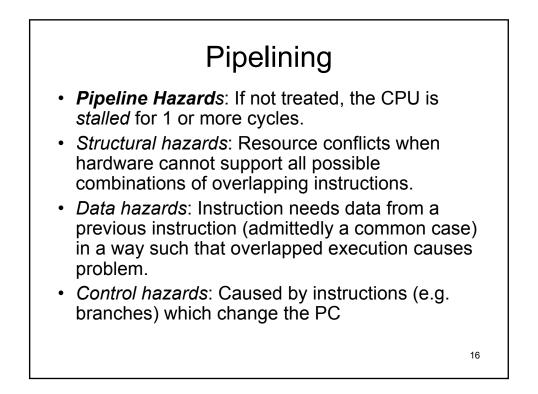
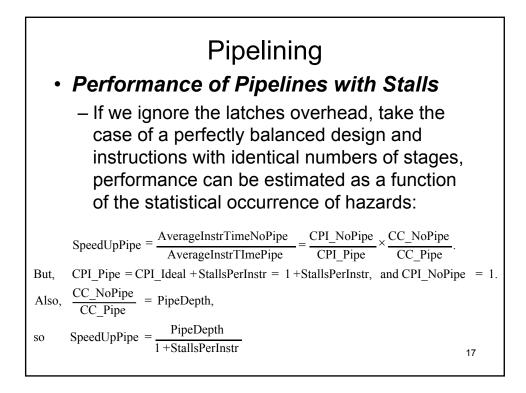
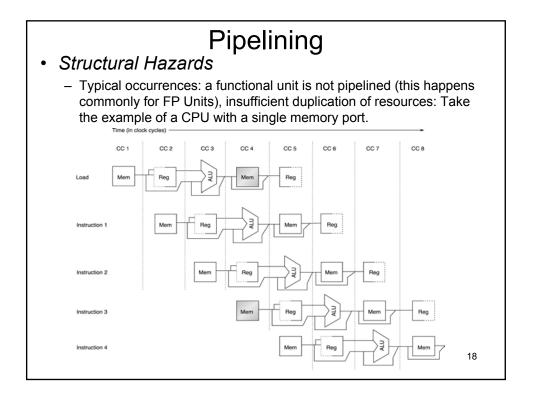


Pipelining									
Classic Five-Stage RISC Pipeline Starts a new instruction each clock cycle									
Clock number									
Instruction number	1	2	3	4	5	6	7	8	9
Instruction i	IF	ID	EX	MEM	WB				
Instruction i + 1		IF	ID	EX	MEM	WB			
Instruction i + 2			IF	ID	EX	MEM	WB		
Instruction i + 3				IF	ID	EX	MEM	WB	
Instruction i + 4					IF	ID	EX	MEM	WB
									10

