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Topic 1: Fundamentals of 
Computer Design
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Fundamentals of Computer 
Design

• Introduction

Pentium 3 Coppermine (2000) Cray YMP (1988)

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, 
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

3

Fundamentals of Computer 
Design

Pentium 3 (Coppermine) Cray YMP
Type         Desktop Supercomputer
Year          2000 1988
Clock        1130 MHz 167 MHz
MIPS         > 1000 MIPS < 50 MIPS
Cache       256 KB 0.25 KB
Memory 512 MB 256 MB
Cost $2000 $1,000,000
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Fundamentals of Computer 
Design
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Fundamentals of Computer 
Design

• 16 years: overall progress was a product of 
three factors of improvement:

– Technology, Architecture, Compiler. 
• 1.15 x 1.15 x 1.15 = 1.52 / year. 
• Architecture: Instruction Level Parallelism (ILP), caches, 

RISC

• Now: 20% / year
1. power and heat
2. running out of ILP to exploit
3. memory latency

– Reduce clock frequency
– Multicore
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Classes of computers

Price, power 
consumption, 
application-specific 
performance

Throughput, 
availability, 
scalability

Price-performance, 
graphics 
performance

Critical system 
design issues

$0.01-$100 
(per processor)

$200-$10,000 
(per processor)

$50-$500 
(per processor)

Price of 
microprocessor 
module

$10-$100,000 
(including network 
routers at the high 
end)

$5000-
$5,000,000

$500-$5000Price of system

EmbeddedServerDesktopFeature
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Defining Computer Architecture
– Implementation: how an abstract description 

is turned into hardware.
– The instruction set architecture (ISA) is 

such abstraction. 
• Specification of the functional behavior of a 

processor
• HW / SW interface.
• Assembly language, instruction format, addressing 

modes, programming model
– ADD R1, R2, R3 

– Examples of ISAs
• MIPS64, ARM, PowerPC
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Defining Computer Architecture
• ISA vs. Computer Architecture

– Old definition of computer architecture 
= instruction set design 

• Other aspects of computer design called 
implementation  

• Insinuates implementation is uninteresting or less 
challenging

– Our view is computer architecture >> ISA
– Architect’s job much more than instruction set 

design; technical hurdles today more
challenging than those in instruction set 
design
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Defining Computer Architecture
– Organization: high level aspects of the 

design 
• memory, bus structure, pipeline, cache, branch 

predictors…etc.
• design of these sometimes called “micro-

architecture”.
– It is possible to implement the same

instruction set architecture using different 
organizations, resulting in different systems.

• E.x. Different Bus, memory organization, pipeline 
structure and so-on. E.g. AMD Opteron 64 and 
Intel Pentium 4 (same ISA)
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Defining Computer Architecture
– Hardware refers to the specifics of an 

implementation. 
• For example the Pentium 4 and the Mobile 

Pentium have different hardware.
• Different clock frequencies, different memory 

systems
• Other differences: fabrication technology, 

packaging, clock, etc…
– It is even possible to emulate a function 

normally carried out in hardware (say floating 
point calculations) using software (lists of 
instructions).
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Task of the computer architect

Languages (ANSI C, C++, Java, FORTRAN) affect instruction set (App. B)Programming languages

Support required for different networks: Ethernet, Infiniband (App. E)Networks

UNIX, Windows, Linux, CISCO IOSOperating systems

For I/O devices: Serial ATA, Serial Attach SCSI, PCI Express (Ch. 6, App. E)I/O interfaces

Format and arithmetic: IEEE754 standard (App. I), special arithmetic for graphics or signal processingFloating point

Certain standards may be required by marketplaceStandards

Different OS and application needs; page vs. Segment; virtual machines (Ch. 5)Protection

Required for modern OS; may be paged or segmented (Ch. 5)Memory management

Very important feature (Ch. 5); may limit applicationsSize of address space

Necessary features to support chosen OS (Ch. 5, App. E)Operating system requirements

Instruction set architecture is completely defined-little flexibility-but no investment needed in software or porting 
programs

