
 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University 
Textbook figures  Elsevier Science 1990, 1996, 2003 

1 

Chap. 1: Fundamentals of Computer Design 
 
Topics      Pages  Outcome 
 
Growth in performance  2—17  Trends in computing industry 
What are computers made of 14—24  System components 
Cost model of IC    17—21  Importance of minimizing die size 
Performance     24—39  What performance means in computing 
Benchmarking    26—31  The problem of choosing benchmarks 
Reporting performance  32—39  Averaging methods 
Quantitative principles   39—48  How to use measurements 
Amdhal’s Law    40—42  How to achieve speed up 
CPU performance   43—44  CPU performance eqn (notion of CPI) 
Locality principle    47   Justification of many design ideas 
Parallelism     48   Another broad class of design ideas 
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(pp. 2—3) 

 
• Overall progress is a product of three factors of improvement: 
 
 
• Technology, Architecture, Compiler.  

 
o 1.17 x 1.17 x 1.17 = 1.6 / year.  

 
 
• No other technological systems (say, airplanes or water-treatment 

plants) improve that fast. 
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 (pp. 4—
8) 

Three broad markets 
 

• Desktop computing (business, engineering, amusement) ($1,000 – 
$10,000) 

 
• Servers (web, high availability) ($10,000 – $10,000,000) 

 
• Embedded computers (appliances, vehicles, hand-held) ($10 – 

$100,000) 
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(pp. 9) 
Important terms related to Computer Architecture 
 

• Implementation: how an abstract description is turned into hardware. 
 
 

• The instruction set architecture (ISA) is such abstraction.  
 

o HW / SW interface. 
 
o ADD C,A,B.  

 
 

• Examples of ISAs 
 

o IA-32 
o IA-64 
o MIPS64 
o ARM 
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• Organization: high level aspects of the design  
o memory, bus structure, CPU, I/O 
o design of these sometimes called “micro-architecture”. 

 
• It is possible to implement the same instruction set architecture using 

different organizations, resulting in different systems. 
o E.x. Different Bus, memory organization, pipeline structure and so-

on. 
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• Hardware refers to the specifics of an implementation.  

o For example the Pentium II and the Celeron have different hardware. 
 

• It is even possible to emulate a function normally carried out in hardware 
(say floating point calculations) using software (lists of instructions). 
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(pp. 10—11) 

Task of the Computer Designer 
 
Functional requirements Required Features 
 
Application      Target 
General-purpose desktop    Balanced performance for many tasks 
Scientific/Engineering    High performance FP/Graphics 
Commercial Servers     Reliability, availability, scalability 
Embedded      Focus on few features (power, throughput, …) 
 
Software compatibility    re-use existing software 
At programming language    Flexible for designer, new compiler back-end 
At object code      Same ISA 
 
Operating System     Necessary OS support 
Size of address space    Key 
Memory management    Virtual Memory 
Protection       Different OS, paging, segmentation 
 
Standards      Certain standards may be required by marketplace 
Floating point      Format, arithmetic, IEEE 734, Graphics 
I/O        ATA, SCSI, PCI 
Operating System     Unix, PalmOS, Windows, CE, IOS 
Network       Ethernet, Infiniband 
Programming Language    C, C++, Java, FORTRAN: ISA 
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(pp. 11—13) 
Trends  
 
o valid over long time periods, e.g. ISA can last decades 
 
o Clock Rate:       ~ 30% per year 
o Transistor Density:     ~ 35% 
o Chip Area:       ~ 15% 
o Transistors per chip:    ~ 55% 
o Total Performance Capability:  ~ 100% 
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 (pp. 13) 

IC Technology 
 

• Feature size (min size of transistor or wire) 
 

o 1971: 10 µm  
o 2001: 0.18 µm  
o 2002: 0.13 µm  
o 2003: 0.10 µm  
 

• Quadratic increase in density, linear increase in performance 
 
⇒ Architectural improvement! 

• 8, 16, 32, 64 bit architectures (buses, ALU’s) 
• Pipelines and caches 

 
• Transistor performance benefits from smaller resistance and 

capacitance. 
• Interconnect propagation delay major problem. 

• e.g. Pentium 4 accounts for propagation of signals across chip. 
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Switching Power  
 

P = f  C V2 
 
f = clock frequency 
 
C = capacitance 
 
V = voltage 

 
 
 
 
 
o 2 GHz Pentium consumes 100 W ⇒ Heat removal. 

 
o Alternatively, portable computing requires low power. 
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Other “Famous” Predictions 
 
“There is no reason for any individual to have a 
computer in his home.” 
 

Kenneth H. Olson, President of DEC, 
Convention of the World Future Society, 1977 

 
 
“640 kilobytes (of computer memory) ought to be 
enough for anybody.” 
 

