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Introduction: What is pipelining?
• Organization technique whereby multiple instructions are 

overlapped in execution.
• Takes advantage of parallelism that exists among the 

actions needed to execute instructions.
• Today, pipelining is the key implementation technique 

used to make fast CPUs.
• Like car assembly line:

– Many steps – each working on some part of car
– Each step works in parallel to others but on a different car

• Computer: each step (pipe stage, pipe segment) in 
pipeline completes part of instruction.

• Different steps are completing different parts of different 
instructions in parallel.
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What is Pipelining?
• The essential idea (not unique to CPU design): 

Consider the time needed to execute an 
instruction (gate delays), i.e. time between two 
clock edges

• The early gates are busy switching, while the 
later ones are idle: inefficient. Divide the 
instruction into stages and add a register 
between each stage:

Combinatorial circuit delay Latch result in state element

4

Pipelining
Now each stage of the pipeline can work on a 

different instruction:

Inst 2 – stage 1 Inst 2 – stage 2 Inst 2 – stage 3

Inst 1 – stage 1 Inst 1 – stage 2 Inst 1 – stage 3

Inst 3 – stage 1 Inst 3 – stage 2 Inst 3 – stage 3

Pipeline depth: number of stages in pipeline (here 3).
Processor cycle time: time required to move instruction one step down pipeline.
Throughput of instruction pipeline = number instructions completed per unit time, 
determined by how often an instruction exits the pipeline.

Here, throughput been increased by a factor three if we neglect the overhead 
due to pipe registers and other difficulties which are the topic of this chapter.

Notice at CC 3, each section of the hardware works on different instruction.
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Pipelining
• Multiple instructions running in parallel!

– Processor cycle determined by the longest 
stage.

– Ideal condition achieved when all stages have 
the same delay (balanced)

– Ideally (if balanced), throughput increases by 
number of pipe stages:

– Pipelining reduces the average execution time 
per instruction 

– Many tradeoffs due to overheads incurred 
when adding more stages

6

Pipelining
• Reduction in average execution time reduces 

either CPI or Clock Cycle Time: 
– Time per instruction = Time per instruction 

unpipelined / # stages
• Throughput increases by a factor equal to the # 

stages
• Memory traffic increased (will demand the use of 

caches, Topic 5).
• Design challenges in hardware and for the 

compiler.
• A major driving factor for designing CPUs with 

simple ISA's (a.k.a. RISC design).



4

7

Pipelining
• First, consider implementation without 

pipelining for a simple machine that 
implements a subset of a RISC 
architecture: load-store word, branch, 
integer ALU ops.

• Every instruction can be implemented 
in at most 5 clock cycles.
– Instruction Fetch (IF)

• Send PC to memory and fetch the current 
instruction

• Update the PC

8

Pipelining
– Instruction Decode / Register Fetch (ID)

• Decode instruction and read registers
• Equality test on registers for a possible branch

– Sigh-extend the offset field if needed and calculate the 
possible branch target address

• Sigh-extend immediate if needed
– Execution / Effective Address cycle (EX)

• Memory reference: adds base register and offset 
to form effective address

• Reg-reg ALU instruction
• Reg-Imm ALU instruction
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Pipelining
– Memory Access (MEM)

• Load instruction: memory does a read
• Store instruction: memory writes the data from register

– Write-back cycle (WB)
• Register-Register ALU instruction, or Load instruction: write 

the result into register file
Branches: 2 cycles
Stores: 4 cycles
Others: 5 cycles

• Typical instruction mix: branches 12%, 
stores 10% CPI = 4.54

• Not the most optimal design, can do 
better…but good basis for pipelining.

10

Pipelining
Classic Five-Stage RISC Pipeline

Starts a new instruction each clock cycle
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Pipelining

• Treat memory as two separate memories 
for now

• Clear definition of main functional units 
and high usage efficiency.
– To reason about it, we now hide the details.

