
1

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

1

Topic 1: Fundamentals of
Computer Design

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

2

Fundamentals of Computer
Design

• Introduction

Pentium 3 Coppermine (2000) Cray YMP (1988)

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

3

Fundamentals of Computer
Design

Pentium 3 (Coppermine) Cray YMP
Type Desktop Supercomputer
Year 2000 1988
Clock 1130 MHz 167 MHz
MIPS > 1000 MIPS < 50 MIPS
Cache 256 KB 0.25 KB
Memory 512 MB 256 MB
Cost $2000 $1,000,000

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

4

Fundamentals of Computer
Design

2

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

5

Fundamentals of Computer
Design

• 16 years: overall progress was a product of
three factors of improvement:

– Technology, Architecture, Compiler.
• 1.15 x 1.15 x 1.15 = 1.52 / year.
• Architecture: Instruction Level Parallelism (ILP), caches,

RISC

• Now: 20% / year
1. power and heat
2. running out of ILP to exploit
3. memory latency

– Reduce clock frequency
– Multicore

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

6

Classes of computers

Price, power
consumption,
application-specific
performance

Throughput,
availability,
scalability

Price-performance,
graphics
performance

Critical system
design issues

$0.01-$100
(per processor)

$200-$10,000
(per processor)

$50-$500
(per processor)

Price of
microprocessor
module

$10-$100,000
(including network
routers at the high
end)

$5000-
$5,000,000

$500-$5000Price of system

EmbeddedServerDesktopFeature

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

7

Defining Computer Architecture
– Implementation: how an abstract description

is turned into hardware.
– The instruction set architecture (ISA) is

such abstraction.
• Specification of the functional behavior of a

processor
• HW / SW interface.
• Assembly language, instruction format, addressing

modes, programming model
– ADD R1, R2, R3

– Examples of ISAs
• MIPS64, ARM, PowerPC

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

8

Defining Computer Architecture
• ISA vs. Computer Architecture

– Old definition of computer architecture
= instruction set design

• Other aspects of computer design called
implementation

• Insinuates implementation is uninteresting or less
challenging

– Our view is computer architecture >> ISA
– Architect’s job much more than instruction set

design; technical hurdles today more
challenging than those in instruction set
design

3

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

9

Defining Computer Architecture
– Organization: high level aspects of the

design
• memory, bus structure, pipeline, cache, branch

predictors…etc.
• design of these sometimes called “micro-

architecture”.
– It is possible to implement the same

instruction set architecture using different
organizations, resulting in different systems.

• E.x. Different Bus, memory organization, pipeline
structure and so-on. E.g. AMD Opteron 64 and
Intel Pentium 4 (same ISA)

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

10

Defining Computer Architecture
– Hardware refers to the specifics of an

implementation.
• For example the Pentium 4 and the Mobile

Pentium have different hardware.
• Different clock frequencies, different memory

systems
• Other differences: fabrication technology,

packaging, clock, etc…
– It is even possible to emulate a function

normally carried out in hardware (say floating
point calculations) using software (lists of
instructions).

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

11

Task of the computer architect

Languages (ANSI C, C++, Java, FORTRAN) affect instruction set (App. B)Programming languages

Support required for different networks: Ethernet, Infiniband (App. E)Networks

UNIX, Windows, Linux, CISCO IOSOperating systems

For I/O devices: Serial ATA, Serial Attach SCSI, PCI Express (Ch. 6, App. E)I/O interfaces

Format and arithmetic: IEEE754 standard (App. I), special arithmetic for graphics or signal processingFloating point

Certain standards may be required by marketplaceStandards

Different OS and application needs; page vs. Segment; virtual machines (Ch. 5)Protection

Required for modern OS; may be paged or segmented (Ch. 5)Memory management

Very important feature (Ch. 5); may limit applicationsSize of address space

Necessary features to support chosen OS (Ch. 5, App. E)Operating system requirements

Instruction set architecture is completely defined-little flexibility-but no investment needed in software or porting
programs