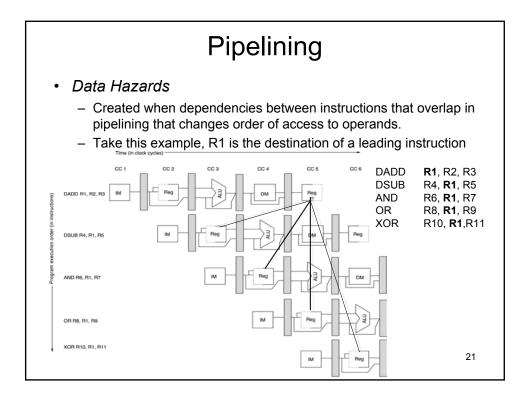


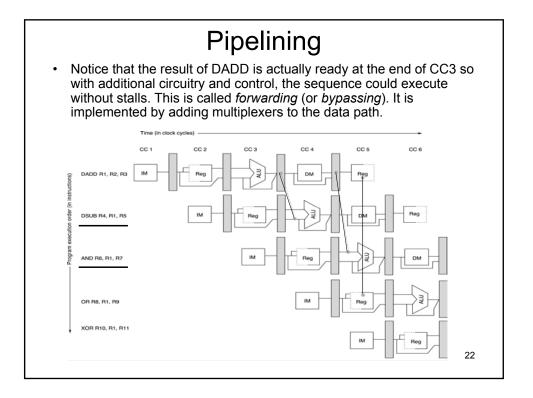


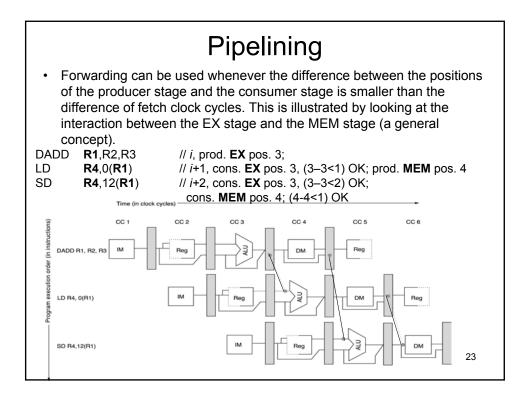

Pipelining

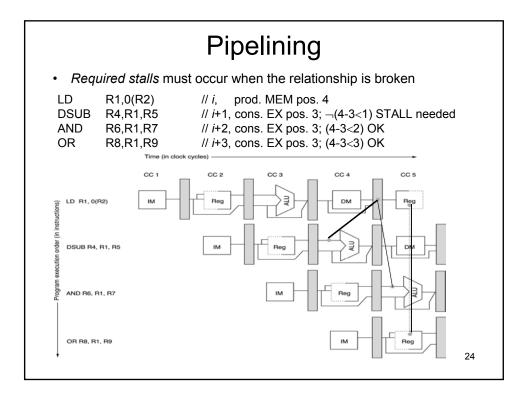
Performance optimization

- But there are other issues. We assumed so far that each instruction behaves like a sequence of stages with each stage consuming data produces by the previous stage so they can run in parallel.
- Unfortunately, this is clearly not the case in a program: one instruction can consume in one stage data produced by another instruction in the same or in another stage. There are also cases where two instructions would require the same functional unit simultaneously.
- These problems are collectively called *hazards*. We need some systematic method to reason about these.



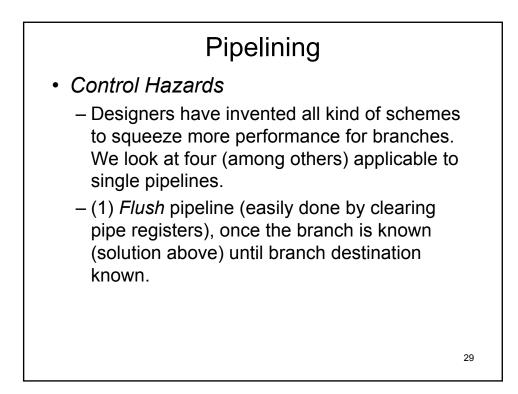




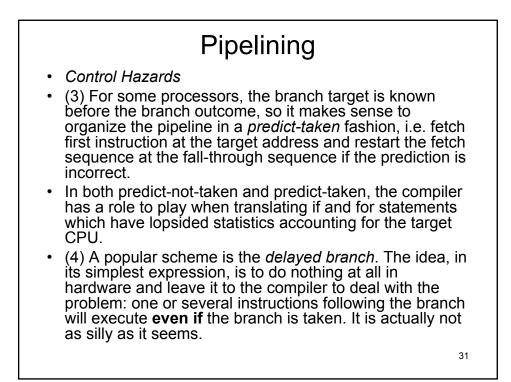

cure is decide this ca causes	of co the e se the	ourse extra d e sing	a mo cost is le me	s wort emory	bable h the port l	memo gain i has a	ory su n per huge	ib-sys forma impa	tem i ince. ict sir	if we In Ice i
				Cloc	k cycle nu	mber				
Instruction	1	2	3	4	5	6	7	8	9	10
Load instruction	IF	ID	EX	MEM	WB					
Instruction $i + 1$		IF	ID	EX	MEM	WB				
			IF	ID	EX	MEM	WB			
Instruction $i + 2$				stall	IF	ID	EX	MEM	WB	
$\frac{\text{Instruction } i + 2}{\text{Instruction } i + 3}$						IF	ID	EX	MEM	WB
								and the second second second		
Instruction $i + 3$			-				IF	ID	EX	MEM

 Pipelining Cost of load structural hazard – example: Data reference: 40% of mix CPI_ideal of pipelined processor (no structural hazard) = 1 Machine 1: processor with no structural hazard Machine 2: processor with structural hazard Machine 2 has clock rate 1.05 x faster than machine 1. Disregarding any other performance losses, which machine is faster 	r?
Average instruction time = CPI x ClockCycleTime	
Machine 1: Average instruction time = ClockCycleTime1	
Machine 2: Average instruction time = (CPI_ideal + Clocks for hazard) x ClockCycleTime2 = (1 + 0.4 x 1) x ClockCycleTime1/1.05 = 1.3 x ClockCycleTime1	
Machine 1 is 1.3 x faster!	20