Bill Gates 
Founder and head of Microsoft, 1981 
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(pp. 14—16) 
Cost, Price, and Trends 
 
o What is the nature of the cost-performance tradeoff?  
 
o Driven by cost of components  
 

o one important aspect is their change over time. 
 
 
Time and volume 
 
o Manufacturing learning curve.  

o Yield improves with time.  
o Doubling the yield halves the cost.  

 
o Example: DRAM chips have strange business behaviors because of 

rapid changes, price can be lower than cost for a short moment. 
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o Microprocessors are less predictable.  
 
o E.g. Pentium III 

 
o Roughly cost x 0.9 for volume doubling.  

 
o Expansion of low-end market has produced "commoditization" with fierce 

competition and razor-thin margins. 



 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University 
Textbook figures  Elsevier Science 1990, 1996, 2003 

18 

(pp. 15) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Prices of six generations of DRAMs over time in 1977 dollars. 
This shows the importance of the learning curve. 
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(pp. 16) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Price of Pentium III at a given frequency decreases over time as yield enhancements 
decrease the cost of a good die and competition forces price reductions. 
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(pp. 17) 
Cost of an IC 
 
Manufacturing Steps. 
 
o Silicon Crystal Growth extracted from molten silicon bath 

 
o Processed (cleaned to very high level of purity) into cylinder 

 
o Cylinder sliced to make wafers 

 
o Wafers cleaned, polished and chemically processed 

 
o Long sequence of steps involving deposit and removal of substances to 

etch the circuit according to patterns specified by optical masks. 
 
o Dies cut, tested and packaged. 
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MIPS64 R20K WAFER (564 processors) 
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Intel Pentium 4 
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o (pp. 18—20) 
Cost model 
 

 
 
 

 
 
 

 
 

 
 
 
DieYield is from an empirical formula where α reflect the number of process 
steps (complexity). α can be of the order of 3 or 4. DefectDensity is of the 
order of 0.4--0.8/cm2. 
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Realistic example:   $8000 / wafer, 350 raw dies / wafer 

     60% good dies, $80 to test wafer,  

    $4/unit to package and final test, 97% final test yield 

 

 
 

DieCost  =  

DieTestCost (good dies) =  

ICCost  =  
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CS252/Patterson
Lec 2.211/19/01

Real World Examples

Chip Metal Line Wafer Defect Area Dies/ Yield Die Cost
layers width cost /cm2 mm2 wafer

386DX 2 0.90 $900 1.0 43 360 71% $4 
486DX2 3 0.80 $1200 1.0 81 181 54% $12 
PowerPC 601 4 0.80 $1700 1.3 121 115 28% $53 
HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73 
DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149 
SuperSPARC 3 0.70 $1700 1.6 256 48 13% $272 
Pentium 3 0.80 $1500 1.5 296 40 9% $417 

– From "Estimating IC Manufacturing Costs,” by Linley Gwennap, 
Microprocessor Report, August 2, 1993, p. 15
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Architect’s quandry: price/performance tradeoff: 

Given a 20 cm diameter wafer at $2000, α=4. 
A.  Using mid-life process (medium defect density = 0.6) 

Relative 
Performance Die Area Dies/Wafer Die Yield Good Die $ / Good Die 

1 0.64 478 0.69 331  $  6.03  
2 1.23 243 0.51 124  $16.19  
4 2.40 120 0.29 35  $56.78  
      

B.  Using end of life process (low defect density = 0.4) 

Relative 
Performance Die Area Dies/Wafer Die Yield Good Die $ / Good Die 

1 0.64 478 0.78 373  $  5.36  
2 1.23 243 0.63 153  $13.08  
4 2.40 120 0.42 51  $39.24  

 

Architectural problem: more performance from smaller dies. 



 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University 
Textbook figures  Elsevier Science 1990, 1996, 2003 

27 

(pp. 22) 
o The processor can be 20% of the cost of a desktop system,  
o perhaps 40% of the total cost is in the motherboard.  

o It has a huge impact on the price and performance of the system. 
o The next item competing for importance is the monitor! (20% of total 

cost, 40% for all I/O: hard disk, DVD).  
o The rest is the cabinet and power supply. 
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(pp. 24—25) 
Measuring and Reporting Performance 
 
Problem: if you speak of a car, performance indicators like speed, turning 
radius, or mileage are measured in physical units. For channels and memory, 
there are bits and bits/s to measure capacity and bandwidth, but for 
computers, there is no unit for computation! It is rather hard to define what 
computation is. As a result, computer performance is always measured 
relatively to another computer. 
 
There are two aspects:  
 

1. Response time (latency) (needed to get a result from the givens). 
2. Throughput (bandwidth) (how much computation per unit of time).  

