
 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

1

Chap. 1: Fundamentals of Computer Design

Topics Pages Outcome

Growth in performance 2—17 Trends in computing industry
What are computers made of 14—24 System components
Cost model of IC 17—21 Importance of minimizing die size
Performance 24—39 What performance means in computing
Benchmarking 26—31 The problem of choosing benchmarks
Reporting performance 32—39 Averaging methods
Quantitative principles 39—48 How to use measurements
Amdhal’s Law 40—42 How to achieve speed up
CPU performance 43—44 CPU performance eqn (notion of CPI)
Locality principle 47 Justification of many design ideas
Parallelism 48 Another broad class of design ideas

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

2

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

3

(pp. 2—3)

• Overall progress is a product of three factors of improvement:

• Technology, Architecture, Compiler.

o 1.17 x 1.17 x 1.17 = 1.6 / year.

• No other technological systems (say, airplanes or water-treatment

plants) improve that fast.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

4

 (pp. 4—
8)

Three broad markets

• Desktop computing (business, engineering, amusement) ($1,000 –
$10,000)

• Servers (web, high availability) ($10,000 – $10,000,000)

• Embedded computers (appliances, vehicles, hand-held) ($10 –

$100,000)

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

5

(pp. 9)
Important terms related to Computer Architecture

• Implementation: how an abstract description is turned into hardware.

• The instruction set architecture (ISA) is such abstraction.

o HW / SW interface.

o ADD C,A,B.

• Examples of ISAs

o IA-32
o IA-64
o MIPS64
o ARM

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

6

• Organization: high level aspects of the design
o memory, bus structure, CPU, I/O
o design of these sometimes called “micro-architecture”.

• It is possible to implement the same instruction set architecture using

different organizations, resulting in different systems.
o E.x. Different Bus, memory organization, pipeline structure and so-

on.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

7

• Hardware refers to the specifics of an implementation.

o For example the Pentium II and the Celeron have different hardware.

• It is even possible to emulate a function normally carried out in hardware
(say floating point calculations) using software (lists of instructions).

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

8

(pp. 10—11)

Task of the Computer Designer

Functional requirements Required Features

Application Target
General-purpose desktop Balanced performance for many tasks
Scientific/Engineering High performance FP/Graphics
Commercial Servers Reliability, availability, scalability
Embedded Focus on few features (power, throughput, …)

Software compatibility re-use existing software
At programming language Flexible for designer, new compiler back-end
At object code Same ISA

Operating System Necessary OS support
Size of address space Key
Memory management Virtual Memory
Protection Different OS, paging, segmentation

Standards Certain standards may be required by marketplace
Floating point Format, arithmetic, IEEE 734, Graphics
I/O ATA, SCSI, PCI
Operating System Unix, PalmOS, Windows, CE, IOS
Network Ethernet, Infiniband
Programming Language C, C++, Java, FORTRAN: ISA

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

9

(pp. 11—13)
Trends

o valid over long time periods, e.g. ISA can last decades

o Clock Rate: ~ 30% per year
o Transistor Density: ~ 35%
o Chip Area: ~ 15%
o Transistors per chip: ~ 55%
o Total Performance Capability: ~ 100%

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

10

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

11

Source: D. Patterson

P
er

fo
rm

an
ce

0.1

1

10

100

1965 1970 1975 1980 1985 1990 1995

Supercomputers

Minicomputers

Mainframes

Microprocessors

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

12

 (pp. 13)

IC Technology

• Feature size (min size of transistor or wire)

o 1971: 10 µm
o 2001: 0.18 µm
o 2002: 0.13 µm
o 2003: 0.10 µm

• Quadratic increase in density, linear increase in performance

⇒ Architectural improvement!

• 8, 16, 32, 64 bit architectures (buses, ALU’s)
• Pipelines and caches

• Transistor performance benefits from smaller resistance and

capacitance.
• Interconnect propagation delay major problem.

• e.g. Pentium 4 accounts for propagation of signals across chip.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

13

Switching Power

P = f C V2

f = clock frequency

C = capacitance

V = voltage

o 2 GHz Pentium consumes 100 W ⇒ Heat removal.

o Alternatively, portable computing requires low power.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

14

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

15

Other “Famous” Predictions

“There is no reason for any individual to have a
computer in his home.”

Kenneth H. Olson, President of DEC,
Convention of the World Future Society, 1977

“640 kilobytes (of computer memory) ought to be
enough for anybody.”