12

Pipelining
• Reintroduce some of the details to understand timing.
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Pipelining
• Role of the pipe registers (edge triggered latches)

14

Pipelining
• Performance optimization
• This is where digital system design meets 

organization design.
• Goal: increase the fetch rate, although 

instructions can take a long time to complete. 
Several limits on the optimization:

• Imbalance among different stages (clock can run 
no faster than slowest stage)

• Introduction of overhead due to extra control and 
latches.

• Sensitivity to clock skew (max delay between 
when clock arrives at 2 registers).
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Pipelining
• Performance optimization
• But there are other issues. We assumed so far that 

each instruction behaves like a sequence of stages 
with each stage consuming data produces by the 
previous stage so they can run in parallel.

• Unfortunately, this is clearly not the case in a 
program: one instruction can consume in one stage 
data produced by another instruction in the same or 
in another stage. There are also cases where two 
instructions would require the same functional unit 
simultaneously.

• These problems are collectively called hazards. We 
need some systematic method to reason about 
these.

16

Pipelining
• Pipeline Hazards: If not treated, the CPU is 

stalled for 1 or more cycles.
• Structural hazards: Resource conflicts when 

hardware cannot support all possible 
combinations of overlapping instructions.

• Data hazards: Instruction needs data from a 
previous instruction (admittedly a common case) 
in a way such that overlapped execution causes 
problem.

• Control hazards: Caused by instructions (e.g. 
branches) which change the PC
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Pipelining
• Performance of Pipelines with Stalls

– If we ignore the latches overhead, take the 
case of a perfectly balanced design and 
instructions with identical numbers of stages, 
performance can be estimated as a function 
of the statistical occurrence of hazards:

 
            SpeedUpPipe = 

AverageInstrTimeNoPipe  
AverageInstrTImePipe 

= 
CPI_NoPipe 

CPI_Pipe 
× 

CC_NoPipe 

CC_Pipe 
. 

But,      CPI_Pipe = CPI_Ideal + StallsPerInstr =  1 + StallsPerInstr,   and CPI_NoPipe  =  1. 

Also,    CC_NoPipe 

CC_Pipe 
  =  PipeDepth,   

so        SpeedUpPipe = 
PipeDepth 

1 + StallsPerInstr 

18

Pipelining
• Structural Hazards

– Typical occurrences: a functional unit is not pipelined (this happens 
commonly for FP Units), insufficient duplication of resources: Take 
the example of a CPU with a single memory port.
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Pipelining
• This is more concisely seen using a timing diagram. The 

cure is of course a more capable memory sub-system if we 
decide the extra cost is worth the gain in performance. In 
this case the single memory port has a huge impact since it 
causes one stall per load (the most common instruction).

Pipeline Bubble “floats” through the pipeline.

20

Pipelining
• Cost of load structural hazard – example:

– Data reference: 40% of mix
– CPI_ideal of pipelined processor (no structural hazard)  = 1
– Machine 1: processor with no structural hazard
– Machine 2: processor with structural hazard 
– Machine 2 has clock rate 1.05 x faster than machine 1.

• Disregarding any other performance losses, which machine is faster?

Average instruction time = CPI x ClockCycleTime

Machine 1: Average instruction time = ClockCycleTime1

Machine 2: 
Average instruction time =

(CPI_ideal + Clocks for hazard) x   ClockCycleTime2 = 
(1 + 0.4 x 1) x ClockCycleTime1/1.05 = 1.3 x ClockCycleTime1

• Machine 1 is 1.3 x faster!
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Pipelining
• Data Hazards

– Created when dependencies between instructions that overlap in 
pipelining that changes order of access to operands.

– Take this example, R1 is the destination of a leading instruction 
and is source of four subsequent instructions. 

DADD R1, R2, R3
DSUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9
XOR R10, R1,R11

22

Pipelining
• Notice that the result of DADD is actually ready at the end of CC3 so 

with additional circuitry and control, the sequence could execute 
without stalls. This is called forwarding (or bypassing). It is 
implemented by adding multiplexers to the data path. 



