b=1;

Bl:

ELSE:
B2:

B3:

ADDI
ADDI
BNEZ
ADDI

ADDI
BEZ
ADDI
BNEZ
ADDI
J

R1,
R2,
R1,
R1,
B2

R1,
R1,
R2,
R2,
R2,
Bl

RO, 1
RO, 1
ELSE
RO, 1
RO, O
B3

RO, O
Bl

RO, 1

// init a
// init b

In the table below, the successive values of a and b are listed. Notice the period two. The sequence of taken (T) an
not taken (N) branch outcomes is also given in the table below.)

a b

1 1 Bl outcome: T
0 1 B2 outcome: T
0 1 B3 outcome: T
0 1 Bl outcome: N
1 1 B2 outcome: N
1 0 B3 outcome: N
1 1 Bl outcome: T
Qe od And so-on... B2 outcome: T

A machine has a 2-bit branch predictor mechanism. What is the performance of this predictor while executin

this code in the steady state in terms of correct predictions(s) per iteration? A concise explanation must be
given to get the marks.

EAcH BRANCH (B, 82, B3) Has
T, N,T, N ...
T, N,T, N ---

Bl SEQUENCE :
B2 SEQUENCE

a Two BT PREMeTDR

B2 SeQuEwnce: T, N, T, W ---

ONE

CORRECT PREPICTION

ouvT ©OF

TwoO

50/]

b

A machine has a (1,1) correlating branch predictor. What is its performance while executing the same code -

(5 points)

the steady state in terms of correct prediction(s) per iteration? Fill the table below to get the marks. (5 point:
LAST BRANMN NoT TaUsNg ,~ LAST BRANcH TAUSAN

Bl prediction bits: NN Bl prediction: W Bl outcome: T
B2 prediction bits: TT B2 prediction: T B2 outcome: T
B3 prediction bits: NN B3 prediction: N B3 outcome: T
Bl prediction bits: TN Bl prediction: N Bl outcome: N
B2 prediction bits: TT B2 prediction: T B2 outcome: N

B3 prediction bits: NT B3 prediction: N B3 outcome: N

Bl prediction bits:TW Bl prediction: T Bl outcome: 9~
B2 prediction bits:NT B2 prediction: W B2 outcome: T
B3 prediction bits: NT B3 prediction: T B3 outcome: T

Average number of correct predictions?

2/,

UPDoTE N0
NoruVﬁﬁE
uPDATE
vo P DAT
OPOATE N
No oPDA
No . vev
LA TE
N> LPD:

for the code below, supposing that there is a hit in the buffer (that is: predicted taken), but the prediction is

incorrect. (5 points)
1. SLTI R5, R1l, O \ \\ compare Rl with 0
. BNEZ R5, SKIP \\ if R1 >= 0 skip
3. SUBI R1, RO, R1 \\ negate
4. SKIP: MULT R1, R1, R1 \\ double
5. SwW R1, O(RT7) \\ store it
6. AND R1, RO, RO \\ clear R1
SLTI |T¢| 1D | EX | ne | WwH
BNEZ IF| S |ID|EX|NE (W
nor re |\0Y %»»?r?éf
#
- 1SUBL- - T, |TF R
nuet ' IF
K nultr

Section 6: Loop level parallelism (15 points)

Consider this loop:

for (i = 1; 1 < 100; ++i) {
afi - 1] = c[i - 1] + n; /* 81 */)
bf{il = m + c{i]; /* S2 */
a{i} = a[i] + bl[i]}; /* 83 */

}

o List all the dependencies: output dependencies, anti-dependencies, and true data dependencies and indicate :

each dependency the pair of statements and which are “loop carried”
Sl o~ 53
53 - SI

52- $3%

L oot CAARIED

lLooP CR RRUAED

Output Dependencies:
E Be SANE

Anti Dependencies:
Data Dependencies
Rewrite the loop so it becomes parallel. Solve this problem in two different ways:

o First use software renaming, not changing the structure of the loop:

LooP CARRED PEPEMDENCIES (NVOLVE alc] . THAT s
ALWAYS WRUITED, NEVER READ ¢ CAle T tEHPC]

w (—IE '
TerP [(-3= e[i-Tem
bfrl= m + v}
7 afils afls L3
e Second transform the loop without renaming so it becomes parallel:
afol= clod +W ‘
Pfi=t ; cc9q ; +t<) §
bl = me L}
afil= afil+ bLD.
} alcl-= cftT em

W< wme COR; 10
El)lin: af 3+ bl

(5 points)

Qii] > afc-3

(5 points)
Afc-] oF pEXT

(5 points)

!
Section 7: Memory Hierarchy (18 points)

A cache system has B blocks of N words and total storage capacity L (for valid bits, tags, and data) measured in
bits. Recall that the degree of associativity A is defined as the number of blocks per set. Assume further that the
memory address space is 27 and that the memory is word addressed (each word has W bits). Call H the hit time, M
the miss rate, and P the miss penalty measured in clock cycles.