Bill Gates
Founder and head of Microsoft, 1981

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

16

(pp. 14—16)
Cost, Price, and Trends

o What is the nature of the cost-performance tradeoff?

o Driven by cost of components

o one important aspect is their change over time.

Time and volume

o Manufacturing learning curve.

o Yield improves with time.
o Doubling the yield halves the cost.

o Example: DRAM chips have strange business behaviors because of

rapid changes, price can be lower than cost for a short moment.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

17

o Microprocessors are less predictable.

o E.g. Pentium III

o Roughly cost x 0.9 for volume doubling.

o Expansion of low-end market has produced "commoditization" with fierce

competition and razor-thin margins.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

18

(pp. 15)

Prices of six generations of DRAMs over time in 1977 dollars.
This shows the importance of the learning curve.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

19

(pp. 16)

Price of Pentium III at a given frequency decreases over time as yield enhancements
decrease the cost of a good die and competition forces price reductions.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

20

(pp. 17)
Cost of an IC

Manufacturing Steps.

o Silicon Crystal Growth extracted from molten silicon bath

o Processed (cleaned to very high level of purity) into cylinder

o Cylinder sliced to make wafers

o Wafers cleaned, polished and chemically processed

o Long sequence of steps involving deposit and removal of substances to

etch the circuit according to patterns specified by optical masks.

o Dies cut, tested and packaged.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

21

MIPS64 R20K WAFER (564 processors)

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

22

Intel Pentium 4

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

23

o (pp. 18—20)
Cost model

DieYield is from an empirical formula where α reflect the number of process
steps (complexity). α can be of the order of 3 or 4. DefectDensity is of the
order of 0.4--0.8/cm2.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

24

Realistic example: $8000 / wafer, 350 raw dies / wafer

 60% good dies, $80 to test wafer,

 $4/unit to package and final test, 97% final test yield

DieCost =

DieTestCost (good dies) =

ICCost =

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

25

CS252/Patterson
Lec 2.211/19/01

Real World Examples

Chip Metal Line Wafer Defect Area Dies/ Yield Die Cost
layers width cost /cm2 mm2 wafer

386DX 2 0.90 $900 1.0 43 360 71% $4
486DX2 3 0.80 $1200 1.0 81 181 54% $12
PowerPC 601 4 0.80 $1700 1.3 121 115 28% $53
HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73
DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149
SuperSPARC 3 0.70 $1700 1.6 256 48 13% $272
Pentium 3 0.80 $1500 1.5 296 40 9% $417

– From "Estimating IC Manufacturing Costs,” by Linley Gwennap,
Microprocessor Report, August 2, 1993, p. 15

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

26

Architect’s quandry: price/performance tradeoff:

Given a 20 cm diameter wafer at $2000, α=4.
A. Using mid-life process (medium defect density = 0.6)

Relative
Performance Die Area Dies/Wafer Die Yield Good Die $ / Good Die

1 0.64 478 0.69 331 $ 6.03
2 1.23 243 0.51 124 $16.19
4 2.40 120 0.29 35 $56.78

B. Using end of life process (low defect density = 0.4)

Relative
Performance Die Area Dies/Wafer Die Yield Good Die $ / Good Die

1 0.64 478 0.78 373 $ 5.36
2 1.23 243 0.63 153 $13.08
4 2.40 120 0.42 51 $39.24

Architectural problem: more performance from smaller dies.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

27

(pp. 22)
o The processor can be 20% of the cost of a desktop system,
o perhaps 40% of the total cost is in the motherboard.

o It has a huge impact on the price and performance of the system.
o The next item competing for importance is the monitor! (20% of total

cost, 40% for all I/O: hard disk, DVD).
o The rest is the cabinet and power supply.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

28

(pp. 24—25)
Measuring and Reporting Performance

Problem: if you speak of a car, performance indicators like speed, turning
radius, or mileage are measured in physical units. For channels and memory,
there are bits and bits/s to measure capacity and bandwidth, but for
computers, there is no unit for computation! It is rather hard to define what
computation is. As a result, computer performance is always measured
relatively to another computer.

There are two aspects:

1. Response time (latency) (needed to get a result from the givens).
2. Throughput (bandwidth) (how much computation per unit of time).

Relative performance:

n =
ExecTimeY
ExecTimeX

=
1 / PerformanceY
1 / PerformanceX

=
PerformanceX
PerformanceY

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

29

(pp. 26)
Different “Times”

Wall-clock time is the elapsed time to complete a task. This includes I/O,
memory, OS overhead, …, everything. With multiprogramming and
multitasking (as in UNIX), for a given task, it changes with the load.