 
Relative performance:  
 

n =
ExecTimeY
ExecTimeX

=
1 / PerformanceY
1 / PerformanceX

=
PerformanceX
PerformanceY  
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(pp. 26) 
Different “Times” 
 
Wall-clock time is the elapsed time to complete a task. This includes I/O, 
memory, OS overhead, …, everything. With multiprogramming and 
multitasking (as in UNIX), for a given task, it changes with the load. 
 
CPU time is the time spent by the CPU on behalf of one task. It is subdivided 
into user CPU time (time spent by the CPU running user code) and system 
CPU time (time spent running OS code on the behalf of the user). 
 
The UNIX time command reports all three. For example 
 
prompt$ time sleep 5 
0.00u 0.02s 0:05.02 0.3% 
 
tells us that the sleep 5 command spent (almost) no CPU time to run, 20 
milliseconds to execute OS code and that the elapsed was 5.02 s (per the 
definition of sleep). It also says that (0.0+0.02)/5.02=0.3% of the elapsed 
time was to do some work. 
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(pp. 26—28) 
What is a task? 
We want to be able to predict the performance of a computer: how do we 
evaluate performance? 
 
1. Real applications: C compiler (if you are code developer), TeX if you are a 
typesetter, Photoshop if you are a graphic designer, Spice if you are an 
electronic engineer, MatLab, and so-on. 
 
2. Scripted applications: real applications stripped from I/O. 
 
3. Kernels: A general principle about computing (Knuth) is that programs 
tend to spend most of their time in a very small portion of the code. (For 
example, the integrator routine in MathLab, searching and sorting while 
compiling, manipulating matrices in scientific code). 
 
4. Toy benchmarks: Small and interesting programs, Sieve of Eratosthenes 
(prime numbers), Towers of Hanoi, Puzzles, Quicksort. 
 
5. Synthetic Benchmarks: Attempt of reproduce the load of a set of 
programs. 
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(pp. 29) 
SPEC (Standard Performance Evaluation Committee, www.spec.org) is a 
consortium dedicated to the design of documented benchmarks suites. There 
are also PC benchmarks (winbench) or the EEMBC benchmarks 
(www.eembc.org) which permit code tweaking (why not?). 
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(pp. 30) 
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([31-34] pp. 35--39) 
Summarizing Performance 
Take n programs and average. Arithmetic mean: 

ArithmeticMean =
1
n

Time i
i=1

n

∑
 

or weight them: 

Weighti × Time i
i=1

n

∑
 

A particular choice of weights equalizes running times: 
Weighti =

1

Timei ×
1

Timei

 

 
 

 

 
 

i=1

n

∑
 

Normalized times to a reference machine can be averaged geometrically: 

GeometricMean =
ExecTimei

ExecTimerefi=1

n

∏n
, but since  

GeometricMean(Xi )
GeometricMean(Yj )

= GeometricMean
Xi
Y j

 

 
  

 

 
  
 

the relative results do not depend on the machine taken as reference. 
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(pp. 39—42) 
Quantitative Principles of Computer Design 
Make the common case fast. This is to help deciding where to allocate a 
given design (or cost) effort to get maximum results. For example, certain 
computers load and store 64 bit long numbers is faster that bytes because 
they are optimized for FP operations rather than business applications. There 
are hundreds of examples. 
 
Amdahl’s law (1967) captures this. It was used to make the case for single 
CPU processors. Suppose we have an enhancement for a given design. 

SpeedUp =
ExecTimeBase

ExecTimeEnhanced  
 

Define FractionEnhanced, the fraction of computation time concerned by an 
enhancement. This fraction is sped up by SpeedUpEnhanced. 

ExecTimeEnhanced = ExecTimeBase × 1− FractionEnhanced( )+
FractionEnhanced
SpeedUpEnhanced

 

 
 

 

 
 
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SpeedUp =
1

1−FractionEnhanced( )+ FractionEnhanced
SpeedUpEnhanced  
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Amdahl’s Law Applied 
Flying New York to Paris (or Brussels to Montréal). 
 On an airliner, you have 2 hours check-in then 8 hours flight. 
 What is speedup if you take the Concorde (about 2 times faster flying)? 
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Computer example:  
 
Consider the enhancement to a processor for Web serving. New CPU 10 x 
faster than original for Web serving. Original CPU busy with computation 
40% of time and is waiting for I/O 60% of time. What is overall speedup 
gained by enhancement? 
 
Only spends 40% doing work so limited by that amount. 
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(pp. 43—44) 
CPU Performance 
Total CPU time for a task (CPU is a clock driven sequential circuit): 

CPU_Time = ClockCycles × ClockCycleTime = ClockCycles ×
1

ClockRate  
Programs (tasks) are made of lists of instructions: 

ClockCyclesPerInstruction = CPI =
ClockCycles

InstructionCount  
 

CPU_Time= InstructionCount× CPI× ClockCycleTime 
 

CPU_Time =
Instructions

Program
×

ClockCycles
Instructions

×
Seconds

ClockCycle  
Significance: 

1. First factor is a function of the ISA and of the compiler technology. 
 
2. Second factor is a function of the organization and of the compiler. 
 
3. Third factor is a function of the organization and of the technology. 
 

Faced with a giant tradeoff! The art of computer design is contained in this formula. 
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(pp. 44—45) 
How to improve a factor without affecting the others? 
 