Object code or binary compatible

Most flexible for designer; need new compiler (Ch. 4, App. B)At programming language

Determines amount of existing software for computerLevel of software compatibility

Often requires special support for graphics or video (or other application-specific extension); power limitations
and power control may be required (Ch. 2, 3, 5, App. B)

Embedded computing

Support for databases and transaction processing; enhancements for reliability and availability; support of
scalability (Ch. 4, App. B, E)

Commercial servers

High-performance floating point and graphics (App. I)Scientific desktops and servers

Balanced performance for a range of tasks, including interactive performance for graphics, video, and audio (Ch.
2,3,5, App. B)

General-purpose desktop

Target of computerApplication area

Typical features required or supportedFunctional requirements

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

12

Trends in Technology
• Valid over long time periods, e.g. ISA can last

decades
• Integrated circuit logic technology

• Transistor Density: ~ 35%
• Die size: ~ 10-20%

⇒Transistors per chip: ~ 40-55%
• Semiconductor DRAM

• Capacity ~ 40%
• Magnetic disk technology

• Density ~ 30% (2004)
• Network technology

4

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

13

Performance Trends: Bandwidth over Latency
• Compare ~1980 Archaic vs. ~2000 Modern
• Performance Milestones in each technology
• Compare for Bandwidth vs. Latency

improvements in performance over time
• Bandwidth: number of events per unit time

• E.g., M bits / second over network, M bytes /
second from disk

• Latency: elapsed time for a single event
• E.g., one-way network delay in microseconds,

average disk access time in milliseconds

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

14

Performance Trends: Bandwidth over Latency
• Disks: Archaic v. Modern

• CDC Wren I, 1983
• 3600 RPM
• 0.03 GBytes capacity
• Tracks/Inch: 800
• Bits/Inch: 9550
• Three 5.25” platters

• Bandwidth:
0.6 MBytes/sec

• Latency: 48.3 ms
• Cache: none

• Seagate 373453, 2003
• 15000 RPM (4X)
• 73.4 GBytes (2500X)
• Tracks/Inch: 64000 (80X)
• Bits/Inch: 533,000 (60X)
• Four 2.5” platters

(in 3.5” form factor)
• Bandwidth:

86 MBytes/sec (140X)
• Latency: 5.7 ms (8X)
• Cache: 8 MBytes

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

15

Performance Trends: Bandwidth over Latency
• Latency Lags Bandwidth (for last ~20 years)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative
BW

Improve
ment

Disk

(Latency improvement
= Bandwidth improvement)

Performance Milestones

Disk: 3600, 5400, 7200, 10000, 15000
RPM (8x, 143x)

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

16

Performance Trends: Bandwidth over Latency
• Memory: Archaic v. Modern

• 1980 DRAM
(asynchronous)

• 0.06 Mbits/chip
• 64,000 xtors, 35 mm2

• 16-bit data bus per module,
16 pins/chip

• 13 Mbytes/sec
• Latency: 225 ns
• (no block transfer)

• 2000 Double Data Rate Synchr.
(clocked) DRAM

• 256.00 Mbits/chip (4000X)
• 256,000,000 xtors, 204 mm2

• 64-bit data bus per
DIMM, 66 pins/chip (4X)

• 1600 Mbytes/sec (120X)
• Latency: 52 ns (4X)
• Block transfers (page mode)

5

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

17

Performance Trends: Bandwidth over Latency
• Latency Lags Bandwidth (for last ~20 years)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative
BW

Improve
ment

Memory
Disk

(Latency improvement
= Bandwidth improvement)

• Performance Milestones

• Memory Module: 16bit plain
DRAM, Page Mode DRAM, 32b,
64b, SDRAM,
DDR SDRAM (4x,120x)

• Disk: 3600, 5400, 7200, 10000,
15000 RPM (8x, 143x)

