
© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Chapter 2

Instruction Set Architectures

ECSE 425
Winter 2007



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Review

• Patterson and Hennesy: Computer 
Organization and Design: The 
Hardware/Software Interface (2’nd ed.)
– Chapter 3

• We will focus in the lecture on the most 
important concepts as they apply to 
RISC machines. Read chapter 2 of the 
course text.



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Instruction Set Architecture (ISA)

• Computers run programs made of simple 
operations called “instructions”

• The list of instructions offered by the 
machine is the “instruction set”

• The instruction set is what is visible to the 
programmer (really the compiler, although 
humans can directly program in “assembly 
language”).



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Instructions

• Two kinds of information in a computer:
– instructions
– data

• Instructions are stored as numbers, just 
like data

• Instructions and data are stored in the 
memory



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Basic Computer Organization

CPU

registers

memory

storeload

PC IR

OPCODE         OPERANDS
Limited number
of fast registers
for temporary
storage

Large amount
of slow memory
Arranged as an array
of bytes

Instructions are loaded into an 
Instruction register (IR) from the 
address pointed to by the 
program counter (PC). The PC is 
incremented by the instruction 
size (in bytes) 
for each new instruction. 
E.g. PC PC + 4



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Load/Store Architecture (Reg-Reg)

CPU

registers

memory

storeload

PC IR

• Instructions can ONLY get their data and store 
their data from/to registers. 

• The register numbers are specified in the 
operand fields of the instruction

• Since data is stored in memory, we need 
special “load” and “store” instructions for 
transfers between registers and memory. These 
two instructions are the ONLY ones allowed to 
access memory



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Load/Store Architecture (Reg-Reg)

CPU

registers

memory

storeload

PC IR

• RISC architectures are load/store. The regularity of 
this architecture enables fast organizations using 
pipelining (next chapter).

• CISC machines (e.g. Intel IA-32) permit instructions 
to get their data from both registers and memory 
(mem-reg). These highly irregular architectures (mem-
reg, variable-length instructions) are practically 
impossible to pipeline. 

• The advantage of them is that they produce shorter 
programs (no loads or stores needed, variable-length 
instr.d), but memory today is cheap and compilers 
can’t really use complex instructions anyways.

• Modern “CISC” machines really just translate the 
CISC instructions to a set of RISC instructions and run 
those.

• done purely for compatability reasons.



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Other ISAs

• Some old ISAs use a small number of 
special-purpose registers arranged as a 
stack or accumulator (single register).

• These special-purpose registers constrain 
compilers. 

• Compilers like flexibility !
• ISAs should have lots of general-purpose 

registers.



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Example
(A * B) + (C * D) (high – level language)

Machine instructions (assembly language)

LOAD R1, A
LOAD R2, B
MUL R3, R1, R2
LOAD R1, C
LOAD R2, D
MUL R4, R1, R2
ADD R5, R3, R4
STORE R5, RESULT



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Classification of ISAs
• Implicit operand(s):

– STACK: operands implicit (e.g. ADD). 
• TOS: pointer to top of the stack. 
• PUSH items onto stack. Items PUSH/POP’ed off – LIFO.  
• ex. reverse polish notation calculator  

– ACCUMULATOR: one operand implicitly “accumulator” register
• Ex. ADD B (to contents of accumulator). Result goes to accumulator register 

implicitly.

• Explicit operands, register or memory:
– REGISTER-MEMORY 

• access memory as part of any instruction.
– REGISTER-REGISTER (or LOAD/STORE)

• can only access memory with loads and stores. 
– MEMORY-MEMORY

• keeps all operands in memory (not found much today)



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

C = A + B

TOS

Push A
Push B
Add
Pop  C

Stack

...

Pop/Push

memory

processor

Load/Store

Load  A
Add   B
Store C

Accumulator Reg-Memory

...

...

Load  R1,A
Add   R2,R1,B
Store R2,C

Load/Store

A

B

C

A

B

C

R1
ACC

R2

R3

A

B

C

Reg-reg/load-store

...

...

Load  R1,A
Load  R2,B
Add   R3,R1,R2
Store R3,C

Load/Store

R1

R2

R3

A

B

C

...

............

.........



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Load-Store Architectures

• Early computers used a stack or accumulator. 
• Since 1980, virtually all LOAD-STORE. 

– Registers faster than memory (internal to processor)
– More efficient for compilers – can perform operation 

in any order. 
• ex. (A x B) + (C x D). Stack has to be in order.

– Registers can hold variables  
• reduced memory traffic, 
• Faster programs, 
• code density improves (register fewer bits than memory).