12

23

Pipelining
• Forwarding can be used whenever the difference between the positions 

of the producer stage and the consumer stage is smaller than the
difference of fetch clock cycles. This is illustrated by looking at the 
interaction between the EX stage and the MEM stage (a general 
concept).

DADD R1,R2,R3 // i, prod. EX pos. 3;
LD R4,0(R1) // i+1, cons. EX pos. 3, (3–3<1) OK; prod. MEM pos. 4
SD R4,12(R1) // i+2, cons. EX pos. 3, (3–3<2) OK; 

cons. MEM pos. 4; (4-4<1) OK

24

Pipelining
• Required stalls must occur when the relationship is broken 
LD R1,0(R2) // i,     prod. MEM pos. 4
DSUB R4,R1,R5 // i+1, cons. EX pos. 3; ¬(4-3<1) STALL needed
AND R6,R1,R7 // i+2, cons. EX pos. 3; (4-3<2) OK
OR R8,R1,R9 // i+3, cons. EX pos. 3; (4-3<3) OK
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Pipelining
• Again, this is more concisely seen in the form of a timing diagram.

Notice the column of stalls in the bottom timing diagram that executes 
correctly:
a stalled instruction occupies a stage and prevents all following 
instructions from proceeding to the next stage.

26

Pipelining
• Code Scheduling

– In the situations when the CPU either is not or partially bypassed or 
stalls are required as in the case of load stalls for 5 stage MIPS 
pipeline, the stalls can be reduced or even totally eliminated by re-
ordering independent instructions This known as static scheduling
(one of the target-specific back-end compiler optimizations). For 
example consider this:

a = b + c
d = e - f

Raw compilation Scheduled code
LW Rb,… LW Rb,…
LW Rc,… LW Rc,…
Stall LW Re,…
DADD Ra,Rb,Rc DADD Ra,Rb,Rc
SW Ra,… LW Rf,…
LW Re,… SW Ra,…
LW Rf,… DSUB Rd,Re,Rf
Stall SW Rd,…
DSUB Rd,Re,Rf
SW Rd,…
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Pipelining
• Control Hazards

– It’s the same idea, except now the consuming 
stage is always IF. The value of the PC is 
determined later in the pipeline if branch 
taken. In meantime, if nothing is done in 
hardware, the CPU will fetch possibly n
incorrect fall-through instructions, where n is 
the position difference between the fetch 
stage and the stage the branch outcome is 
determined. 
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Pipelining
• Control Hazards

– The simplest approach is to re-fetch once the branch 
is decoded in ID, resulting in always wasting a clock 
cycle for each branch when in fact the fetched 
instruction could have been the right one if the branch 
is not taken.

• Successors incorrectly fetched if branch is 
taken.
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Pipelining
• Control Hazards

– Designers have invented all kind of schemes 
to squeeze more performance for branches. 
We look at four (among others) applicable to 
single pipelines.

– (1) Flush pipeline (easily done by clearing 
pipe registers), once the branch is known 
(solution above) until branch destination 
known.

30

Pipelining
• Control Hazards

– (2) Predict-not-taken scheme is only slightly 
more complicated. Proceed as above, but re-
fetch instruction only if the branch is taken.
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Pipelining
• Control Hazards
• (3) For some processors, the branch target is known 

before the branch outcome, so it makes sense to 
organize the pipeline in a predict-taken fashion, i.e. fetch 
first instruction at the target address and restart the fetch 
sequence at the fall-through sequence if the prediction is 
incorrect.

• In both predict-not-taken and predict-taken, the compiler 
has a role to play when translating if and for statements 
which have lopsided statistics accounting for the target 
CPU.

• (4) A popular scheme is the delayed branch. The idea, in 
its simplest expression, is to do nothing at all in 
hardware and leave it to the compiler to deal with the 
problem: one or several instructions following the branch 
will execute even if the branch is taken. It is actually not 
as silly as it seems. 

