1.1.

1.2,

1.3.

Assembler Synt

- Introduction Sun Microsystems’ Sun-4 Assembler takes assembly language programs, as
specified in this document, and produces relocatable object files for processii
by the Sun-4 link editor. The assembly language described in this document
corresponds with the SPARC instruction set defined in the SPARC™ Architec
Manual, Version 8, is intended for use on Sun-4s and SPARCStations.

Other References You should also become familiar with the manual pages as(1), ld(1), cpp(1),
a.out(5), and the SPARC Architecture Manual.

A Short Example The following example illustrates how a short assembly language program n
look.

Ty
~

*

* a simple program to copy a string

* showing correct syntax, delay slots, and use of annul bit.

* pseudo-operations: .seg, .global, .asciz, .skip

* synthetic instructions: set, ret, retl, mov, inc, deccc, nop

* numeric label: 1

* symbolic substitution: WINDOWSIZE

*/
#include <sun4/asm_linkage.h>
.seg "text"”
.global main
_main:
save %sp, -WINDOWSIZE, %sp
set str, %o ! source string
set out, %ol ! destination location
call _bcopy '
mov 24, %02 ‘ ! delay slot, length to copy
ret
restore %00, 0, %00 ! return value from main
.global _bcopy
_

@@»@ S u n 1 Ravicinn A nf 27 Morrh

i

2 Sun-4 Assembly Language Reference, N
e -
Y ﬁu}ﬁ, .
{ 1:) T i)
inc %00 ! inc from address
stb %04, [%01)] ! write to address
inc %ol ! in the delay slot: inc to address
_bcopy:
deccc %02 ! dec count, set condition codes
bge, a 1b ! loop until done
1dub [%00], %04 ! delay slot, read from address
retl ! leaf routine return
nop ! delay slot
.seqg "data"
str:
-asciz "this is a sample string"
.seg "bss"
out:
.skip 30 ! reserve 30 bytes

1.4. Syntax Notation

1.5. Statement Syntax

1.6. Lexical Features

2y

In the descriptions of assembly language syntax in this chapter, brackets ‘[]”’
enclose optional items, and the star ***** indicates items to be repeated zero or
more times. Braces ‘‘{ }"’ enclose alternate item choices, which are separated
from each other by vertical bars **|"’. Wherever blanks are allowed, arbitrary
numbers of blanks and horizontal tabs may be used.

The syntax of assembly language lines is:

[statement [; statement] *] [tcomment)]

['comment)

The syntax of an assembly language statement is:

[[Iabel :] [instruction] j

In the above syntax, label is a symbol name (described below), instruction is an
encoded pseudo-op, synthetic instruction, or instruction, and comment is any text
up to the line end.

This section describes lexical features of the assembler’s syntax.

S u n Dawlnlaca A AEATTAI___ 1. 1ANAA

Chapter 1 — Assembler Syntax

Case Distinction

Comments

Numbers

Strings

Symbol Names

NOTE

Upper and lower case are distinct everywhere, except in the names of special
symbols (see below), where there is no case distinction.

A comment is preceded by an exclamation mark; the ‘“!’’ and all following ¢
acters up to the end of the line are ignored. C-style comments with ‘‘/*. , .*
are also permitted, and may span multiple lines.

Decimal, hexadecimal, and octal numeric constants are recognized, and are w
ten as in the C language. For floating-point pseudo operations, floating-point
constants are written with Or or OR (for REAL) followed by a string acceptat
to ato£(3): an optional sign followed by a nonempty string of digits with
optional decimal point and optional exponent, or followed by a special name,
shown below.

The special names Ornan and Orinf represent the special floating-point va
Not-A-Number and INFinity, respectively. Negative Not-A-Number and Ne:
tive INFinity are specified as Or-nan and Or-inf£, respectively.

Notice that the names of these floating-point constants begin with a zero, not
letter “ O "

Strings may be quoted with either double-quote (") or single-quote (‘) mark:
When used in an expression, the numeric value of a string is the numeric vah
the ASCII representation of its first character.