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

18

Performance Trends: Bandwidth over Latency
• LANs: Archaic v. Modern

• Ethernet 802.3
• Year of Standard: 1978
• 10 Mbits/s

link speed
• Latency: 3000 µsec
• Shared media
• Coaxial cable

• Ethernet 802.3ae
• Year of Standard: 2003
• 10,000 Mbits/s (1000X)

link speed
• Latency: 190 µsec (15X)
• Switched media
• Category 5 copper wire

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

19

Performance Trends: Bandwidth over Latency
• Latency Lags Bandwidth (for last ~20 years)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative
BW

Improve
ment

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

• Performance Milestones

• Ethernet: 10Mb, 100Mb, 1000Mb, 10000
Mb/s (16x,1000x)

• Memory Module: 16bit plain DRAM,
Page Mode DRAM, 32b, 64b, SDRAM,
DDR SDRAM (4x,120x)

• Disk: 3600, 5400, 7200, 10000, 15000
RPM (8x, 143x)

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

20

Performance Trends: Bandwidth over Latency
• CPUs: Archaic v. Modern

• 1982 Intel 80286
• 12.5 MHz
• 2 MIPS (peak)
• Latency 320 ns
• 134,000 xtors, 47 mm2

• 16-bit data bus, 68 pins
• Microcode interpreter,

separate FPU chip
• (no caches)

• 2001 Intel Pentium 4
• 1500 MHz (120X)
• 4500 MIPS (peak) (2250X)
• Latency 15 ns (20X)
• 42,000,000 xtors, 217 mm2

• 64-bit data bus, 423 pins
• 3-way superscalar, Dynamic

translate to RISC, Superpipelined
(22 stage), Out-of-Order execution

• On-chip 8KB Data caches,
96KB Instr. Trace cache,
256KB L2 cache

6

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

21

Performance Trends: Bandwidth over Latency
• Latency Lags Bandwidth (for last ~20 years)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative
BW

Improve
ment

Processor

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

• Performance Milestones
• Processor: ‘286, ‘386, ‘486,

Pentium, Pentium Pro, Pentium
4 (21x,2250x)

• Ethernet: 10Mb, 100Mb,
1000Mb, 10000 Mb/s
(16x,1000x)

• Memory Module: 16bit plain
DRAM, Page Mode DRAM, 32b,
64b, SDRAM,
DDR SDRAM (4x,120x)

• Disk : 3600, 5400, 7200, 10000,
15000 RPM (8x, 143x)

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

22

Trends in Technology

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

23

Trends in Technology
• Scaling of Transistor Performance and

Wires
– Feature size (min size of transistor or wire)

• 1971: 10 µm
• 2001: 0.18 µm
• 2002: 0.13 µm
• 2003: 0.10 µm
• 2007: 65 nm

– Quadratic increase in density, linear increase
in performance

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

24

Trends in Technology
• Scaling of Transistor Performance and

Wires
– ⇒ Architectural improvement!

• 8, 16, 32, 64 bit architectures (buses, ALU’s)
• Pipelines and caches
• Transistor performance benefits from smaller

resistance and capacitance.
– Interconnect propagation delay major

problem.
• e.g. Pentium 4 accounts for propagation of signals

across chip.

7

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

25

Trends in Technology
• Trends in Power in Integrated Circuits

– Dynamic power: Pdynamic = 1/2 x f x C x V2

• f = clock frequency, C = capacitance
• V = voltage (5V-> 3.3V-> < 1 V)

– 3.2 GHz Pentium 4 Extreme Edition
• 135 Watts: limits of air cooling

– Temperature diodes used to regulate voltage and clock
frequency

– Shutdown parts of chip
– Portable computing requires low power.
– Static Power (leakage): Pstatic = Current static x V (25%!!!!!)

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

26

Trends in Technology

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

27

Trends in Technology

• Example:
• Some microprocessors have adjustable

voltage. A 15% reduction in voltage
results in a 15% reduction in frequency.

• What is the impact on the dynamic
power?

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

28

Trends in Technology

• Other “Famous” Predictions
– “There is no reason for any individual to

have a computer in his home.”
Kenneth H. Olson, President of DEC,
Convention of the World Future Society, 1977

– “640 kilobytes (of computer memory) ought
to be enough for anybody.”