Object code or binary compatible

Most flexible for designer; need new compiler (Ch. 4, App. B)At programming language

Determines amount of existing software for computerLevel of software compatibility

Often requires special support for graphics or video (or other application-specific extension); power limitations 
and power control may be required (Ch. 2, 3, 5, App. B)

Embedded computing

Support for databases and transaction processing; enhancements for reliability and availability; support of 
scalability (Ch. 4, App. B, E)

Commercial servers

High-performance floating point and graphics (App. I)Scientific desktops and servers

Balanced performance for a range of tasks, including interactive performance for graphics, video, and audio (Ch. 
2,3,5, App. B)

General-purpose desktop

Target of computerApplication area

Typical features required or supportedFunctional requirements
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Trends in Technology
• Valid over long time periods, e.g. ISA can last 

decades
• Integrated circuit logic technology

• Transistor Density: ~ 35%
• Die size: ~ 10-20%

⇒Transistors per chip: ~ 40-55%
• Semiconductor DRAM

• Capacity ~ 40%
• Magnetic disk technology

• Density ~ 30% (2004)
• Network technology
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Performance Trends: Bandwidth over Latency
• Compare ~1980 Archaic vs. ~2000 Modern 
• Performance Milestones in each technology
• Compare for Bandwidth vs. Latency 

improvements in performance over time
• Bandwidth: number of events per unit time

• E.g., M bits / second over network, M bytes / 
second from disk

• Latency: elapsed time for a single event
• E.g., one-way network delay in microseconds, 

average disk access time in milliseconds
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Performance Trends: Bandwidth over Latency
• Disks: Archaic v. Modern

• CDC Wren I, 1983
• 3600 RPM
• 0.03 GBytes capacity
• Tracks/Inch: 800
• Bits/Inch: 9550
• Three 5.25” platters

• Bandwidth: 
0.6 MBytes/sec

• Latency: 48.3 ms
• Cache: none

• Seagate 373453, 2003
• 15000 RPM (4X)
• 73.4 GBytes (2500X)
• Tracks/Inch: 64000 (80X)
• Bits/Inch: 533,000 (60X)
• Four 2.5” platters 

(in 3.5” form factor)
• Bandwidth: 

86 MBytes/sec (140X)
• Latency:  5.7 ms (8X)
• Cache: 8 MBytes
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Performance Trends: Bandwidth over Latency
• Latency Lags Bandwidth (for last ~20 years)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement 

Relative 
BW 

Improve
ment   

Disk 

(Latency improvement 
= Bandwidth improvement)

Performance Milestones

Disk: 3600, 5400, 7200, 10000, 15000 
RPM (8x, 143x)
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Performance Trends: Bandwidth over Latency
• Memory: Archaic  v. Modern 

• 1980 DRAM
(asynchronous)

• 0.06 Mbits/chip
• 64,000 xtors, 35 mm2

• 16-bit data bus per module, 
16 pins/chip

• 13 Mbytes/sec
• Latency: 225 ns
• (no block transfer)

• 2000 Double Data Rate Synchr. 
(clocked) DRAM

• 256.00 Mbits/chip (4000X)
• 256,000,000 xtors, 204 mm2

• 64-bit data bus per 
DIMM, 66 pins/chip (4X)

• 1600 Mbytes/sec (120X)
• Latency: 52 ns (4X)
• Block transfers (page mode)
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Performance Trends: Bandwidth over Latency
• Latency Lags Bandwidth (for last ~20 years)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement 

Relative 
BW 

Improve
ment   

Memory
Disk 

(Latency improvement 
= Bandwidth improvement)

• Performance Milestones

• Memory Module: 16bit plain 
DRAM, Page Mode DRAM, 32b, 
64b, SDRAM, 
DDR SDRAM (4x,120x)

• Disk: 3600, 5400, 7200, 10000, 
15000 RPM (8x, 143x)
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Performance Trends: Bandwidth over Latency
• LANs: Archaic v. Modern 