The suggested style is to use single quote marks for the ASCII value of a sing
character, and double quote marks for quoted-string operands, such as used b
pseudo-ops. Here is some assembly code in the suggested style:

-
add %gl,’a"-'A",%gl 'gl + (fa’ = 'A’) --> gl
.seg "data™"

.ascii "a string"”
.byte M’
.

The following escape codes are recognized in strings; they are derived from (

\b backspace
\£ formfeed

\n newline (linefeed)
\r carriage return
\t horizontal tab

\nnn octal value nnn

The syntax for a symbol name is:

[{Ietterl_lSl.} { letter | _ 1 $ | . | digit }*

Upper-case and lower-case letters are distinct, and the underscore, dollar sigr
and period are treated as alphabetic characters.

@Aﬂ g l] n Ravicinn A nf 27 March

4 Sun-4 Assembly Language Reference

Symbol names that begin with L are assumed to be compiler-generated local
symbols, and, to simplify debugging somewhat, are best avoided in hand-codec
assembly language routines.

The symbol ““.” is predefined, and always refers to the address of the beginning
of the current assembly language statement.

NOTE By convention, system run-time routine names start with “.” and names from C
assembly language and £77 begin witha “ .
Labels A label is either a symbol or a single decimal digit 7 (0. ..9). Note that a label
immediately followed by a colon.
Numeric labels may be defined repeatedly in an assembly, whereas normal sym
bolic labels may be defined only once.
A numeric label » is referenced after its definition (backward reference) as nb,
and before its definition (forward reference) as nf.
Special Symbols Special symbol names begin with % so as not to conflict with user symbols, and
include:
Table 1-1 Special Symbols
Symbol Object Name Comment
general-purpose registers %r0 ... %r31
general-purpose global registers %g0 ... %g7 (sameas %x0 ... %x7)
general-purpose ‘‘out’’ registers %00 ... %07 (sameas %r8 ... %rl5)
general-purpose ‘‘local’’ registers | %10 ... %17 (same as $ri6 ... %r23)
general-purpose ‘‘in”’ registers $1i0 ... %17 (same as %$r24 ... %r31)
stack-pointer register %$sSp (¥sp = %06 = %14)
frame-pointer register $fp (5fp = %i6 = %30)
floating-point registers $£0 ... %£31
floating-point status register $fsr
front of floating-point queue $fq
coprocessor registers %c0 ... %c31
'COProcessor status register %csr
COprocessor queue %$cq
program status register $psr
trap vector base address register $tbr
window invalid mask $wim
'Y register Sy
unary operators %$1lo (extracts least significant 10 bits)
$hi (extracts most significant 22 bits)

There is no case distinction in special symbols; therefore using something like
%PSR is equivalent to $psr. Use of all lower-case is the suggested style. The
lack of case distinction allows for the use of non-recursive preprocessor

&2}? S u n Revicion A nf 27 Mar~h 10

Chapter 1 — Assembler Syntax

Operators and Expressions

1.7. as Error Messages

substitutions, such as

[#define psr %PSR

The special symbols $hi and % 1o are true unary operators which can be ust
any expression, and like other unary operators have higher precedence than
binary operations. For example:

$hi a+b = (%hi a)+b
%lo a+b = (%lo a)+b

It is a good idea to enclose operands of $hi or 1o in parentheses to avoid
ambiguity. For example:

[%hi(a) + b

The following operators are recognized in constant expressions:

Binary Operators Unary Operators

+ Integer Addition + (no effect)

- Integer Subtraction - 2’s Complement
* Integer Multiplication | ~ 1’s Complement
/ Integer Division $lo (see above)

% Modulo $hi (see above)

- Exclusive OR

<< Left Shift

>> Right Shift

& Bitwise AND

| Bitwise OR

Note that the modulo operator % must not be immediately followed by a lettc
digit, to avoid confusion with register names or with $hi or $1o0. The mod
operator is typically followed by a space or left parenthesis.