32

Pipelining

• Delayed branch
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Pipelining
• Illustrated in the next figure are three options for the compiler to 

move instruction(s) into the delay slot(s). 

34

Pipelining
• Limitations on delayed-branch scheduling:

– Restrictions on the instructions that are scheduled 
into delay slots

– Our ability to predict at compile time whether branch 
is likely to be taken or not

• Finally, the delayed branch scheme can be 
advantageously combined with pipeline flush, 
this is called canceling.

• Performance of branch schemes.
– Again, if we can statistically figure the frequency of 

occurrence of mis-predictions as well as the cost 
incurred. We can write:

SpeedUpPipe=
PipeDepth

1+ BranchFrequency ×BranchPenalty
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Pipelining
• Example: MIPS R4000

– Deeper pipeline – takes 3 pipeline stages before branch-target 
address known + additional cycle before branch condition evaluated 
(assuming no stalls on register in conditional comparison)

– Delay leads to branch penalties for 3 simplest prediction schemes:
Branch scheme Penalty unconditional Penalty untaken  Penalty taken
Flush pipeline 2 3 3
Predicted taken 2 3 2
Predicted untaken 2 0 3

– Find effective addition to CPI from branches in pipeline assuming 
frequencies:

• Unconditional branch 4%
• Conditional branch, untaken 6% 
• Conditional branch, taken 10%

Branch scheme unconditional untaken taken           All branches
Frequency 4% 6% 10%                 20%
Flush pipeline 0.08 0.18 0.3 0.56
Predicted taken 0.08 0.18 0.2 0.46
Predicted untaken     0.08 0 0.3 0.38

36

Simple implementation of MIPS
• How is Pipelining Implemented?

– Simple, unpipelined MIPS: load-store word, branch 
equal zero, integer ALU ops (not aggressive 
implementation of a branch instruction)

• IF:
IR Mem[PC];
NPC PC + 4;

• ID:
A Regs[rs];
B Regs[rt];
Imm sign-extended immediate field of IR;
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Simple implementation of MIPS
• How is Pipelining Implemented?
• EX:

– Mem ref: 
• ALUOutput A + Imm;

– Reg-Reg ALU op: 
• ALUOutput A func B;

– Reg-Imm ALU op: 
• ALUOutput A op Imm;

– Branch: 
• ALUOutput NPC + (Imm << 2);
• Cond (A == 0)

38

Simple implementation of MIPS
• How is Pipelining Implemented?
• MEM:

– PC NPC;
– Mem ref:

• LMD Mem[ALUOutput] or Mem[ALUOutput] B;
– Branch:

• If (cond) PC ALUOutput;
• WB:

– Reg-Reg ALU:
• Regs[rd] ALUOutput;

– Reg-Imm ALU:
• Regs[rt] ALUOutput;

– Load:
• Regs[rt] LMD;
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Simple implementation of MIPS

40

Basic MIPS Pipeline
• 1 ALU, 2 Delay Slots
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Basic MIPS pipeline

EX/MEM.ALUOutput
← ID/EX.NPC + 
(ID/EX.Imm<<2);
EX/MEM.cond ←
(ID/EX.A ==0);

For load only;
Regs[MEM/WB.IR[rt]] 
←MEM/WB.LMD;

MEM/WB.IR ←EX/MEM.IR;
MEM/WB.LMD ←
Mem[EX/MEM.ALUOutput]; or
Mem[EX/MEM.ALUOutput] 
←EX/MEM.B;

EX/MEM.IR to ID/EX.IR
EX/MEM.ALUOutput ← ID/EX.A 
+ ID/EX.Imm;

EX/MEM.B ←ID/EX.B;

Branch instructionLoad or store instruction

Regs[MEM/WB.IR[rd]] 
←MEM/WB.ALUOutput; or
Regs[MEM/WB.IR[rt]] 
←MEM/WB.ALUOutput;

WB

MEM/WB.IR ←EX/MEM.IR;
MEM/WB.ALUOutput
←EX/MEM.ALUOutput;