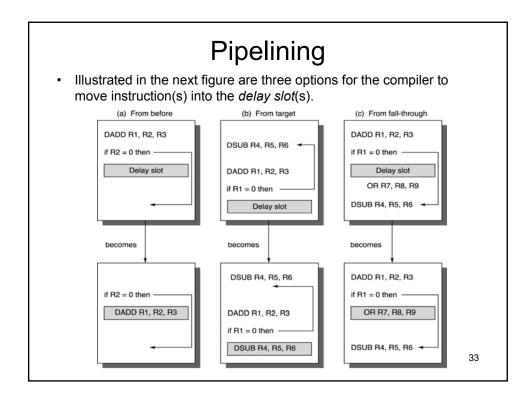
•	Again, th	is is mo	re cono	cisely s	een in	the form	n of a t	iming d	liagran	۱.
LD	R1,0(R2)	IF	ID	EX	MEM	WB				
DSUB	R4,R1,R5		IF	ID	EX	MEM	WB			
AND	R6,R1,R7			IF	ID	EX	MEM	WB		
OR	R8,R1,R9				IF	ID	EX	MEM	WB	
LD	R1,0(R2)	IF	ID	EX	MEM	WB				
DSUB	R4,R1,R5		IF	ID	stall	EX	MEM	WB		
AND	R6,R1,R7			IF	stall	ID	EX	MEM	WB	
OR	R8,R1,R9				stall	IF	ID	EX	MEM	WB

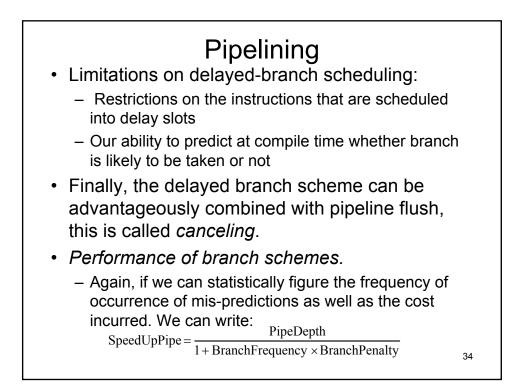

2	5	

stalls are pipeline, ordering (one of t	tuations when the CPU either is e required as in the case of load the stalls can be reduced or evindependent instructions This he target-specific back-end cor e consider this:	s not or pa d stalls for ven totally known as	5 stage MIP eliminated b static schedu	S y re- <i>ıling</i>
	a = b + c			
Damas	d = e - f	O a la a alu		
	mpilation		lled code	
LW	Rb,	LW	Rb,	
LW	Rc,	LW	Rc,	
Stall		LW	Re,	
DADD	Ra,Rb,Rc	DADD	Ra,Rb,Rc	
SW	Ra,	LW	Rf,	
LW	Re,	SW	Ra,	
LW	Rf,	DSUB	Rd,Re,Rf	
Stall DSUB	Pd Po Df	SW	Rd,	
SW	Rd,Re,Rf Rd			
500	Ku,			26
				20

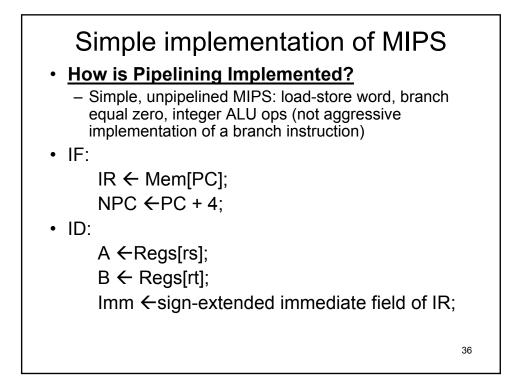

Pipelining

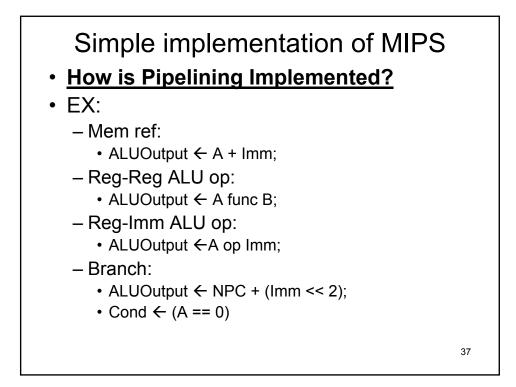
- Control Hazards
 - It's the same idea, except now the consuming stage is always IF. The value of the PC is determined later in the pipeline if branch taken. In meantime, if nothing is done in hardware, the CPU will fetch possibly *n* incorrect *fall-through* instructions, where *n* is the position difference between the fetch stage and the stage the branch outcome is determined.