It is useful to breakdown this into more components, i.e. by classes of 
instructions. 

ClockCycles = ICi × CPIi
i=1

n

∑
 

 

CPI =
ICi

InstructionCount
×CPIi

i=1

n

∑
  

(Error in Book!). 
ICi = number of instructions of class i executed in a program
CPIi =  average number of clock cycles/ instruction of class  i  

 
which breaks down the problem into the design of classes of instructions.  
 
(e.g. Total CC = Number of FP operations occuring in program x number of 
clocks for a FP operation + number integer operations x clocks for integer 
operations …) 
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This also define the notion of instruction mix, which is the relative frequency 
of occurrence of classes of instructions (e.g. branches, FP, …), say in a 
given benchmark. 
Ex. gcc 

Op  Freq CPIi  Term 
ALU 50% 1   0.5 
Load 20% 2   0.4 
Store 10% 2   0.2 
Branch 20% 2   0.4 
      CPI= 1.5 

Other Example: 
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 (pp. 45—46) 
How to measure these numbers? 
 
Clock speed is known, CPU time is also easy to measure. 
 
How to measure fraction of instruction count and CPI?  

Software or hardware simulations: 

• Designers add counters in the hardware to count important events (such 
as number of instructions, or number of clock cycles), periodically saved. 
This has limited practicality and accuracy.  

 
• Instrumented execution by inserting extra instructions in the code (e.g. 

tracing memory addresses). Gives exact profile. 
 

• Interrupt the processor at random intervals to get statistics. 
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(pp. 47—48) 
Another fundamental principle was observed by Knuth (1960). Most 
programs are, by definition, highly structured. They rarely use data and 
instructions in a completely random fashion. The principle of locality 
observes that data that are used at close time intervals (temporal locality) are 
also stored close to each other in memory (spatial locality) (because of 
arrays, loop, structures, due generally to how humans turn their thoughts into 
programs). This drives most of the ideas in computer architecture — we can 
exploit this knowledge. 
 
Parallelism is related to performing many operations simultaneously. It is 
applicable to single processors or to memory management as well. In fact, 
modern CPUs can executes 10’s of instructions simultaneously and perform 
many memory transactions simultaneously. It is applicable to basic circuits 
(such as carry-look-ahead adders) to entire systems (many CPU or hard 
drives operating simultaneously). 
 
In an ideal CPU, every transistor would switch in concert with 100 million 
others, doing something useful. Not only we are far from this ideal, but also 
far from the system of the some 100 billions neurons firing in our heads! 
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([49—56] pp. 57—65) 
Pitfall: The relative performance of two processors with the same ISA can be 
judged by clock rate (or by a single benchmark suite).  
No! the architecture can differ. 
Fallacy: Benchmarks remain valid through time.  
No! they must be redesigned periodically to account for evolving application 
and computing technology. 
Pitfall: Hand coded assembly code and compiler generated code can be 
compared.  
No! Each has its use. Hand code can make use of very special instructions to 
boost performance in some applications. On the other hand, in many 
computers, compilers do better jobs at taking advantage of pipelines and 
other features. 
Fallacy: Peak performance tracks observed performance. 
No! “Peak performance is the performance guaranteed not to be exceeded”. 
There can be huge gaps.  
Fallacy: The best computer design is the one that optimizes the primary 
objective without considering implementation. 
No! complex implementations take a long time to develop. Each week of 
delay is equivalent to 1% loss of performance. 
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Pitfall: Neglecting the cost of software. 
Don’t! 
Pitfall: Falling prey to Amdahl’s Law. 
Measure usage before optimizing. 
Fallacy: Synthetic benchmarks predict real performance. 
No! For example compilers discard useless code and are capable of all kind 
of code transformations. 
Fallacy: MIPS is an accurate measure of performance. 
No! MIPS (= ClockRate / (CPI x 106) are ISA and program dependent. 
e.g. clock: 1 cycle / second. 
Example: 

FP software: 4 instructions (1 clock each) to perform FP operation 
(1FP/4s) 

= 4 instr/4 sec = 1 instr/sec -> high MIPS  
FP Hardware: 1 instruction (2 clocks long) to perform FP operations  

= 2 instr/4 sec = 0.5 instructions / sec -> Lower MIPS  
even though does more useful work in 4 seconds (completes  2 FP 
operations/4s) 