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Code Template # of memory 
addresses

Max # of
operands

Type of
architecture

Example

Push A
Push B
Add
Pop  C

0 0 Stack Almost extinct

Load  A
Add   B
Store C

1 1 Accumulator Almost extinct

Add   C,A,B 3 3 Memory/Memory VAX
Add   B,A 2 2 Memory/Memory VAX
Load  R1,A
Add   R1,B
Store R1,C

1 2 Register/Memory IBM360, 80x86, 
68000, 
TMS320C54x

Load  R1,A
Load  R2,B
Add   R3,R1,R2
Store R3,C

0 3 Register/Register
or Load/Store.

Alpha, ARM, 
MIPS, PowerPC, 
SPARC, 
SuperH, 
Trimedia



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Type Advantages Disadvantages

Stack
(0,0)

Very small instructions 
(pocket calculators!)

Lots of memory traffic

Accumulator 
(1,1)

Simple instructions.
(Very simple pic proc.)

One single register: memory traffic.

Memory/Memory
(2,2)(3,3)

Most compact (good 
instr. encoding)
Efficient use of the 
registers

Instructions vary in
length and work performed (CPI).
Makes pipelining imposs. Bottleneck!
No longer used, legacy only.

Register-Memory
(1,2)

Needs one load only.
Good encoding.
Good density.

Destroys (re-writes) one source 
operand in 2 operand case.
Number of registers limited.
CPI varies, making pipelining hard.

Register-Register
(0,3)

Simple fixed length.
Easy to compile for.
Uniform CPI.
(see App. A)

Higher instr. count.
Lower density makes large object 
code.
(but memory cheap)



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Data Types

• Integer
– 8 bits (char)
– 16-bits (short or half-word)
– 32-bits (word)
– 64 bits (double word)

• Floating point
– single-precision (32-bits)
– double-precision (64-bits)



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Memory Addressing
• Each byte (8-bits) in the memory 

is given a unique address.
• Data can be accessed in chunks 

of multiple bytes by giving the 
address of the starting byte and 
the size of the chunk

• E.g. LD R4, C
• Loads a “double word” (8 bytes) 

starting at address C

C



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Alignment

• Some computers 
require the memory 
access must start on 
an address that is a 
multiple of the chunk 
size in bytes (i.e. 
half-words can only 
be accessed on 
bytes 0, 2, 4, 6, …)

XXX... 0000
XXX…0001
XXX…0010

XXX…0111
XXX…1000



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Byte Ordering

0xA1 0xB4

0xB4 0xA1

Big Endian

Little Endian



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Addressing Modes

• How to specify the “effective address” to 
an instruction

• Register-Transfer Language (Chapter 2 of 
the textbook). We will do some examples. 
Read Ch. 2 and especially Figure 2.6 to 
see more examples



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Addressing Modes
• Immediate (constants)

Add R4, #3 Regs[R4] Regs[R4] + 3

• Register-Register

Add R4, R5, R6 Regs[R4] Regs[R5] + Regs[R6]

• Displacement (computed addresses, pointers, local variables array 
accesses)

Load R4, 100(R3) Regs[R4] Mem[Regs[R3] + 100]

• For others (not really used in RISC too often), see Figure 2.6.



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Name Example RTL When used

Register 
Indirect

Add R4,(R1) Regs[R4]←Regs[R4]+Mem[Regs[R1]] Pointer access or
Computed 
addresses.

Indexed Add R4,(R1+R2) Regs[R4]←Regs[R4]+Mem[Regs[R1]+Regs[R2] Array addressing

Absolute Add R4,(1001) Regs[R4]←Regs[R4]+Mem[1001] Static data access.

Memory 
Indirect

Add R4,@(R1) Regs[R4]←Regs[R4]+
Mem[Mem[Regs[R1]]

*p when &p is in 
reg R1

Autoincrement Add R4,(R2)+ Regs[R4]←Regs[R4]+Mem[Regs[R2]]
Regs[R2]←Regs[R2]+d

Array stepping.
Stack access.

Autodecrement Add R4,-(R1) Regs[R2]←Regs[R2]-d
Regs[R4]←Regs[R4]+Mem[Regs[R2]]

Array stepping.
Stack access.

Scaled Add R4,100(R1,R2) Regs[R4]←Regs[R4]+
Mem[100+Regs[R1]+Regs[R2]*d]

Arrays



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Arithmetic and Logical Add, subtract (signed, unsigned), and, or, shifts,
multiply, divide.