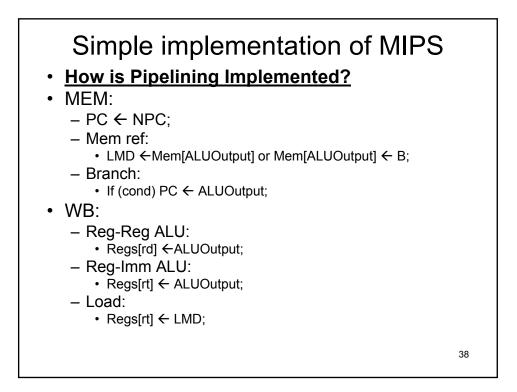

		Pipe	elini	ng			
 Control Ha – The simp is decode cycle for instruction is not tak 	olest ap ed in II each b on coul	oproach D, resul Dranch y	ting in when i	always n fact th	wastin e fetcł	ig a clo ned	ck
Branch instruction	IF	ID	EX	MEM	WB		
Branch successor		IF	IF	ID	EX	MEM	WB
Branch successor + 1				IF	ID	EX	MEM
Branch successor $+2$					IF	ID	EX

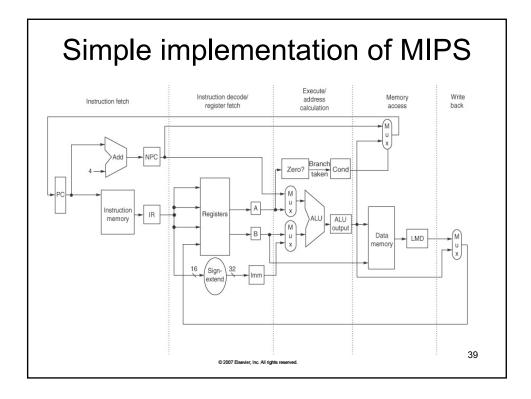


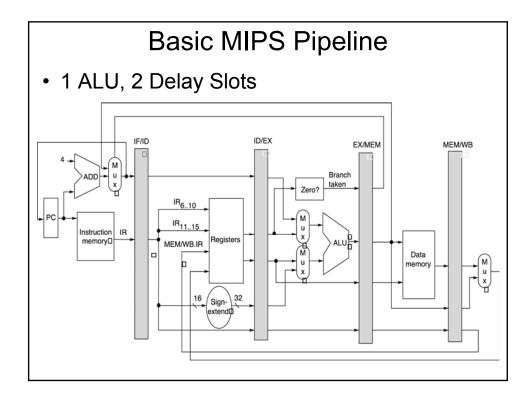
		Pi	peli	ning	9				
Control I	Haza	rds							
– (2) <i>Pree</i> more co fetch in	ompli	cate	d. Pro	oceed	d as a	above	e, bu	t re-	
Untaken branch instruction	IF	ID	EX	MEM	WB				
								and the second se	
Instruction $i + 1$		IF	ID	EX	MEM	WB			
Instruction $i + 1$ Instruction $i + 2$		IF	ID IF	EX ID	MEM EX	WB MEM	WB		
		IF					WB MEM	WB	
Instruction <i>i</i> + 2		IF		ID	EX	MEM		WB MEM	WB
Instruction <i>i</i> + 2 Instruction <i>i</i> + 3	IF	IF		ID	EX ID	MEM EX	MEM		WB
Instruction <i>i</i> + 2 Instruction <i>i</i> + 3 Instruction <i>i</i> + 4	IF		IF	ID IF	EX ID IF	MEM EX	MEM		WB
Instruction <i>i</i> + 2 Instruction <i>i</i> + 3 Instruction <i>i</i> + 4 Taken branch instruction	IF	ID	IF EX	ID IF MEM	EX ID IF WB	MEM EX ID	MEM		WB
Instruction i + 2 Instruction i + 3 Instruction i + 4 Taken branch instruction Instruction i + 1	IF	ID	IF EX idle	ID IF MEM idle	EX ID IF WB idle	MEM EX ID idle	MEM EX		WE