Bill Gates, Founder and head of Microsoft, 1981

8

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

29

Trends in Cost
• What is the nature of the cost-performance

tradeoff?
• Driven by cost of components

– one important aspect is their change over
time.

• Time and volume
• Manufacturing learning curve –best

measured by yield (# good chips / total #
of chips made)

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

30

Trends in Cost
– Yield improves with time.
– Doubling the yield halves the cost.

• Example: DRAM chips have strange business
behaviors because of rapid changes (40 % / year
drop in price per megabyte over long term) –
sometimes sell at loss!

– Microprocessors are less predictable.
• Roughly cost decreases 10% for volume doubling

(learning curve improves with each chip made,
efficiency increase, amortize development costs)

• Expansion of low-end market has produced
"commoditization" with fierce competition and razor-
thin margins.

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

31

Trends in Cost

Prices of six generations of DRAMs over time since 1977 in dollars.
This shows the importance of the learning curve.

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

32

Trends in Cost

Price of Pentium 4 and Pentium M at a given frequency decreases over time
as yield enhancements decrease the cost of a good die and competition forces
price reductions.

9

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

33

Cost of an Integrated Circuit
• Manufacturing Steps.

– Silicon Crystal Growth extracted from molten silicon
bath

– Processed (cleaned to very high level of purity) into
cylinder

– Cylinder sliced to make wafers
– Wafers cleaned, polished and chemically

processed
– Long sequence of steps involving deposit and

removal of substances to etch the circuit according
to patterns specified by optical masks.

– Dies cut, tested and packaged.

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

34

Cost of an Integrated Circuit

300mm AMD Opteron WAFER in 90nm process(117 processors)

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

35

Cost of an Integrated Circuit

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

36

Cost of an Integrated Circuit
• Cost model

DieYield is from an empirical formula where α reflect the number
of process steps (complexity).
α can be of the order of 3 or 4.
DefectDensity is of the order of 0.4--0.8/cm2.

10

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

37

Cost of an Integrated Circuit
• Example:

– Find the number of dies per 300 mm wafer for
a die 1.5 cm on a side

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

38

Cost of an Integrated Circuit
• Example:

– Find the die yield for dies: i) 1.5 cm on a side,
and ii) 1.0 cm on a side

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

39

Cost of an Integrated Circuit

• Example:
– $2000 / wafer, 350 raw dies / wafer
– 60% good dies, $80 to test wafer,
– $4/unit to package and final test, 97% final test

yield
• DieCost =
• DieTestCost (good dies) =
• ICCost =

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

40

Cost of an Integrated Circuit

CS252/Patterson
Lec 2.211/19/01

Real World Examples

Chip Metal Line W afer Defect Area Dies/ Yield Die Cost
layers w idth cost /cm 2 m m 2 w afer

386DX 2 0.90 $900 1.0 43 360 71% $4
486DX2 3 0.80 $1200 1.0 81 181 54% $12
Pow erPC 601 4 0.80 $1700 1.3 121 115 28% $53
HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73
DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149
SuperSPARC 3 0.70 $1700 1.6 256 48 13% $272
Pentium 3 0.80 $1500 1.5 296 40 9% $417

– From "Estim ating IC Manufacturing Costs,” by Linley Gw ennap,
Microprocessor Report, August 2, 1993, p. 15

11

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

41

Cost of an Integrated Circuit
• Dependability

– Historically, integrated circuits were very reliable,
error rates inside chips was very low.

– 65nm and smaller: transient and permanent
faults

– Service Level Agreement (SLA) – provided pays
customer a penalty if the system is down more
than a certain number of hours a month

• Two states:
– Service accomplishment (if service is delivers as specified)
– Service interruption (if service is different from SLA)
– Failures (state 1->2) and restorations (states 2->1).