Although the above operators have the same precedence as in the C languag:
parenthesization of expressions is recommended to avoid ambiguity,

Messages generated by the assembler are generally self explanatory and give
sufficient information to allow one to correct a problem. Certain conditions
cause the assembler to issue warnings associated with delay slots following (
trol Transfer Instructions (CTIs):

0 set instructions in delay slots
o labels in delay slots

o segments that end in control/transfer instructions

&Ssun et A e N

6 Sun-4 Assembly Language Reference

These are not necessarily incorrect, but point to places where a problem could
exist. If you have intentionally written code this way, you can inform the assem-
bler that you know what you are doing by inserting a pseudo-op in a manner
similar to a C programmer’s using casts.

The . empty pseudo-operation in a delay slot tells the assembler that the delay
slot can be empty or contain whatever follows, because you have verified that
either the code is correct or the content of the delay slot doesn’t matter. Avoid
using . empty in assembly-language programs just as you would avoid using
casts in C programs. The .empty pseudo-operation is used only in programs
written in assembly language; Sun’s compilers don’t generate it.

”}}? sun Revision A of 27 March. 1990

2.1. Table Notation

e

Instruction-Set Mapp

The tables in this chapter describe the relationship between hardware instru
of the SPARC architecture, as defined in SPARC Processor Architecture, a1
instruction set used by Sun Microsystems’ SPARC Assembler.

The following table describes the notation :s2d in the tables in the rest of tt
chapter to describe the instruction set of the assembler.

Table 2-1 Notation
Symbol Describes Comment
reg %$r0 ... %r31
%g0 ... %g7 (sameas %rx0...%x7)
%00 ... %07 (sameas %r8...%rl5)
%10 ... %17 (same as $rl6...%r23)
%10 ... %i7 (same as $r24...%r31)
freg %f0 ... %£31
creg $c0 ... %c31
value (an expression involving at most one relocatable symbol)
constl3 value (a signed constant which fits in 13 bits)
const22 value (a constant which fits in 22 bits)
asi value (alternate address space identifier; an unsigned 8-bit value)
reg , Destination register.
reg .reg Source register 1, source register 2.
regaddr reg Address formed with register contents only.
regr.rl + regrsZ
address reg , + reg Address formed from register contents,
reg , + constl3 | immediate constant, or both.
reg — constl3 '
constl3 + reg .
constl3

&2% sun 7 Revision A of 27 Mar

8 Sun-4 Assembly Language Reference

Table 2-1 Notation— Continued
Symbol Describes Comment
reg_or_imm | reg Value from either a single register, or
constl3 an immediate constant.

2.2. Integer Instructions

NOTE

NOTE

The following table outlines the correspondence between SPARC hardware
integer instructions and SPARC assembly language instructions. The following
notations are suffixed repeatedly to assembler mnemonics (and in upper case for
SPARC architecture instruction names):

sr — status register.

a — instructions dealing with alternate space.
b — byte instructions.

h — halfword instructions.

d — doubleword instructions.

f— referencing floating-point registers.

¢ — referencing coprocessor registers.

rd — as a subscript, refers to a destination register in the argument list of an
instruction.

rs — as a subscript, refers to a source register in the argument list of an
instruction.

The syntax of individual instructions is designed so that a destination operand (if
any), which may be either a register or a reference to a memory location, is
always the last operand in a statement.

In the table below, curly brackets ({ }) mark optional arguments. Square brack-
ets ([]) mark indirection: the contents of the addressed memory location are
being read from or written to.

All Bicc and Bf cc instructions, described in the following table, may indicate
that the annul bit is to be set by appending “, a” to the opcode; e.g. “bgeu, a
label”.