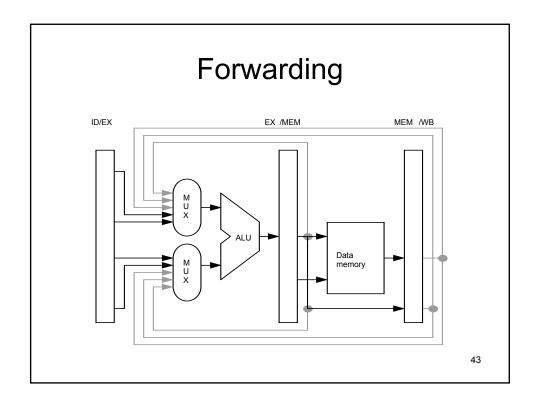


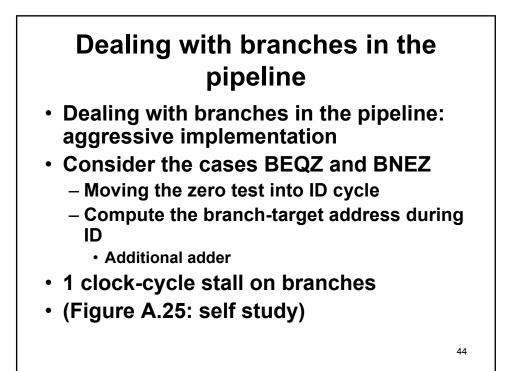

Pipelining									
• Delayed b									
Untaken branch instruction	IF	ID	EX	MEM	WB				
Branch delay instruction $(i + 1)$		IF	ID	EX	MEM	WB			
Instruction $i + 2$			IF	ID	EX	MEM	WB		
Instruction $i + 3$				IF	ID	EX	MEM	WB	
Instruction <i>i</i> + 4					IF	ID	EX	MEM	WB
Taken branch instruction	IF	ID	EX	MEM	WB				
Branch delay instruction $(i + 1)$		IF	ID	EX	MEM	WB			
Branch target			IF	ID	EX	MEM	WB		
Branch target + 1				IF	ID	EX	MEM	WB	
Branch target + 1					IF	ID	EX	MEM	WB

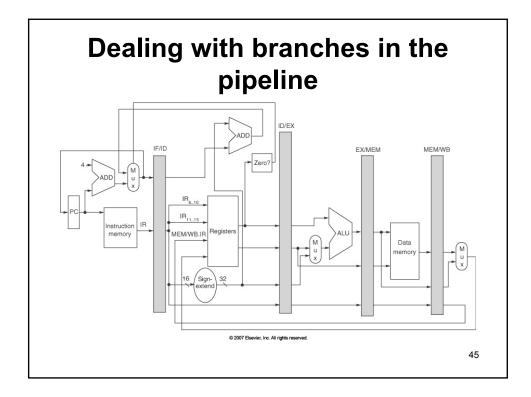


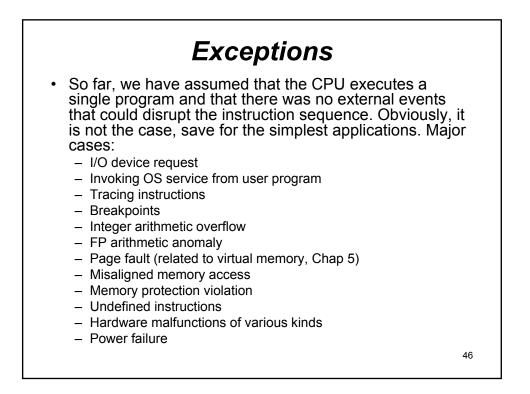


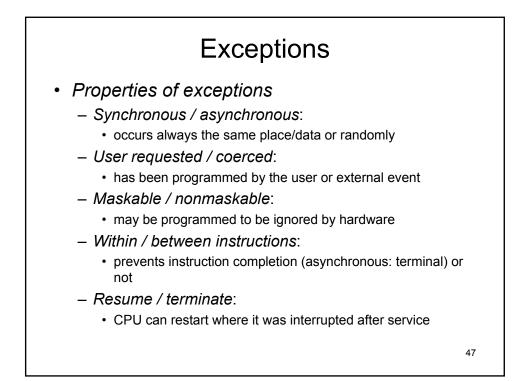

(assuming no	S R4000 ne – takes /n + additi stalls on	s 3 pipeline s onal cycle b register in c	stages before k efore branch c onditional com		
 Delay leads to 	o branch p	penalties for	3 simplest pre	diction schemes:	
Branch scheme F					
Flush pipeline	2		3	3	
Predicted taken	2		3	2	
Predicted untaken	2		0	3	
 Find effective a frequencies: 	addition to C	CPI from bran	ches in pipeline	assuming	
Uncondition	al branch		4%		
Conditional	branch, unta	ken	6%		
Conditional	oranch, takei	n	10%		
Branch scheme un Frequency Flush pipeline Predicted taken Predicted untaken	4% 0.08 0.08	al untaken 6% 0.18 0.18 0	taken 10% 0.3 0.2 0.3	All branches 20% 0.56 0.46 0.38 ₃₅	