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

42

Cost of an Integrated Circuit

• Quantify: Reliability and Availability
– Module Reliability: Mean Time To Failure

(MTTF)
– MTTF^-1 failure rate (Failures in Time or

FIT) reported as failures per billion hours of
operation

• e.g. MTTF = 1,000,000 hours 10^9/10^6 = 1000
FIT

– Service time: Mean Time To Repair (MTTR)

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

43

Cost of an Integrated Circuit
• Quantify: Reliability and Availability

– Mean Time Between Failures (MTBF)
– MTBF = MTTF + MTTR

• Module Availability:
– Module availability = MTTF / MTBF

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

44

Cost of an Integrated Circuit
• Example: Disk subsystem

• 10 disks, each rated at 1,000,000 hour MTTF
• 1 SCSI controller, 500,000 hour MTTF
• 1 power supply, 200,000 hour MTTF
• 1 fan, 200,000 hour MTTF
• 1 SCSI cable, 1,000,000 hour MTTF

– Assume that failures are independent. Assume
exponentially distributed lifetimes (the age of a module
is not important in the probability of failure, hence the
overall failure rate of the collection is the sum of the
failure rates of the modules)

– Compute the MTTF of the disk subsystem.

12

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

45

Measuring and Reporting Performance

• How to measure performance?
– There are two aspects:

• Response time (latency) (needed to get a result from the
givens).

• Throughput (bandwidth) (how much computation per unit of
time).

– Example: Montreal to Paris
Aircraft Time (response time) Speed Passengers pmph (throughput)

747 6.5 hours 610 mph 470 286,700
Concorde 3 hours 1350 mph 132 178,200

– Computer user might be interested in response time,
while manager of a server might be interested in
throughput.

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

46

Measuring and Reporting Performance

• Relative performance: “X is n times faster
than Y”

• How do you measure “time”?
• The only consistent and reliable measure

of performance is the execution time of
real programs.

n =
ExecTimeY
ExecTimeX

=
1 / PerformanceY
1 / PerformanceX

=
PerformanceX
PerformanceY

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

47

Measuring and Reporting Performance

• Different “Times”
– Wall-clock time is the elapsed time to

complete a task. This includes I/O, memory,
OS overhead, …, everything. With
multiprogramming and multitasking (as in
UNIX), for a given task, it changes with the
load.

– CPU time is the time spent by the CPU on
behalf of one task. It is subdivided into user
CPU time (time spent by the CPU running
user code) and system CPU time (time spent
running OS code on the behalf of the user).

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

48

Measuring and Reporting Performance

• Different “Times”
– The UNIX time command reports all three.

• For example
• prompt$ time sleep 5
• 0.00u 0.02s 0:05.02 0.3%

– tells us that the sleep 5 command spent
(almost) no CPU time to run, 20 milliseconds
to execute OS code and that the elapsed was
5.02 s (per the definition of sleep). It also says
that (0.0+0.02)/5.02=0.3% of the elapsed time
was to do some work.

13

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

49

Measuring and Reporting Performance
• What is a task?

– We want to be able to predict the performance of
a computer: how do we evaluate performance?

1. Real applications: C compiler (if you are code
developer), TeX if you are a typesetter, Photoshop if
you are a graphic designer, Spice if you are an
electronic engineer, MatLab, and so-on.

2. Kernels: A general principle about computing (Knuth)
is that programs tend to spend most of their time in a
very small portion of the code. (For example, the
integrator routine in MathLab, searching and sorting
while compiling, manipulating matrices in scientific
code).

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

50

Measuring and Reporting Performance

3. Toy benchmarks: Small and interesting programs,
Sieve of Eratosthenes (prime numbers), Towers of
Hanoi, Puzzles, Quicksort.

• 4. Synthetic Benchmarks: Attempt of reproduce the
load of a set of programs.

– Benchmark suites: a collection of benchmark
applications.

• SPEC (Standard Performance Evaluation
Committee, www.spec.org) is a consortium
dedicated to the design of documented
benchmarks suites.