• Ethernet 802.3
• Year of Standard: 1978
• 10 Mbits/s 

link speed 
• Latency: 3000 µsec
• Shared media
• Coaxial cable

• Ethernet 802.3ae
• Year of Standard: 2003
• 10,000 Mbits/s (1000X)

link speed 
• Latency: 190 µsec (15X)
• Switched media
• Category 5 copper wire
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Performance Trends: Bandwidth over Latency
• Latency Lags Bandwidth (for last ~20 years)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement 

Relative 
BW 

Improve
ment   

Memory

Network

Disk 

(Latency improvement 
= Bandwidth improvement)

• Performance Milestones

• Ethernet: 10Mb, 100Mb, 1000Mb, 10000 
Mb/s (16x,1000x)

• Memory Module: 16bit plain DRAM, 
Page Mode DRAM, 32b, 64b, SDRAM, 
DDR SDRAM (4x,120x)

• Disk: 3600, 5400, 7200, 10000, 15000 
RPM (8x, 143x)
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Performance Trends: Bandwidth over Latency
• CPUs: Archaic v. Modern 

• 1982 Intel 80286 
• 12.5 MHz
• 2 MIPS (peak)
• Latency 320 ns
• 134,000 xtors, 47 mm2

• 16-bit data bus, 68 pins
• Microcode interpreter, 

separate FPU chip
• (no caches)

• 2001 Intel Pentium 4
• 1500 MHz (120X)
• 4500 MIPS (peak) (2250X)
• Latency 15 ns (20X)
• 42,000,000 xtors, 217 mm2

• 64-bit data bus, 423 pins
• 3-way superscalar, Dynamic 

translate to RISC, Superpipelined 
(22 stage), Out-of-Order execution

• On-chip 8KB Data caches, 
96KB Instr. Trace  cache, 
256KB L2 cache
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Performance Trends: Bandwidth over Latency
• Latency Lags Bandwidth (for last ~20 years)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement 

Relative 
BW 

Improve
ment   

Processor

Memory

Network

Disk 

(Latency improvement 
= Bandwidth improvement)

• Performance Milestones
• Processor: ‘286, ‘386, ‘486, 

Pentium, Pentium Pro, Pentium 
4 (21x,2250x)

• Ethernet: 10Mb, 100Mb, 
1000Mb, 10000 Mb/s 
(16x,1000x)

• Memory Module: 16bit plain 
DRAM, Page Mode DRAM, 32b, 
64b, SDRAM, 
DDR SDRAM (4x,120x)

• Disk : 3600, 5400, 7200, 10000, 
15000 RPM (8x, 143x)
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Trends in Technology
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Trends in Technology
• Scaling of Transistor Performance and 

Wires
– Feature size (min size of transistor or wire)

• 1971: 10 µm 
• 2001: 0.18 µm 
• 2002: 0.13 µm 
• 2003: 0.10 µm 
• 2007: 65 nm

– Quadratic increase in density, linear increase 
in performance
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Trends in Technology
• Scaling of Transistor Performance and 

Wires
– ⇒ Architectural improvement!

• 8, 16, 32, 64 bit architectures (buses, ALU’s)
• Pipelines and caches
• Transistor performance benefits from smaller 

resistance and capacitance.
– Interconnect propagation delay major 

problem.
• e.g. Pentium 4 accounts for propagation of signals 

across chip.
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Trends in Technology
• Trends in Power in Integrated Circuits

– Dynamic power: Pdynamic = 1/2 x f x C x V2

• f = clock frequency, C = capacitance 
• V = voltage (5V-> 3.3V-> < 1 V)

– 3.2 GHz Pentium 4 Extreme Edition
• 135 Watts: limits of air cooling

– Temperature diodes used to regulate voltage and clock 
frequency

– Shutdown parts of chip
– Portable computing requires low power.
– Static Power (leakage): Pstatic = Current static x V (25%!!!!!)
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Trends in Technology

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, 
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

27

Trends in Technology

• Example:
• Some microprocessors have adjustable 

voltage. A 15% reduction in voltage 
results in a 15% reduction in frequency.