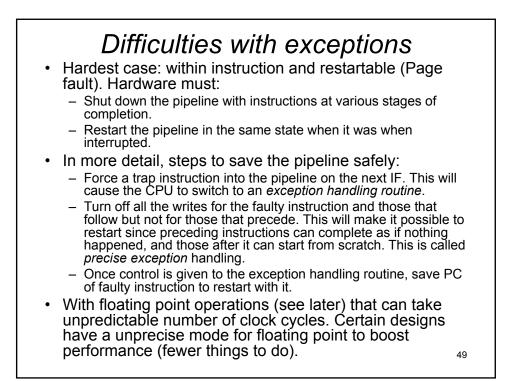


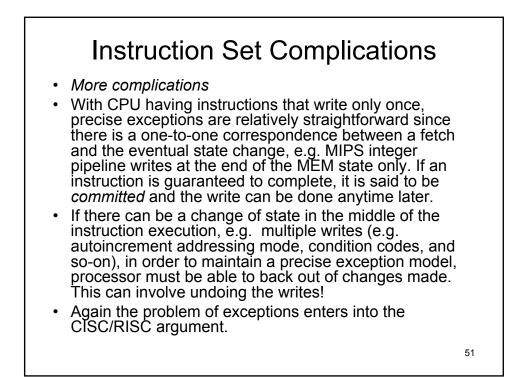

	Basic MIPS pipeline							
Stage	Any instruction							
IF	IF/ID.IR←Mem[PC]; IF/ID.NPC,PC ←(if ((EX/MEM.opcode= {PC+4});	==branch) & EX/MEM.cond) {EX.MI	EM.ALUOutput} else					
ID	ID.EX.A ←Regs[IF/ID.IR[rs]]; ID/EX.B ID/EX.NPC ←IF/ID.NPC; ID/EX.IR ←II ID/EX.Imm ← sign-extend(IF/ID.IR[imm	F/ID.IR;						
	ALU instruction	Load or store instruction	Branch instruction					
EX	EX/MEM.IR ←ID/EX.IR; EX/MEM.ALUOutput ← ID.EX.A func ID/EX.B; or EX/MEM.ALUOutput ← ID/EX.A op ID/EX.Imm;	EX/MEM.IR to ID/EX.IR EX/MEM.ALUOutput ← ID/EX.A + ID/EX.Imm; EX/MEM.B ←ID/EX.B;	EX/MEM.ALUOutput ← ID/EX.NPC + (ID/EX.Imm<<2); EX/MEM.cond ← (ID/EX.A ==0);					
MEM	MEM/WB.IR ←EX/MEM.IR; MEM/WB.ALUOutput ←EX/MEM.ALUOutput;	MEM/WB.IR ←EX/MEM.IR; MEM/WB.LMD ← Mem[EX/MEM.ALUOutput]; or Mem[EX/MEM.ALUOutput] ←EX/MEM.B;						
WB	Regs[MEM/WB.IR[rd]] ←MEM/WB.ALUOutput; or Regs[MEM/WB.IR[rt]] ←MEM/WB.ALUOutput;	For load only; Regs[MEM/WB.IR[rt]] ←MEM/WB.LMD;	41					