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

51

Measuring and Reporting Performance

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

52

Measuring and Reporting Performance

• Summarizing Performance Results of a
Benchmark Suite in single number
– Consistent summary measure: total execution time
– Example: Computer A Computer B

Program 1 1 10
Program 2 1000 100
Total 1001 110

• A is 10x faster than B for P1
• B is 10x faster than A for P2

– Perf. B / Perf. A= Exec Time A / Exec Time B =
1001/110 = 9.1

• B is 9.1 x faster than A if Program 1 and Program 2 are
run an equal # of times

14

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

53

Measuring and Reporting Performance

• The arithmetic mean tracks the total execution time. For
n programs,

• What if some programs have a much longer execution
time than others? This will bias the arithmetic mean
towards those programs, so we can choose weights:

ArithmeticMean =
1
n

Time i
i=1

n
∑

∑
=

=
n

i
iitimeweightanithmeticMeWeightedAr

1

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

54

Measuring and Reporting Performance

• The SPEC consortium is composed of competing
companies who might have their own choice of favorite
weights, so one approach is to choose weights to
equalize running times:

Weight i =
1

Time i ×
1

Time i











i=1

n

∑

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

55

Measuring and Reporting Performance

• Ratios
– Another approach is to normalize execution

times relative to a reference computer
(SPECRatio = exec time ref / exec time).

– i.e. if the SPECRatio n of computer A on a
benchmark is 1.25 times higher than computer
B then

1.25 = SPECRatioA / SPECRatioB =(tref/tA)/(tref/tB)=
=tB / tA = perf A / perf B

– The choice of reference computer is not
important.

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

56

Measuring and Reporting Performance

• Ratios
– Normalized times to a reference machine must be

averaged geometrically:

– In the case of SPEC, samplei is the SPECRatio
– Note that the geometric mean of the ratios is equal to

the ratio of the geometric means and the relative
results do not depend on the machine taken as
reference.

n
n

i
isampleeanGeometricM ∏

=

=
1

15

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

57

Measuring and Reporting Performance

• We can use the standard deviation to
characterize how much variability there is
around the mean.

• The geometric standard deviation is:

∑
=

−=
n

i
i Meansamplestdev

1

2)(

)
))ln()(ln(

exp(1

2

n

eanGeometricMsample
gstdev

n

i
i∑

=

−
=

))ln(1exp(
1

∑
=

⋅=
n

i
isample

n
eanGeometricM

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

58

Measuring and Reporting Performance

• Figure 1.14
– Example on page 37: The geometric means

are calculated from data in Figure 1.14 for an
Opteron and an Itanium 2. The Itanium 2’s
mean is higher than the Opteron’s (27.12 vs
20.86) but the standard deviation for the
Itanium 2 is much higher (1.93 vs. 1.38)
indicating that the results differ more widely
from the mean and are therefore likely less
predictable.

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

59

Quantitative Principles of Computer Design

• Take advantage of parallelism
• Principle of locality
• Focus on the common case

– Parallelism is related to performing many operations
simultaneously. It is applicable to single processor or to
memory management as well. In fact, modern CPUs can
executes 10’s of instructions simultaneously and perform
many memory transactions simultaneously. It is applicable to
basic circuits (such as carry-look-ahead adders) to entire
systems (many CPU or hard drives operating simultaneously).

– One example of parallelism at the instruction level that we will exploit
is called pipelining. We will overlap the execution of several
instructions that the total time to execute the sequence is reduced.

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

60

Quantitative Principles of Computer Design

• The principle of locality:
– Typically, a program spends 90% of its time

executing only 10% of the code. Most
programs are, by definition, highly structured.
They rarely use data and instructions in a
completely random fashion.

– Using this principle, we will be able to predict
which instructions and data a program will use
in the near future with reasonable accuracy
based on its accesses in the recent past.

16

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

61

Quantitative Principles of Computer Design
• The principle of locality:

– Temporal locality states that recently accessed
items are likely to be accessed again in the near
future. Spatial locality says that items who’s
addresses (in memory) are near one another
tend to be referenced close together in time.