Data Transfer Load, Store
Control Branch, jump, procedure call, return, trap.
System Syscall, Virtual memory management
Floating Point FPadd, FPmult, FPdiv, FPcompare
Decimal Arithmetic and conversion
Strings Move, copy, compare, search
Graphics Pixel, Vertex ops, compress, decompress

Operations



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Operations
• It is often the case that few instruction statistically 

dominate.
– e.g. SPEC92 benchmark indicates (80x86):

Loads: 22%
Branches: 20%
Compare: 16%
Store: 12%
ALU: 19%

• Important conclusions:
– 5 (simple) types make 89% of all instructions

• make these fast!
– twice as many loads than stores (more reads than writes 



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

BEQZ R1, name

• How to change to flow of a 
program

BEQ, BNE, BEQZ, BNEZ, etc…. 

if (x != y)
instruction_a

instruction_b

(x stored in R1, y stored in R2)

BEQ R1, R2, label
instruction_a

label: instruction_b

Control Flow (Branch)

condition

Address of the instruction in 
memory to execute if the 
condition is true (target), 
else, fall through to the next 
sequential instruction

• tradeoff : how many bits to allocate in the 
instruction field for the target address 
(displacement) (PC PC + displacement)



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Subcategories

• Branches (dominant)
• Jumps
• Procedure calls
• Procedure return



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Target Addressing Modes
• PC-relative

– add an offset to current PC (program position independent).

• Register indirect
– target in a register 

• Procedure returns
• Case or switch statements 
• Virtual function or methods (pick procedure according to args)
• Function pointers (pass a function as an argument)
• DSL’s (Dynamically Shared Libraries, e.g. DLLs, Unix modules)

– In these cases, the target address is not known at compile time,
nor at link time, it is computed on the fly.



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Name Examples Test Advantage Disadvantage
Condition Code 80x86

ARM
PowerPC
Sparc

Special register CC set 
by ALU fspossibly
under program 
control

Condition can be 
set at no cost

CC is extra state.
Constrains 

ordering of 
instructions.

Condition 
register

Alpha, 
MIPS

Use any GP register to 
store result of a 
comparison.

Simple, regular. Use a register for 
1 bit.

Compare and 
branch

PA-RISC, 
VAX

Two instructions 
packed in one.

High level.
1 instr./branch

Hard to pipeline.

Branch Options



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Instruction Encoding
• How is the ISA encoded in binary strings (machine code)?
• opcode, followed by operand encoding. 

– Operand encoding (and hence instruction decoding) becomes more 
complex as the number of supported addressing modes increase. (RISC-
CISC argument).

• fixed length 
– fixed number of operands
– combines operation and addressing mode into opcode
– Fixed instruction length, larger code representaion, easy to decode.

• variable length 
– any number of operands, permits all addressing modes
– Flexible instruction length, smaller code representation, harder to decode.

• Encodings that make possible pipelining and advanced pipelining.



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Compilers

• Can do program transformations 
(optimization) to improve performance

• Whatever it does, the resulting 
transformed program must be correct

• Read more about this in text



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Compilers

• Increased role of compilers in system design
– balance the job of the hardware and that of the 

software
– These are no longer separate problems

• Goals: 
– All correct programs compile/work correctly
– Most compiled programs execute quickly
– Most programs compile quickly
– Achieve small code size
– Provide debugging support



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Dependencies Stages (phase) Function
High-Level 
language 
dependent.

Front end Transform language into common intermediate form.

Some language
dependencies

High-level
Optimizations

E.g. Loop transformations, procedure in-lining, dead-
code elimination, constant folding,…

Small dependencies 
on language and on 
target machine, e.g.
number of GPRs.

Global 
optimizer

Global and local optimizations.
Register allocation (NP-complete problem: heuristic).
Common sub expression elimination.
Constant propagation.
Stack height reduction.
Copy propagation
Code motion
Eliminate array addressing.

Highly machine
dependent.

Code generator. Detailed instruction selection and machine dependent 
optimization:
Peephole optimizations (many),
strength reduction,
pipeline scheduling,
Branch optimization (many)



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Optimizations
• Local:

– Common subexpr elimination: Replace expressions that compute the 
same result

– Constant propagation: Replace all instances of a variable that is 
assigned a constant with the constant 

– Stack height reduction: Rearrange expression to minimize resources 
(stack) needed for expression evaluation

• Global:
– Global common subexpression elimination: Same as local, but 

across branches
– Copy propagation: Replace all instances of a variable that has been 

assigned
– Code motion :  Remove code from loop that computes the same value 

for each iteration of loop. 
– Eliminate array addressing (global): simplify/eliminate array 

addressing calculations within loops



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Example
• Eliminating common sub-expressions/strength 

reduction

y = A + B * x + C * (x**2) + D * (x**3)       (original code)

• The following forms are more efficient to compute 
because they require fewer and ‘lighter’ operations.
– Stage #1: y = A + (B + C * x + D * (x**2)) * x
– Stage #2: y = A + (B + (C + D * x) * x) * x
– The last form requires 3 additions and only 3 multiplications!