Consider now this contrived but interesting example (read the whole section before starting). The benchmark test is
to visit (read only) all the addresses in the address space exactly once.

¢ Calculate the AMAT of the cache system for this test as a function of B, N, W, Z, H, and P starting from a
blank cache (all the valid bits are off). In developing the formula take the case of a direct mapped cache, or

equivalently A = 1, that is M sets. (6 points)
AMAT= H > MNP 2* wWoRrpS ViSITED
I ' Ly riss ante ? o
N WORDS 2,2'
NunBER ofF TI1[S5%€8 &+ — \
% N Rate = —
2| ® NUNBER of ACCESSES @ 2% M
Blous
P 20
MATz Ha —=2 2+ —=2 7
v A N &
Locatiry DOES Nov APRLY S/MCE
ALL LOCATIONS ViGITED oNcE
s Workout the result for B=16,N=4,A=1,Z=32, W=32, H=2, and P = 20. (4 points)

4L wss , 3 WTS N ceoew CYCLES
Lx2+t 20 FoR EACH BLocK OF 4 WoRrRD

AVERAG—E ACCESS TIHE = ?zg- 7 ¢<c¢

Note that these last two questions are independent. You can solve the numerical example by reasoning it out and
then derive the fozmula or you can develop the formula first and then plug the numbers in.

* Bonus question!: Solve the same problems for A =2 (5 + 5 points

MORE QR SSOCIATIVITY POES NOT CHANGE RESOLT .

11

VG LUV LILOOLLEE, LIVAGE OLLWU 13k WAwis prae—— = x v .

CPU requests this sequence of addresses:3AC54230, A35C2340, and 57BF2344. If there is a miss,
ate a replacement by showing which tag gets changed and assume the blocks continue to hold the same
In any case, indicate below the values returned to the CPU. (4 points)

30. PHYS. ADDR. 3ACS 244 ; oy + 2 ; TAG: 3Acs2.) TISSj RETURN 2.2 oR D

. . wl E.t
10. PiYs. ADDR. R3SCI23; INDEX: () TAG : A3SCI ; Miss j RETVRN [-['oR

ThG: 5TBF2 ; MiSs; RETLRN D-D oR 2.2

. F ; INPEY: 2
14: PHYS. AODR. STBF 244 ; INpEYX: 2 ACLORDING TO

<16> <l6> LRV
Page Frame # 7 Page Offset |og¢ z <32> - CPU- <32>
Dataaddr. Dataln
3 A C 5 4 2 3 0
<32> *
< /6> <12>
VRW Tag Phys.
CPP} 2pBO| 2BA
Mg 4
3ac5 & 4 Translation Lookaside Buffer
LLPl a3 5s5c 123
LEPl s78F| 244
< 20> < 3 > < 5 >
Tag THa e Block Cache Addresses Format
Offet
<Zg>
< 20> <1024> < 20> <1024>
VD Tag Data VD Tag Data
110| cra42 Quowrumw o sovsens 0 110] 24542 |[F. .o vvieviaa
10} ggaghB*|t- - eiinn 1 110l 24442 [E- o vv v ii it
L33
110] 2gama¥]2- - e e 2 1lo] 3342 |ID-- - - c it Notas this means Fhak
110 29831 Bissssasss wuwne 3 110 24442 Ciisssvmperopnprne all the bytes in each
block have the same
110 13542 4. .. e e 4 110 24CC2 B.- value. In this case: "8~
1|10 papan |5+ e 5 110 22842 [A- .- - cveieeet
110 00000 Bt it i e e 6 110 22342 9ivsvunnveeness
110 21212 Tivisevneonnnnne 7 1I0 2FFFF 8. -+ vvevreveennn
Set Associative Cache
§2 (8 sets of 2 blocks)
SC' ‘ Write Back, Write Allocate

F2