Su Revision A of 27 March, 19%

Chapter 2 — Instruction-Set Mapping

Table 2-2 SPARC to Assembly Language Mapping
SPARC Mnemonic Argument List Name Comments
|ADD add reg . .reg_or_imm, reg , Add
ADDcc addcc reg ,.reg_or_imm, reg . Add and modify icc
ADDX addx reg .. reg_or_imm, reg , Add with carry
ADDXcc addxcc reg reg_or_imm, reg
AND and reg ,reg_or_imm,reg And
rsl - . rd
ANDcc andcc reg ,.reg_or_imm,reg
ANDN andn reg s reg_or_imm, reg
ANDNCcc andncc reg . reg_or_imm, reg
Bicc bn{, a} label Branch on integer condi- (branch never)
tion codes
bne{, a} label (synonym: bnz)
be{, a} label (synonym:bz)
bg{, a} label
Bicc ble{, a} label
bgef{, a} label
bl{, a} label
bgu{, a} label
bleu{,a} Ilabel
bee(, a} label (synonym: bgeu)
bes{, a} label (synonym: blu)
bpos{,a} label
bneg{,a} Ilabel
bve{, a} label
bvs{, a} label
ba{, a) label (synonym:b)
CALL call label{, n) (n = # of out registers used
as arguments)
CBccc cbn{, a} label Branch on coprocessor (branch never)
cb3{, a} label condition codes
cb2{, a} label
cb23{,a} label
cbl{, a} label
cbl3{,a} label
cbl2{,a} label
cbl23{, a} label
cb0{, a) label
cb03{,a} label
cb02{,a} label
cb023{,a} label
cb01{,a) label
cb013{,a} label
cb012(, a} label
cbaf{, a} label

Revision A of 27 March, 1

10 Sun-4 Assembly Language Reference

Table 2-2 SPARC to Assembly Language Mapping— Continued
SPARC | Mnemonic Argument List Name Comments
FBfcc fbn{,a} label Branch on floating-point (branch never)
' fbu{, a} label condition codes
fbg{, a} label
fbug{,a} Ilabel
£fbl{, a} label
fbul{,a} Ilabel
fblg{,a} Ilabel
fone{,a} Ilabel (synonym: £bnz)
fbe{,a} label (synonym: £bz)
fbue{,a} label
fbge{,a} label
fbuge{, a} label
fovle{,a} Ilabel
fbule{, a} label
fbo{,a} label
fba{,a} label
FLUSH flush address Instruction cache flush
JMPL jmpl address, reg Jump and link
LDSB ldsb laddress] , reg , Load signed byte
LDSH 1dsh [address], reg g Load signed halfword
LDSTUB ldstub [address] , reg Load-store unsigned byte
LDUB ldub [address] , reg Load unsigned byte
LDUH lduh address], reg Load unsigned halfword
LD 1d [address] , reg Load word
LDD idd [address) , reg Load double word (reg must be even)
LDF 1d (address) , freg Load floating-point regis-
ter
LDFSR 1d [address] ,%fsr
LDDF ldd [address], freg Load double floating-point
LDC 1d [address], creg Load coprocessor
LDCSR 1d [address] , % csr
LDDC 1ldd address] , (creg Load double coprocessor
LDSBA ldsba (regaddr] asi, reg Load signed byte from
: alternate space
LDSHA ldsha [regaddr] asi, reg
LDUBA lduba {regaddr] asi, reg
LDUHA lduha [regaddr) asi, reg
LDA lda (regaddr] asi, regrd
LDDA ldda [regaddr] asi, rreg (reg must be even)
LDSTUBA | l1dstuba

{regaddr] asi, reg ,

Revision A of 27 March, 19¢

Chapter 2 — Instruction-Set Mapping

Table 2-2 SPARC to Assembly Language Mapping— Continued
SPARC Mnemonic Argument List Name Comments
MULScc mulscc reg, ,.reg_or_imm,reg | Multiply step (and modify
icc)
NOP nop no operation
OR or reg ,.reg_or_imm,reg | Inclusive or
ORcc orcc reg ,.reg_or_imm,reg
ORN oxrn reg . reg_or_imm, reg
ORNCcc orncc reg ,.reg_or_imm,reg
RDASR rd %asrn ., reg
RDY rd SV, reg (see synthetic instruction
RDPSR rd $psr, reg (see synthetic instruction
RDWIM rd Fwim, reg (see synthetic instruction
RDTBR rd $tbr, reg (see synthetic instruction
RESTORE | restore reg reg_or_imm, reg (see synthetic instruction
RETT rett address Return from trap
SAVE save reg ,.reg_or_imm,reg (see synthetic instruction
SDIV sdiv reg . reg_or_imm,reg | signed divide
SDIVce sdiv reg . reg_or_imm, reg signed divide and modify
icc
SMUL smul reg reg_or_imm, reg signed multiply
SMULcc smulcc reg . reg_or_imm, reg signed multiply and modify
icc
SETHI sethi const22, reg Set high 22 bits of r regis-
ter
sethi $hi (value) , reg (see synthetic instructior
SLL sll reg . reg_or_imm, reg Shift left logical
SRL srl reg .. reg_or_imm, reg Shift right logical
SRA sra reg ,.reg_or_imm,reg | Shift right arithmetic
STB stb regaddr, [address] Store byte. (synonyms: stub, st
STH sth regaddr, [address] (synonyms: stuh, stst
ST st reg [address]
STD std reg (address) (reg must be even)
STF st fregrd, [address)
STDF std fregrd, [address]
STFSR st $fsr, [address) Store floating-point status
register
STDFQ std $£q, [address] Store double floating-point
queue
STC st Store coprocessor