MEM

EX/MEM.IR ←ID/EX.IR;
EX/MEM.ALUOutput ← ID.EX.A func
ID/EX.B; or
EX/MEM.ALUOutput ← ID/EX.A op 
ID/EX.Imm;

EX

ALU instruction

ID.EX.A ←Regs[IF/ID.IR[rs]]; ID/EX.B ←Regs[IF/ID.IR[rt]];
ID/EX.NPC ←IF/ID.NPC; ID/EX.IR ←IF/ID.IR;
ID/EX.Imm ← sign-extend(IF/ID.IR[immediate field]);

ID

IF/ID.IR←Mem[PC];
IF/ID.NPC,PC ←(if ((EX/MEM.opcode==branch) & EX/MEM.cond) {EX.MEM.ALUOutput} else 
{PC+4});

IF

Any instructionStage

42

Implementing Control for the MIPS 
pipeline

• All data hazards can be checked during ID phase. If 
exists – stalled before issued (ID – EX). Can determine 
what forwarding will be needed during ID and set 
controls then.

• Detect interlocks early!
• Pipeline hazard detection hardware – compare 

destination and sources of adjacent instructions (only 
need to compare on 2 instructions following instruction 
that wrote destination)

• Once hazard detected, insert pipeline stall (change 
instruction to no-op)

• Forwarding from: ALU output, data memory output to
– ALU input, data memory input, zero detection
– This implies additional multiplexer inputs  + add connections 

from pipeline registers



22

43

Forwarding

Data
memory

M
U
X

M
U
X

ID/EX EX /MEM MEM /WB

ALU
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Dealing with branches in the 
pipeline

• Dealing with branches in the pipeline: 
aggressive implementation

• Consider the cases BEQZ and BNEZ
– Moving the zero test into ID cycle
– Compute the branch-target address during 

ID
• Additional adder

• 1 clock-cycle stall on branches
• (Figure A.25: self study)
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Dealing with branches in the 
pipeline

46

Exceptions
• So far, we have assumed that the CPU executes a 

single program and that there was no external events 
that could disrupt the instruction sequence. Obviously, it 
is not the case, save for the simplest applications. Major 
cases:
– I/O device request
– Invoking OS service from user program
– Tracing instructions 
– Breakpoints
– Integer arithmetic overflow
– FP arithmetic anomaly
– Page fault (related to virtual memory, Chap 5)
– Misaligned memory access
– Memory protection violation
– Undefined instructions
– Hardware malfunctions of various kinds
– Power failure
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Exceptions
• Properties of exceptions

– Synchronous / asynchronous: 
• occurs always the same place/data or randomly

– User requested / coerced: 
• has been programmed by the user or external event

– Maskable / nonmaskable: 
• may be programmed to be ignored by hardware

– Within / between instructions:
• prevents instruction completion (asynchronous: terminal) or 

not

– Resume / terminate: 
• CPU can restart where it was interrupted after service 

48

Exceptions

TerminateWithinNonmaskableCoercedAsync.Power Failure
TerminateWithinNonmaskableCoercedAsync.Hardw. Fault
TerminateWithinNonmaskableCoercedSync.Undef. Instruction
ResumeWithinNonmaskableCoercedSync.Mem. Protection
ResumeWithinMaskableCoercedSync.Misalig. Acc.
ResumeWithinNonmaskableCoercedSync.Page Fault
ResumeWithinMaskableCoercedSync.FP Exception
ResumeWithinMaskableCoercedSync.Int. Overflow

ResumeBetweenMaskableCoercedSync.Breakpoint

ResumeBetweenMaskableRequestedSync.Trace Instr. ex.

ResumeBetweenNonmaskableRequestedSync.OS Invoke

ResumeBetweenNonmaskableCoercedAsync.I/O
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Difficulties with exceptions
• Hardest case: within instruction and restartable (Page 

fault). Hardware must:
– Shut down the pipeline with instructions at various stages of 

completion.
– Restart the pipeline in the same state when it was when 

interrupted.
• In more detail, steps to save the pipeline safely:

– Force a trap instruction into the pipeline on the next IF. This will 
cause the CPU to switch to an exception handling routine.