CPU time is the time spent by the CPU on behalf of one task. It is subdivided
into user CPU time (time spent by the CPU running user code) and system
CPU time (time spent running OS code on the behalf of the user).

The UNIX time command reports all three. For example

prompt$ time sleep 5
0.00u 0.02s 0:05.02 0.3%

tells us that the sleep 5 command spent (almost) no CPU time to run, 20
milliseconds to execute OS code and that the elapsed was 5.02 s (per the
definition of sleep). It also says that (0.0+0.02)/5.02=0.3% of the elapsed
time was to do some work.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

30

(pp. 26—28)
What is a task?
We want to be able to predict the performance of a computer: how do we
evaluate performance?

1. Real applications: C compiler (if you are code developer), TeX if you are a
typesetter, Photoshop if you are a graphic designer, Spice if you are an
electronic engineer, MatLab, and so-on.

2. Scripted applications: real applications stripped from I/O.

3. Kernels: A general principle about computing (Knuth) is that programs
tend to spend most of their time in a very small portion of the code. (For
example, the integrator routine in MathLab, searching and sorting while
compiling, manipulating matrices in scientific code).

4. Toy benchmarks: Small and interesting programs, Sieve of Eratosthenes
(prime numbers), Towers of Hanoi, Puzzles, Quicksort.

5. Synthetic Benchmarks: Attempt of reproduce the load of a set of
programs.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

31

(pp. 29)
SPEC (Standard Performance Evaluation Committee, www.spec.org) is a
consortium dedicated to the design of documented benchmarks suites. There
are also PC benchmarks (winbench) or the EEMBC benchmarks
(www.eembc.org) which permit code tweaking (why not?).

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

32

(pp. 30)

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

33

([31-34] pp. 35--39)
Summarizing Performance
Take n programs and average. Arithmetic mean:

ArithmeticMean =
1
n

Time i
i=1

n

∑

or weight them:

Weighti × Time i
i=1

n

∑

A particular choice of weights equalizes running times:
Weighti =

1

Timei ×
1

Timei











i=1

n

∑

Normalized times to a reference machine can be averaged geometrically:

GeometricMean =
ExecTimei

ExecTimerefi=1

n

∏n
, but since

GeometricMean(Xi)
GeometricMean(Yj)

= GeometricMean
Xi
Y j




 




 

the relative results do not depend on the machine taken as reference.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

34

(pp. 39—42)
Quantitative Principles of Computer Design
Make the common case fast. This is to help deciding where to allocate a
given design (or cost) effort to get maximum results. For example, certain
computers load and store 64 bit long numbers is faster that bytes because
they are optimized for FP operations rather than business applications. There
are hundreds of examples.

Amdahl’s law (1967) captures this. It was used to make the case for single
CPU processors. Suppose we have an enhancement for a given design.

SpeedUp =
ExecTimeBase

ExecTimeEnhanced

Define FractionEnhanced, the fraction of computation time concerned by an
enhancement. This fraction is sped up by SpeedUpEnhanced.

ExecTimeEnhanced = ExecTimeBase × 1− FractionEnhanced()+
FractionEnhanced
SpeedUpEnhanced











 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

35

SpeedUp =
1

1−FractionEnhanced()+ FractionEnhanced
SpeedUpEnhanced

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

36

Amdahl’s Law Applied
Flying New York to Paris (or Brussels to Montréal).
 On an airliner, you have 2 hours check-in then 8 hours flight.
 What is speedup if you take the Concorde (about 2 times faster flying)?

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

37

Computer example:

Consider the enhancement to a processor for Web serving. New CPU 10 x
faster than original for Web serving. Original CPU busy with computation
40% of time and is waiting for I/O 60% of time. What is overall speedup
gained by enhancement?

Only spends 40% doing work so limited by that amount.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

38

(pp. 43—44)
CPU Performance
Total CPU time for a task (CPU is a clock driven sequential circuit):

CPU_Time = ClockCycles × ClockCycleTime = ClockCycles ×
1

ClockRate
Programs (tasks) are made of lists of instructions:

ClockCyclesPerInstruction = CPI =
ClockCycles

InstructionCount

CPU_Time= InstructionCount× CPI× ClockCycleTime

CPU_Time =
Instructions

Program
×

ClockCycles
Instructions

×
Seconds

ClockCycle
Significance:

1. First factor is a function of the ISA and of the compiler technology.

2. Second factor is a function of the organization and of the compiler.

3. Third factor is a function of the organization and of the technology.

Faced with a giant tradeoff! The art of computer design is contained in this formula.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

39

(pp. 44—45)
How to improve a factor without affecting the others?