creg . [address)

Revision A of 27 Marct

12 Sun-4 Assembly Language Reference

Table 2-2 SPARC to Assembly Language Mapping— Continued
SPARC Mnemonic Argument List Name Comments
STDC std creg . [address]
STCSR st $csr, [address)
STDCQ std %cq, [address] Store double coprocessor
queue
STBA stba regaddr, [regaddr} asi Store byte into alternate (synonyms: stuba,
space stsba)
STHA stha regaddr, [regaddr) asi (synonyms: stuha, st sha,
STA sta reg . (regaddr] asi
STDA stda reg . (regaddr] asi (reg must be even)
SUB sub reg . reg_or_imm, reg Subtract
SUBcc subce reg . reg_or_imm, reg Subtract and modify icc
SUBX subx reg ,.reg_or_imm,reg Subtract with carry
SUBXcc subxcc reg .reg_or_imm,reg ‘
SWAP swap {address] , reg Swap memory word
SWAPA swapa {regaddr] asi, reg with register
Ticc tn address Trap on integer condition | (trap never)
code. (See note.)
tne address (synonym: tnz)
te address (synonym: £ z)
tg address
tle address
tge address
tl address
tgu address
tleu address
tlu address (synonym: tcc)
tgeu address (synonym: t.cs)
tpos address
tneg address
tve address
tvs address
ta address (synonym: t)
TADDcc taddcc reg .. reg_or_imm, reg Tagged add and modify icc
TSUBcc tsubce reg .. reg_or_imm, reg
TADDccTV | taddcctv reg reg_or_imm, reg Tagged add and modify icc
_ and trap on overflow
TSUBccTV | tsubcctv reg reg_or_imm, reg
UDIV udiv reg reg_or_imm, reg unsigned divide
UDIVce udivce reg reg_or_imm, reg unsigned divide and
modify icc
UMUL umul reg . reg_or_imm,reg unsigned multiply

4ysun

microsvstams

Revision A of 27 March, 19

Chapter 2 — Instruction-Set Mapping

reg .o reg_or_imm,reg ,

Table 2-2 SPARC to Assembly Language Mapping— Continued
SPARC Mnemonic Argument List Name Comments
UMULcc umulcc reg . reg_or_imm,reg , unsigned multiply and
modify icc
UNIMP unimp const22 Unimplemented instruction
WRASR WwIr reg_or_imm, %asrn
WRY wr reg reg_or_imm, %y (see synthetic instructions
WRPSR wWI reg s reg_or_imm, $psr (see synthetic instructions
WRWIM WY reg . reg_or_imm, $wim (see synthetic instructions
WRTBR wr reg reg_or_imm, $tbr (see synthetic instructions
XNOR XNOY reg .. reg_or_imm,reg Exclusive nor
XNORcc Xnorcc reg e reg_or_imm,reg
XOR pde} reg reg_or_imm,reg Exclusive or
XORcc xorcc

2.3. Floating-Point
Instructions

Trap numbers 16-31 are available for use by the user, and will not be usurpe

Sun. Currently-defined trap numbers are those defined in
/usr/include/sun4/trap.h, asfollows:

In the table below, the types of numbers being manipulated by an instructior

In some cases where more than numeric type is involved, each instruction ir
group is described. Otherwise, only the first member of a group is describec