– Turn off all the writes for the faulty instruction and those that 
follow but not for those that precede. This will make it possible to 
restart since preceding instructions can complete as if nothing 
happened, and those after it can start from scratch. This is called 
precise exception handling.

– Once control is given to the exception handling routine, save PC
of faulty instruction to restart with it.

• With floating point operations (see later) that can take 
unpredictable number of clock cycles. Certain designs 
have a unprecise mode for floating point to boost 
performance (fewer things to do).

50

Exceptions in MIPS
• Some of the exceptions that can happen:

NoneWB
Page Fault, misalignment, memory protectionMEM
Arithmetic exceptionEX
Undefined instructionID
Page Fault, misalignment, memory protectionIF

Example
LD IF ID EX MEM WB
DADD IF ID EX MEM WB
Multiple exceptions can occur in the same clock cycle, e.g. a page fault and an 
arithmetic exception. There can also be a data page fault in the MEM stage of the 
LD and an instruction page fault in the IF of the DADD which occurs earlier. 
Exceptions raised by LD must be serviced first and then those of the DADD.
Solution: Post all exceptions in a status vector associated with each instruction in 
the pipe which is checked when the instruction completes. If exceptions are raised 
they can be processed in order.
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Instruction Set Complications
• More complications
• With CPU having instructions that write only once, 

precise exceptions are relatively straightforward since 
there is a one-to-one correspondence between a fetch 
and the eventual state change, e.g. MIPS integer 
pipeline writes at the end of the MEM state only. If an 
instruction is guaranteed to complete, it is said to be 
committed and the write can be done anytime later.

• If there can be a change of state in the middle of the 
instruction execution, e.g.  multiple writes (e.g. 
autoincrement addressing mode, condition codes, and 
so-on), in order to maintain a precise exception model, 
processor must be able to back out of changes made. 
This can involve undoing the writes!

• Again the problem of exceptions enters into the 
CISC/RISC argument.

52

Extending MIPS to handle Multicycle Operations
• This concerns FP ops which require many more (and even 

unpredictable) clock cycles than integer units. The solution 
is to provide distinct functional units:
– Integer (regular ALU considered so-far),
– FP and integer multiplier,
– FP adder (handles FP add, subtract, convert),
– FP and integer divider. Not pipelined.
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Extending MIPS to handle Multicycle
Operations

• Pipeline that supports multiple FP 
operations

54

Extending MIPS to handle Multicycle
Operations

• Systematic Description
• Initiation interval: number of clock cycles 

between issuing 2 operations of a given type.
• Latency: number of intervening clock cycles 

between producing unit (providing result) and 
consuming unit (using result). When they are at 
the same position in a bypassed pipeline it also 
applies to instructions.
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Extending MIPS to handle Multicycle
Operations

2423FP and int. divide
16FP and int. multiply
13FP add
11Data Memory (integer and FP)
10Integer ALU (EX)

Initiation IntervalLatencyFunctional Unit

Comments:
•Possibility for structural hazards, e.g. divide unit not 
pipelined, several instructions could compete to write to 
register.
•New kinds of hazards: an instruction fetched after another 
instruction could write the register before the earliest one!
•More and longer stalls.

56

Classification of data hazards
• We need a way to reason more systematically about data 

hazards. In the next chapter we will generalize this even 
further. For now, consider pairs of instructions which depend
on each other because they share a register written by a 
producer and read by a consumer instruction. This holds for 
bypassed data paths since forwarding can only reduce latency 
but not make it negative! With this in mind, look at all cases:

• RAW (read after write). A pair of instructions has a consumer 
trying to read before the producer writes.
– The most common type: e.g. a = 0; …; a = 1; b = a + 1, then, we expect 

b to have the value 2, not 1.
• WAW (write after write). A pair of instructions are producers 

but the instruction that writes first appears after in the 
program:
– e.g. a = 1+2; …;a = 2*3, then, we expect a to have the value 6, not 3.