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Impact of ISA on Compiler
• “Make the frequent case fast and the rare case correct”!

• Instruction set properties to help the compiler writer:

– Provide regularity: Orthogonal architecture: All operations, data 
types, addressing modes independent – e.g. every operation 
applies to all addressing modes.

– Provide clear primitives, not linked to language idiosyncrasies.

• Special instructions: Media support (MMX Streaming 
SIMD)



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

MIPS-64 ISA

• Will be used for rest of the course
• A classic RISC ISA
• We will just cover the highlights. See 

textbook ch. 2, appendix C for details.



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Registers

• 32 64-bit GPRs
– R0, … R31
– R0 is hardwired to zero (and writing to it does 

nothing)

• 32 FP regs
– F0, … F31

• Special regs: e.g. FP condition codes



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Data Types

• 8-bit bytes
• 16-bit half-words
• 32-bit words
• 64-bit double words

• 32-bit single-precision FP
• 64-bit double-precision FP



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Addressing

• Addressing Modes
– Immediate (16-bit)
– Displacement (16-bit)
– Can simulate other modes using R0

• Byte addressable
• 64-bit addresses
• Aligned accesses



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Instruction Format

reg1 reg2



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Operations
• Load/Stores
• ALU
• Branches and Jumps
• FP operations

• More on RTL.
– ←n transfer n bits, x,y ← z means transfer to x and y.
– Subscript on quantity means bit selection (like an array of bits)
– Regs[R4]0 means sign bit of R4, Regs[R4]56…63means least significant byte.
– Mem is an array of bytes
– Superscript replicates field. 048 is a field of 48 zeros.
– ## concatenates fields.

• Example: byte at memory location addressed by the contents of register R8 is sign 
extended to form a 32-bit quantity that is stored in the lower half of register R10 (the 
upper half of R10 is unchanged)

Regs[R10]32…63 ←32 (Mem[Regs[R8]]0)24 ## Mem[Regs[R8]]



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Load / Stores



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

ALU Instructions



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Control Flow Instructions

• Branches work in conjuction with set (e.g. SLT)



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Floating Point
ADD.D ADD. S ADD. PS
SUB.D SUB.S SUB.PS
MUL.D MUL.S MUL.PS
MADD.D MADD.S MADD.PS
DIV.D DIV.S DIV.PS

CVT._._

_ = L, W, D, S

C.__.D C.__.S 
(__ = LT, GT, LE, GE, EQ, BE, uses FP status register)



© W. J. Gross, V. Hayward, T. Arbel, ECSE 425 Chapter 2

Pitfalls and Fallacies
• Pitfall: Computers with “high-level” instruction set features (Lisp, Pascal, procedure 

calls) have constantly failed. Compiler/interpreters always won over hardware.

• Fallacy: There are typical programs. See the trouble in setting SPEC standards.

• Pitfall: Introducing new instructions to reduce code size without accounting for the 
compiler. Start with tightest compilation before proposing hardware innovations.

• Pitfall: Expecting to get good performane from a compiler for DSPs.
• There is a lot of room for hand coding in assembler.

• Fallacy: An architecture with flaws cannot be successful. Intel 80x86 made bad 
architectural decisions that yet has been enormously popular.

• Fallacy: There are flawless designs. Technology changes. Software/hardware trade-
offs become invalid.


	Chapter 2
	Review
	Instruction Set Architecture (ISA)
	Instructions
	Basic Computer Organization
	Load/Store Architecture (Reg-Reg)
	Load/Store Architecture (Reg-Reg)
	Other ISAs	
	Example
	Classification of ISAs
	C = A + B
	Load-Store Architectures
	Data Types
	Memory Addressing
	Alignment
	Byte Ordering
	Addressing Modes
	Addressing Modes
	Operations
	Operations
	Control Flow (Branch)
	Subcategories
	Target Addressing Modes
	Branch Options
	Instruction Encoding
	Compilers
	Compilers
	Optimizations
	Example
	Impact of ISA on Compiler
	MIPS-64 ISA
	Registers
	Data Types
	Addressing
	Instruction Format
	Operations
	Load / Stores
	ALU Instructions
	Control Flow Instructions
	Floating Point
	Pitfalls and Fallacies