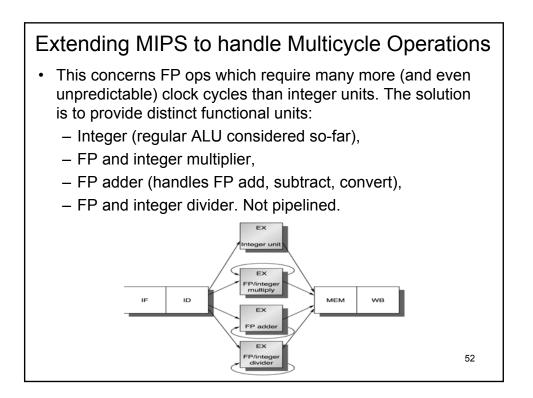

Implementing Control for the MIPS pipeline

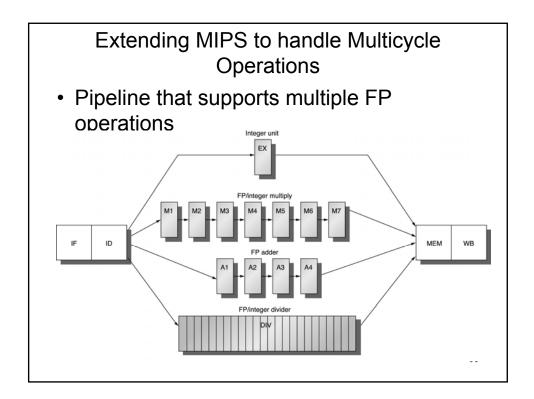

- All data hazards can be checked during ID phase. If exists – stalled before *issued* (ID – EX). Can determine what forwarding will be needed during ID and set controls then.
- · Detect interlocks early!
- Pipeline hazard detection hardware compare destination and sources of adjacent instructions (only need to compare on 2 instructions following instruction that wrote destination)
- Once hazard detected, insert pipeline stall (change instruction to no-op)
- Forwarding from: ALU output, data memory output to

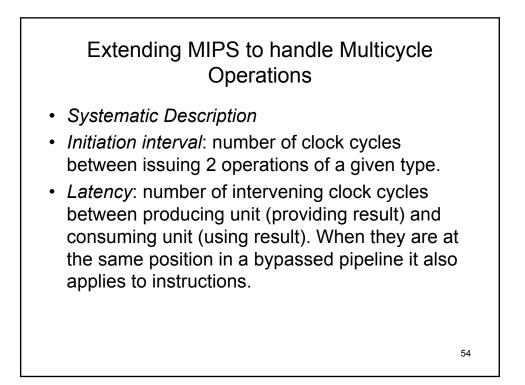

 ALU input, data memory input, zero detection
 - This implies additional multiplexer inputs + add connections from pipeline registers







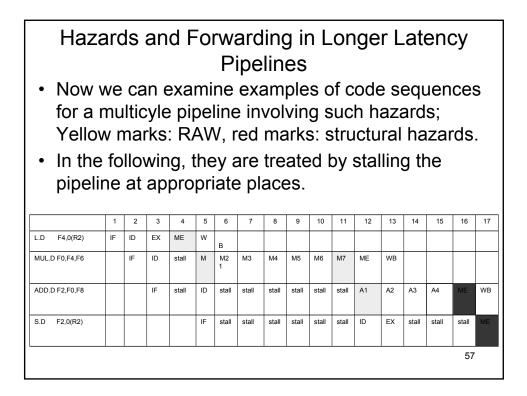

		Exce	eptions		
	A			Detwoor	
I/O	Async.	Coerced	Nonmaskable	Between	Resume
OS Invoke	Sync.	Requested	Nonmaskable	Between	Resume
Trace Instr. ex.	Sync.	Requested	Maskable	Between	Resume
Breakpoint	Sync.	Coerced	Maskable	Between	Resume
Int. Overflow	Sync.	Coerced	Maskable	Within	Resume
FP Exception	Sync.	Coerced	Maskable	Within	Resume
Page Fault	Sync.	Coerced	Nonmaskable	Within	Resume
Misalig. Acc.	Sync.	Coerced	Maskable	Within	Resume
Mem. Protection	Sync.	Coerced	Nonmaskable	Within	Resume
Undef. Instruction	Sync.	Coerced	Nonmaskable	Within	Terminate
Hardw. Fault	Async.	Coerced	Nonmaskable	Within	Terminate
Power Failure	Async.	Coerced	Nonmaskable	Within	Terminate



	E	ксер	tions	s in N	ЛР	S					
 Some 	of the	excep	otions t	hat ca	in ha	ppen:					
IF	Page Fault, misalignment, memory protection										
ID	Undefined instruction										
EX	Arithmetic exception										
MEM	Page Fault, misalignment, memory protection										
WB	None										
Example LD IF DADD	ID IF	EX ID	MEM EX	WB MEM	WB						
Multiple exce arithmetic exc LD and an ins Exceptions ra Solution: Po the pipe whic they can be p	ception. The struction particular ised by LE st all except is checker	ere can a age fault i) must be otions in a ed when t	Ilso be a d n the IF of serviced f a status ve	ata page the DAD first and the ctor asso	fault in t D which nen thos ciated w	the MEM s occurs ease of the D vith each in	stage of the arlier. ADD. nstruction in				

Extending MIPS to handle Multicycle Operations

Functional Unit	Latency	Initiation Interval			
Integer ALU (EX)	0	1			
Data Memory (integer and FP)	1	1			
FP add	3	1			
FP and int. multiply	6	1			
FP and int. divide	23	24			