• WAR (write after read). A producing instruction occurs after a 
consuming instruction but writes before the consumer reads:
– e.g. a = 1; b = a + 1; a = 2, then, we expect b to have the value 2, not 3.
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Hazards and Forwarding in Longer Latency 
Pipelines

• Now we can examine examples of code sequences 
for a multicyle pipeline involving such hazards; 
Yellow marks: RAW, red marks: structural hazards. 

• In the following, they are treated by stalling the 
pipeline at appropriate places.

MEstallstallstallEXIDstallstallstallstallstallstallIFS.D      F2,0(R2)

WBMEA4A3A2A1stallstallstallstallstallstallIDstallIFADD.D F2,F0,F8

WBMEM7M6M5M4M3M2M
1

stallIDIFMUL.D F0,F4,F6

W
B

MEEXIDIFL.D       F4,0(R2)

1716151413121110987654321

58

• In this example, hazards are not treated. Note at cycle 10, only the L.D 
uses the memory but at 11, three instructions compete for the register 
file. Here, delaying the ADD.D rather than the L.D would create a WAW 
hazard.

WBMEEXIDIFL.D      F2,0(r2)

WBMEEXIDIF…

WBMEEXIDIF…

WBMEA4A3A2A1IDIFADD.D F2,F4,F6

WBMEEXIDIF…

WBMEEXIDIF…

WBMEM7M6M5M4M3M2M1IDIFMUL.D F0,F4,F6

16151413121110987654321

Hazards and Forwarding in Longer Latency 
Pipelines
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• There is a number of structural hazards. 
The way they are treated is dependent on 
the details of hardware design. For 
example, most machines would not allow 
two instructions in the same stage to share 
the same pipe register.

Hazards and Forwarding in Longer Latency 
Pipelines

60

• In summary, multicycle operation introduce new 
kinds of hazards which need to be detected and 
treated. In general, three checks must be 
performed before an instruction can issue, that is 
transit from decode to execute. Assuming that all 
hazard detection is done in the ID stage:

• Check for structural hazards, delay until the 
required unit is available (e.g. divide unit here).

• Check for RAW hazard. Delay until the source 
registers are not listed as pending destinations.

• Check for WAW hazard. Delay the instruction ID.

Hazards and Forwarding in Longer 
Latency Pipelines
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Maintaining Precise Exceptions
• Finally, there are further complications with 

exceptions of course.

DIVD.D F0,F2,F4
ADD.D F10,F10,F8
SUB.D F12,F12,F14

• The SUB.D could cause an imprecise exception 
when the DIVD.D is not yet completed but the 
ADD.D has (out-of-order completion). In this 
case the ADD.D would have destroyed one 
operand, so the exception cannot be precise.

62

Superpipelining
• This refers to subdividing the clock cycles even further, yielding 

major cycles in a deeper pipeline. This way a stage can span a 
variable number of minor clock cycles. For example, the MIPS 
R4000 superpipeline.

Everything we have seen generalizes with more hazards, longer delays, more 
difficult exceptions, but hopefully higher throughput.
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Fallacies and Pitfalls
• Section A.6: Self Study
• Section A.7: OMIT
• Pitfall: Unexpected execution sequences may cause unexpected 

hazards.
• WAW hazard to occur in normal code because of branches.

BNEZ R1,foo
DIV.D F0,F2,F4 // delay slot fill-in from fall-through
…

foo: L.D F0,something
• Predicted untaken and the branch is, in fact, taken. L.D will reach 

WB before DIV.D  can complete. Optimize for the best but always 
expect the worse!

• Pitfall: Extensive pipelining can impact other aspect of a design, 
leading to overall worse cost-performance.

• Industrial examples (see text). Can end up with same performance
with less hardware.