• What is the impact on the dynamic 
power?
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Trends in Technology

• Other “Famous” Predictions
– “There is no reason for any individual to 

have a computer in his home.”
Kenneth H. Olson, President of DEC,
Convention of the World Future Society, 1977

– “640 kilobytes (of computer memory) ought 
to be enough for anybody.”

Bill Gates, Founder and head of Microsoft, 1981
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Trends in Cost
• What is the nature of the cost-performance 

tradeoff? 
• Driven by cost of components 

– one important aspect is their change over 
time.

• Time and volume
• Manufacturing learning curve –best 

measured by yield (# good chips / total # 
of chips made) 
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Trends in Cost
– Yield improves with time. 
– Doubling the yield halves the cost. 

• Example: DRAM chips have strange business 
behaviors because of rapid changes (40 % / year 
drop in price per megabyte over long term) –
sometimes sell at loss!

– Microprocessors are less predictable. 
• Roughly cost decreases 10% for volume doubling 

(learning curve improves with each chip made, 
efficiency increase, amortize development costs)

• Expansion of low-end market has produced 
"commoditization" with fierce competition and razor-
thin margins.
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Trends in Cost

Prices of six generations of DRAMs over time since 1977 in dollars.
This shows the importance of the learning curve.
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Trends in Cost

Price of Pentium 4 and Pentium M at a given frequency decreases over time 
as yield enhancements decrease the cost of a good die and competition forces 
price reductions.



9

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, 
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

33

Cost of an Integrated Circuit
• Manufacturing Steps.

– Silicon Crystal Growth extracted from molten silicon 
bath

– Processed (cleaned to very high level of purity) into 
cylinder

– Cylinder sliced to make wafers
– Wafers cleaned, polished and chemically 

processed
– Long sequence of steps involving deposit and 

removal of substances to etch the circuit according 
to patterns specified by optical masks.

– Dies cut, tested and packaged.
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Cost of an Integrated Circuit

300mm AMD Opteron WAFER in 90nm process(117 processors)
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Cost of an Integrated Circuit
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Cost of an Integrated Circuit
• Cost model

DieYield is from an empirical formula where α reflect the number 
of process steps (complexity). 
α can be of the order of 3 or 4. 
DefectDensity is of the order of 0.4--0.8/cm2.
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Cost of an Integrated Circuit
• Example:

– Find the number of dies per 300 mm wafer for 
a die 1.5 cm on a side
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Cost of an Integrated Circuit
• Example:

– Find the die yield for dies: i) 1.5 cm on a side, 
and ii) 1.0 cm on a side 
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Cost of an Integrated Circuit

• Example:  
– $2000 / wafer, 350 raw dies / wafer
– 60% good dies, $80 to test wafer, 
– $4/unit to package and final test, 97% final test 

yield
• DieCost = 
• DieTestCost (good dies) = 
• ICCost = 

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, 
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

40

Cost of an Integrated Circuit

CS252/Patterson
Lec 2.211/19/01

Real World Examples

Chip Metal Line W afer Defect Area Dies/ Yield Die Cost
layers w idth cost /cm 2 m m 2 w afer

386DX 2 0.90 $900 1.0 43 360 71% $4 
486DX2 3 0.80 $1200 1.0 81 181 54% $12 
Pow erPC 601 4 0.80 $1700 1.3 121 115 28% $53 
HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73 
DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149 
SuperSPARC 3 0.70 $1700 1.6 256 48 13% $272 
Pentium 3 0.80 $1500 1.5 296 40 9% $417 

– From  "Estim ating IC  Manufacturing Costs,” by Linley Gw ennap, 
Microprocessor Report, August 2, 1993, p. 15
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Cost of an Integrated Circuit
• Dependability

– Historically, integrated circuits were very reliable, 
error rates inside chips was very low.

– 65nm and smaller: transient and permanent 
faults

– Service Level Agreement (SLA) – provided pays 
customer a penalty if the system is down more 
than a certain number of hours a month

• Two states: 
– Service accomplishment (if service is delivers as specified)
– Service interruption (if service is different from SLA)
– Failures (state 1->2) and restorations (states 2->1). 