• Make the common case fast.
– The impact of an improvement to a system is

higher if the occurrence is frequent. So, when
making choices in design favor the frequent
case over the infrequent ones.

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

62

Quantitative Principles of Computer Design

• Amdahl’s law (1967) captures this quantitatively.
It was used to make the case for single CPU
processors.
– Suppose we have an enhancement for a given

design.

SpeedUp =
ExecTimeBase

ExecTimeEnhanced

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

63

Quantitative Principles of Computer Design
• Define FractionEnhanced, the fraction of computation

time concerned by an enhancement. This fraction is
sped up by SpeedUpEnhanced.

• Remember, FractionEnhanced is the fraction of time that
can be converted to use an enhancement, NOT the
fraction of time that the enhanced portion takes after the
enhancement.

ExecTimeEnhanced = ExecTimeBase × 1− FractionEnhanced()+
FractionEnhanced
SpeedUpEnhanced











SpeedUp =
1

1−FractionEnhanced()+ FractionEnhanced
SpeedUpEnhanced

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

64

Quantitative Principles of Computer Design

• Computer example:
– Consider the enhancement to a processor for

Web serving. New CPU is 10 x faster than
original for Web serving. Original CPU busy
with computation 40% of time and is waiting
for I/O 60% of time. What is overall speedup
gained by enhancement?

– Only spends 40% doing work so limited by
that amount.

17

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

65

Quantitative Principles of Computer Design

• Reliability example
– The power supply of the disk subsystem in

the last reliability example was improved from
200,000 hour to 830,000,000 hour MTTF
(4150x better) by adding a redundant power
supply. What is the reliability improvement by
adding the redundant power supply?

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

66

Quantitative Principles of Computer
Design

• Amdahl’s Law express the low of
diminishing returns
– Incremental improvement in speedup gained

by an improvement of just a portion of the
computation diminishes as improvements are
added.

• Corollary
– If an enhancement is only usable for a fraction

of a task, we can’t speed up the task by more
then the reciprocal of 1 minus that fraction.

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

67

Quantitative Principles of Computer Design
• CPU Performance

– Total CPU time for a task (CPU is a clock driven
sequential circuit):

– Programs (tasks) are made of lists of instructions:

CPU_Time= ClockCycles×ClockCycleTime = ClockCycles×
1

ClockRate

ClockCyclesPerInstruction = CPI =
ClockCycles

InstructionCount

CPU_Time = InstructionCount × CPI× ClockCycleTime

CPU_Time=
Instructions
Program

×
ClockCycles
Instructions

×
Seconds
ClockCycle

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

68

Quantitative Principles of Computer Design
• CPU Performance

– Significance:
• First factor is a function of the ISA and of the

compiler technology.
• Second factor is a function of the organization

and of the compiler.
• Third factor is a function of the organization and

of the technology.
– Faced with a giant tradeoff! The art of

computer design is contained in this formula.

CPU_Time=
Instructions
Program

×
ClockCycles
Instructions

×
Seconds
ClockCycle

18

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

69

Quantitative Principles of Computer Design
– How to improve a factor without affecting

the others?
– It is useful to breakdown this into more

components, i.e. by classes of
instructions.

which breaks down the problem into the
design of classes of instructions.

ClockCycles = IC i × CPI i
i= 1

n

∑

CPI =
IC i

InstructionCount
× CPI i

i = 1

n
∑

 2002, 2003, 2004, 2007 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering,
McGill University, Textbook figures  Elsevier Science 1990, 1996, 2007

70

Quantitative Principles of Computer Design
– (e.g. Total CC = Number of FP operations occurring in

program x number of clocks for a FP operation + number
integer operations x clocks for integer operations …)

– This also define the notion of instruction mix, which is the
relative frequency of occurrence of classes of instructions
(e.g. branches, FP, …), say in a given benchmark.

– Ex. gcc
Op Freq CPIi Term
ALU 50% 1 0.5
Load 20% 2 0.4
Store 10% 2 0.2
Branch 20% 2 0.4

CPI= 1.5