It is useful to breakdown this into more components, i.e. by classes of
instructions.

ClockCycles = ICi × CPIi
i=1

n

∑

CPI =
ICi

InstructionCount
×CPIi

i=1

n

∑

(Error in Book!).
ICi = number of instructions of class i executed in a program
CPIi = average number of clock cycles/ instruction of class i

which breaks down the problem into the design of classes of instructions.

(e.g. Total CC = Number of FP operations occuring in program x number of
clocks for a FP operation + number integer operations x clocks for integer
operations …)

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

40

This also define the notion of instruction mix, which is the relative frequency
of occurrence of classes of instructions (e.g. branches, FP, …), say in a
given benchmark.
Ex. gcc

Op Freq CPIi Term
ALU 50% 1 0.5
Load 20% 2 0.4
Store 10% 2 0.2
Branch 20% 2 0.4
 CPI= 1.5

Other Example:

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

41

 (pp. 45—46)
How to measure these numbers?

Clock speed is known, CPU time is also easy to measure.

How to measure fraction of instruction count and CPI?

Software or hardware simulations:

• Designers add counters in the hardware to count important events (such
as number of instructions, or number of clock cycles), periodically saved.
This has limited practicality and accuracy.

• Instrumented execution by inserting extra instructions in the code (e.g.

tracing memory addresses). Gives exact profile.

• Interrupt the processor at random intervals to get statistics.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

42

(pp. 47—48)
Another fundamental principle was observed by Knuth (1960). Most
programs are, by definition, highly structured. They rarely use data and
instructions in a completely random fashion. The principle of locality
observes that data that are used at close time intervals (temporal locality) are
also stored close to each other in memory (spatial locality) (because of
arrays, loop, structures, due generally to how humans turn their thoughts into
programs). This drives most of the ideas in computer architecture — we can
exploit this knowledge.

Parallelism is related to performing many operations simultaneously. It is
applicable to single processors or to memory management as well. In fact,
modern CPUs can executes 10’s of instructions simultaneously and perform
many memory transactions simultaneously. It is applicable to basic circuits
(such as carry-look-ahead adders) to entire systems (many CPU or hard
drives operating simultaneously).

In an ideal CPU, every transistor would switch in concert with 100 million
others, doing something useful. Not only we are far from this ideal, but also
far from the system of the some 100 billions neurons firing in our heads!

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

43

([49—56] pp. 57—65)
Pitfall: The relative performance of two processors with the same ISA can be
judged by clock rate (or by a single benchmark suite).
No! the architecture can differ.
Fallacy: Benchmarks remain valid through time.
No! they must be redesigned periodically to account for evolving application
and computing technology.
Pitfall: Hand coded assembly code and compiler generated code can be
compared.
No! Each has its use. Hand code can make use of very special instructions to
boost performance in some applications. On the other hand, in many
computers, compilers do better jobs at taking advantage of pipelines and
other features.
Fallacy: Peak performance tracks observed performance.
No! “Peak performance is the performance guaranteed not to be exceeded”.
There can be huge gaps.
Fallacy: The best computer design is the one that optimizes the primary
objective without considering implementation.
No! complex implementations take a long time to develop. Each week of
delay is equivalent to 1% loss of performance.

 2002, 2003, 2004 V. Hayward, T. Arbel, W. Gross, Dept. of Electrical and Computer Engineering, McGill University
Textbook figures  Elsevier Science 1990, 1996, 2003

44

Pitfall: Neglecting the cost of software.
Don’t!
Pitfall: Falling prey to Amdahl’s Law.
Measure usage before optimizing.
Fallacy: Synthetic benchmarks predict real performance.
No! For example compilers discard useless code and are capable of all kind
of code transformations.
Fallacy: MIPS is an accurate measure of performance.
No! MIPS (= ClockRate / (CPI x 106) are ISA and program dependent.
e.g. clock: 1 cycle / second.
Example:

FP software: 4 instructions (1 clock each) to perform FP operation
(1FP/4s)

= 4 instr/4 sec = 1 instr/sec -> high MIPS
FP Hardware: 1 instruction (2 clocks long) to perform FP operations

= 2 instr/4 sec = 0.5 instructions / sec -> Lower MIPS
even though does more useful work in 4 seconds (completes 2 FP
operations/4s)