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, 
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

42

Cost of an Integrated Circuit

• Quantify: Reliability and Availability
– Module Reliability: Mean Time To Failure 

(MTTF)
– MTTF^-1 failure rate (Failures in Time or 

FIT) reported as failures per billion hours of 
operation

• e.g. MTTF = 1,000,000 hours 10^9/10^6 = 1000 
FIT

– Service time: Mean Time To Repair (MTTR)
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Cost of an Integrated Circuit
• Quantify: Reliability and Availability

– Mean Time Between Failures (MTBF)
– MTBF = MTTF + MTTR

• Module Availability:
– Module availability = MTTF / MTBF
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Cost of an Integrated Circuit
• Example: Disk subsystem

• 10 disks, each rated at 1,000,000 hour MTTF
• 1 SCSI controller, 500,000 hour MTTF
• 1 power supply, 200,000 hour MTTF
• 1 fan, 200,000 hour MTTF
• 1 SCSI cable, 1,000,000 hour MTTF

– Assume that failures are independent. Assume 
exponentially distributed lifetimes (the age of a module 
is not important in the probability of failure, hence the 
overall failure rate of the collection is the sum of the 
failure rates of the modules)

– Compute the MTTF of the disk subsystem.
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Measuring and Reporting Performance

• How to measure performance?
– There are two aspects:

• Response time (latency) (needed to get a result from the 
givens).

• Throughput (bandwidth) (how much computation per unit of 
time). 

– Example: Montreal to Paris
Aircraft  Time (response time)   Speed     Passengers  pmph (throughput)

747 6.5 hours 610 mph       470 286,700
Concorde   3 hours 1350 mph      132 178,200

– Computer user might be interested in response time, 
while manager of a server might be interested in 
throughput.
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Measuring and Reporting Performance

• Relative performance: “X is n times faster 
than Y”

• How do you measure “time”? 
• The only consistent and reliable measure 

of performance is the execution time of 
real programs. 

n =
ExecTimeY
ExecTimeX

=
1 / PerformanceY
1 / PerformanceX

=
PerformanceX
PerformanceY
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Measuring and Reporting Performance

• Different “Times”
– Wall-clock time is the elapsed time to 

complete a task. This includes I/O, memory, 
OS overhead, …, everything. With 
multiprogramming and multitasking (as in 
UNIX), for a given task, it changes with the 
load.

– CPU time is the time spent by the CPU on 
behalf of one task. It is subdivided into user 
CPU time (time spent by the CPU running 
user code) and system CPU time (time spent 
running OS code on the behalf of the user).

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, 
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

48

Measuring and Reporting Performance

• Different “Times”
– The UNIX time command reports all three.

• For example
• prompt$ time sleep 5
• 0.00u 0.02s 0:05.02 0.3%

– tells us that the sleep 5 command spent 
(almost) no CPU time to run, 20 milliseconds 
to execute OS code and that the elapsed was 
5.02 s (per the definition of sleep). It also says 
that (0.0+0.02)/5.02=0.3% of the elapsed time 
was to do some work.
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Measuring and Reporting Performance
• What is a task?

– We want to be able to predict the performance of 
a computer: how do we evaluate performance?

1. Real applications: C compiler (if you are code 
developer), TeX if you are a typesetter, Photoshop if 
you are a graphic designer, Spice if you are an 
electronic engineer, MatLab, and so-on.

2. Kernels: A general principle about computing (Knuth) 
is that programs tend to spend most of their time in a 
very small portion of the code. (For example, the 
integrator routine in MathLab, searching and sorting 
while compiling, manipulating matrices in scientific 
code).
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Measuring and Reporting Performance

3. Toy benchmarks: Small and interesting programs, 
Sieve of Eratosthenes (prime numbers), Towers of 
Hanoi, Puzzles, Quicksort.

• 4. Synthetic Benchmarks: Attempt of reproduce the 
load of a set of programs. 

– Benchmark suites: a collection of benchmark 
applications.