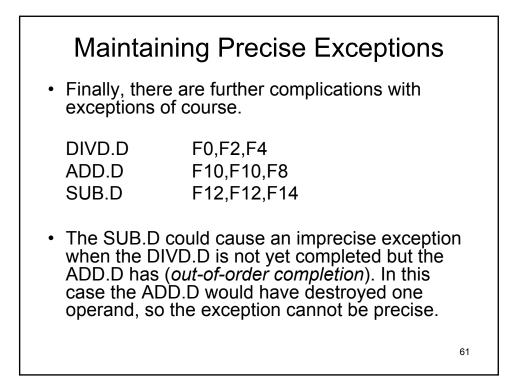

Comments:

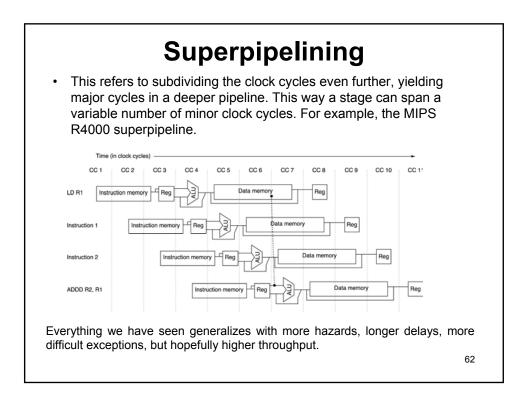
•Possibility for structural hazards, *e.g.* divide unit not pipelined, several instructions could compete to write to register.

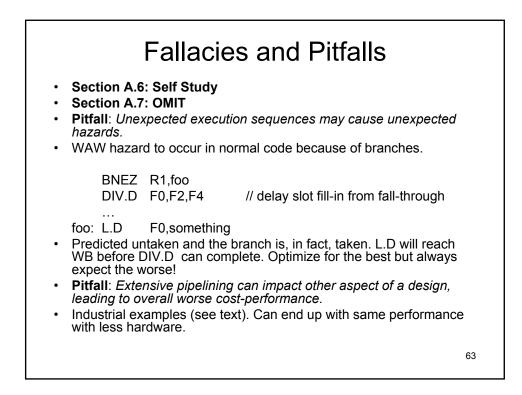
•New kinds of hazards: an instruction fetched after another instruction could write the register before the earliest one! •More and longer stalls.

55

Classification of data hazards We need a way to reason more systematically about data hazards. In the next chapter we will generalize this even further. For now, consider pairs of instructions which *depend* on each other because they share a register written by a producer and read by a consumer instruction. This holds for bypassed data paths since forwarding can only reduce latency but not make it negative! With this in mind, look at all cases: RAW (read after write). A pair of instructions has a consumer trying to read before the producer writes. The most common type: e.g. a = 0; ...; a = 1; b = a + 1, then, we expect b to have the value 2, not 1. WAW (write after write). A pair of instructions are producers but the instruction that writes first appears after in the program: - e.g. a = 1+2; ...;a = 2*3, then, we expect a to have the value 6, not 3. WAR (write after read). A producing instruction occurs after a consuming instruction but writes before the consumer reads: - e.g. a = 1; b = a + 1; a = 2, then, we expect b to have the value 2, not 3.


Haza	rds	s a	nd	F			din elir	-		on	ger	La	ate	nc	y	
 In this exacuses the provident of the second second	men	nory	/ but	at 1	11, tł	nree	instr	uctio	ns c	ompe	ete fo	or th	e re	gist	er	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
MUL.D F0,F4,F6	IF	ID	M1	M2	M3	M4	M5	M6	M7	ME	WB					
		IF	ID	EX	ME	WB										
			IF	ID	EX	ME	WB									
ADD.D F2,F4,F6				IF	ID	A1	A2	A3	A4	ME	WB					
					IF	ID	EX	ME	WB							
						IF	ID	EX	ME	WB						
L.D F2,0(r2)							IF	ID	EX	ME	WB				58	


Hazards and Forwarding in Longer Latency Pipelines


 There is a number of structural hazards. The way they are treated is dependent on the details of hardware design. For example, most machines would not allow two instructions in the same stage to share the same pipe register.

Hazards and Forwarding in Longer Latency Pipelines

- In summary, multicycle operation introduce new kinds of hazards which need to be detected and treated. In general, three checks must be performed before an instruction can *issue*, that is transit from decode to execute. Assuming that all hazard detection is done in the ID stage:
- Check for structural hazards, delay until the required unit is available (e.g. divide unit here).
- Check for RAW hazard. Delay until the source registers are not listed as pending destinations.
- Check for WAW hazard. Delay the instruction ID.