• SPEC (Standard Performance Evaluation 
Committee, www.spec.org) is a consortium 
dedicated to the design of documented 
benchmarks suites. 
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Measuring and Reporting Performance
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Measuring and Reporting Performance

• Summarizing Performance Results of a 
Benchmark Suite in single number
– Consistent summary measure: total execution time
– Example:           Computer A Computer B

Program 1 1 10
Program 2 1000 100
Total 1001 110

• A is 10x faster than B for P1
• B is 10x faster than A for P2

– Perf. B / Perf. A= Exec Time A / Exec Time B = 
1001/110 = 9.1

• B is 9.1 x faster than A if Program 1 and Program 2 are 
run an equal # of times
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Measuring and Reporting Performance

• The arithmetic mean tracks the total execution time. For 
n programs,

• What if some programs have a much longer execution 
time than others? This will bias the arithmetic mean 
towards those programs, so we can choose weights:

ArithmeticMean =
1
n

Time i
i=1

n
∑

∑
=

=
n

i
iitimeweightanithmeticMeWeightedAr

1
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Measuring and Reporting Performance

• The SPEC consortium is composed of competing 
companies who might have their own choice of favorite 
weights, so one approach is to choose weights to 
equalize running times:

Weight i =
1

Time i ×
1

Time i

 

 
 

 

 
 

i=1

n

∑
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Measuring and Reporting Performance

• Ratios
– Another approach is to normalize execution 

times relative to a reference computer 
(SPECRatio = exec time ref / exec time).

– i.e. if the SPECRatio n of computer A on a 
benchmark is 1.25 times higher than computer 
B then

1.25 = SPECRatioA / SPECRatioB =(tref/tA)/(tref/tB)= 
=tB / tA = perf A / perf B

– The choice of reference computer is not 
important.
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Measuring and Reporting Performance

• Ratios
– Normalized times to a reference machine must be 

averaged geometrically:

– In the case of SPEC, samplei is the SPECRatio
– Note that the geometric mean of the ratios is equal to 

the ratio of the geometric means and the relative 
results do not depend on the machine taken as 
reference.

n
n

i
isampleeanGeometricM ∏

=

=
1
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Measuring and Reporting Performance

• We can use the standard deviation to 
characterize how much variability there is 
around the mean.

• The geometric standard deviation is:

∑
=

−=
n

i
i Meansamplestdev

1

2)(

)
))ln()(ln(

exp( 1

2

n

eanGeometricMsample
gstdev

n

i
i∑

=

−
=

))ln(1exp(
1

∑
=

⋅=
n

i
isample

n
eanGeometricM
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Measuring and Reporting Performance

• Figure 1.14
– Example on page 37: The geometric means 

are calculated from data in Figure 1.14 for an 
Opteron and an Itanium 2. The Itanium 2’s 
mean is higher than the Opteron’s (27.12 vs
20.86) but the standard deviation for the 
Itanium 2 is much higher (1.93 vs. 1.38) 
indicating that the results differ more widely 
from the mean and are therefore likely less 
predictable.
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Quantitative Principles of Computer Design

• Take advantage of parallelism 
• Principle of locality
• Focus on the common case

– Parallelism is related to performing many operations 
simultaneously. It is applicable to single processor or to 
memory management as well. In fact, modern CPUs can 
executes 10’s of instructions simultaneously and perform 
many memory transactions simultaneously. It is applicable to 
basic circuits (such as carry-look-ahead adders) to entire 
systems (many CPU or hard drives operating simultaneously).

– One example of parallelism at the instruction level that we will exploit 
is called pipelining. We will overlap the execution of several 
instructions that the total time to execute the sequence is reduced.
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Quantitative Principles of Computer Design

• The principle of locality:
– Typically, a program spends 90% of its time 

executing only 10% of the code. Most 
programs are, by definition, highly structured. 
They rarely use data and instructions in a 
completely random fashion. 

– Using this principle, we will be able to predict 
which instructions and data a program will use 
in the near future with reasonable accuracy 
based on its accesses in the recent past.
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Quantitative Principles of Computer Design
• The principle of locality:

– Temporal locality states that recently accessed 
items are likely to be accessed again in the near 
future. Spatial locality says that items who’s 
addresses (in memory) are near one another 
tend to be referenced close together in time.

• Make the common case fast.
– The impact of an improvement to a system is 

higher if the occurrence is frequent. So, when 
making choices in design favor the frequent 
case over the infrequent ones. 
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Quantitative Principles of Computer Design

• Amdahl’s law (1967) captures this quantitatively. 
It was used to make the case for single CPU 
processors. 
– Suppose we have an enhancement for a given 

design.

SpeedUp =
ExecTimeBase

ExecTimeEnhanced
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Quantitative Principles of Computer Design
• Define FractionEnhanced, the fraction of computation 

time concerned by an enhancement. This fraction is 
sped up by SpeedUpEnhanced.

• Remember, FractionEnhanced is the fraction of time that 
can be converted to use an enhancement, NOT the 
fraction of time that the enhanced portion takes after the 
enhancement.

ExecTimeEnhanced = ExecTimeBase × 1− FractionEnhanced( )+
FractionEnhanced
SpeedUpEnhanced

 

 
 

 

 
 

SpeedUp =
1

1−FractionEnhanced( )+ FractionEnhanced
SpeedUpEnhanced
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Quantitative Principles of Computer Design

• Computer example: 
– Consider the enhancement to a processor for 

Web serving. New CPU is 10 x faster than 
original for Web serving. Original CPU busy 
with computation 40% of time and is waiting 
for I/O 60% of time. What is overall speedup 
gained by enhancement? 

– Only spends 40% doing work so limited by 
that amount.
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Quantitative Principles of Computer Design

• Reliability example
– The power supply of the disk subsystem in 

the last reliability example was improved from 
200,000 hour to 830,000,000 hour MTTF 
(4150x better) by adding a redundant power 
supply. What is the reliability improvement by 
adding the redundant power supply?
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Quantitative Principles of Computer 
Design

• Amdahl’s Law express the low of 
diminishing returns
– Incremental improvement in speedup gained 

by an improvement of just a portion of the 
computation diminishes as improvements are 
added.

• Corollary
– If an enhancement is only usable for a fraction 

of a task, we can’t speed up the task by more 
then the reciprocal of 1 minus that fraction.
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Quantitative Principles of Computer Design
• CPU Performance

– Total CPU time for a task (CPU is a clock driven 
sequential circuit):

– Programs (tasks) are made of lists of instructions:

CPU_Time= ClockCycles×ClockCycleTime = ClockCycles×
1

ClockRate

ClockCyclesPerInstruction = CPI =
ClockCycles

InstructionCount

CPU_Time = InstructionCount × CPI× ClockCycleTime

CPU_Time=
Instructions
Program

×
ClockCycles
Instructions

×
Seconds
ClockCycle
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Quantitative Principles of Computer Design
• CPU Performance

– Significance: 
• First factor is a function of the ISA and of the 

compiler technology.
• Second factor is a function of the organization 

and of the compiler.
• Third factor is a function of the organization and 

of the technology.
– Faced with a giant tradeoff! The art of 

computer design is contained in this formula.

CPU_Time=
Instructions
Program

×
ClockCycles
Instructions

×
Seconds
ClockCycle
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Quantitative Principles of Computer Design
– How to improve a factor without affecting 

the others?
– It is useful to breakdown this into more 

components, i.e. by classes of 
instructions.

which breaks down the problem into the 
design of classes of instructions. 

ClockCycles = IC i × CPI i
i= 1

n

∑

CPI =
IC i

InstructionCount
× CPI i

i = 1

n
∑
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Quantitative Principles of Computer Design
– (e.g. Total CC = Number of FP operations occurring in 

program x number of clocks for a FP operation + number 
integer operations x clocks for integer operations …) 

– This also define the notion of instruction mix, which is the 
relative frequency of occurrence of classes of instructions 
(e.g. branches, FP, …), say in a given benchmark.

– Ex. gcc
Op Freq CPIi Term
ALU 50% 1 0.5
Load 20% 2 0.4
Store 10% 2 0.2
Branch 20% 2 0.4

CPI= 1.5