NOTE
0x00 ST SYSCALL
0x01 ST_BREAKPOINT
0x02 ST_DIVO
0x03 ST _FLUSH_WINDOWS
0x04 ST_CLEAN_WINDOWS
0x05 ST RANGE_CHECK
0x06 ST FIX ALIGN
0x07 ST_INT_OVERFLOW
denoted by the following lowercase letters:
i — integer
s — single
d — double
q — quad
& sun

Revision A of 27 Marc

14 Sun-4 Assembly Language Reference

Table 2-3 Floating-point Instructions
SPARC | Mnemonic Argument List Description
FiTOs fitos freg freg Convert integer to single.
FiTOd fitod freg freg Convert integer to double.
FiTOg fitoq freg freg Convert integer to quad.
FsTO41 fstoi freg freg Convert single to integer.
FATO1 fdtoi freg freg Convert double to integer.
FqQTOi fqtoi freg freg Convert quad to integer.
FsTOd fstod freg freg Convert single to double.
FsTOg fstog freg freg Convert single to quad.
FdTOs fdtos freg freg Convert double to single.
FdTOqg fdtogq freg freg Convert double to quad.
FgTOd fagtod freg fregrd Convert quad to double.
FqTOs fqtos freg freg Convert quad to single.
FMOVs fmovs freg freg Move
FNEGs fnegs freg freg Negate
FABSs fabss freg freg Absolute value
FSQRTs fsgrts freg freg Square root
FSQRTd | fsqgrtd freg freg
FSQRTq | fsqrtq freg freg
FADDs fadds freg freg freg Add
FADDd faddd freg freg freg
FADDq faddqg freg freg freg
FSUBs fsubs freg freg freg Subtract
FSUBd fsubd freg freg . freg
FSUBq fsubx freg freg . freg
FMULs fmuls freg fregmz . fregrd Multiply
FMULd fmuld freg fregmz . fregrd
FMULq fmulg freg w freg ; freg
FAMULg | fmulg freg freg freg Multiply double to quad.
FsMULd | fsmuld freg freg freg Multiply single to double.
FDIVs fdivs freg freg freg Divide
FDIVd fdivd freg freg o freg
FDIVg fdivg freg freg ot freg
FCMPs fcmps freg freg Compare
FcMmpd fcmpd freg freg
FCMPq fcmpg freg freg

@:%& sun Revision A of 27 March, 19

Chapter 2 — Instruction-Set Mapping

Table 2-3 Floating-point Instructions— Continued
SPARC | Mnemonic Argument List Description
FCMPEs fcmpes fregml . fregnz Compare, Generate exception if unordered.
FCMPEd | fcmped fregrs) fregn 5 '
FCMPEqgq | fcmpeq fregm ’ freg"2

2.4. Coprocessor
Instructions

NOTE

Table 2-4

All cpopn instructions take all operands from and return all results to coprc
sor registers. The data types supported by the coprocessor are coprocessor-
dependent. Operand alignment is coprocessor-dependent.

If the EC field of the PSR is 0, or if no coprocessor is present, a cpopn insti
tion causes a cp_disabled trap.

The conditions causing a cp_exception trap are coprocessor-dependent.

A non- cpopn (non-coprocessor-operate) instruction must be executed betv

a cpop?2 instruction and a subsequent cbccc instruction.

Coprocessor Instructions

SPARC

Mnemonic

Argument List

Name

Comments

CPop1
CPop2

cpopl
cpop?2

opd, reg ,.reg
opd, reg ,.reg .

r

! egrd
r

! egrd

Coprocessor operation
Coprocessor operation

(may modify cc

2.5. Synthetic Instructions

This section describes the mapping of synthetic instructions to hardware ins

tions.
Table 2-5 Synthetic Instruction to Hardware Instruction Mapping
Synthetic Instruction Hardware Equivalent(s) Comment
cmp reg s reg_or_imm subcc reg . reg_or_imm, $g0 (compare)
jmp address Jmpl address, $g0
call reg_or_imm jmpl reg or _imm, %07
tst reg orcc reg . %90, %g0 (test)
ret jmpl $i7+8, %90 (return from subroutine)
retl Jmpl $07+8, %g0 (return from leaf subrouti
restore restore %g0,%g0, %g0 (trivial restore)
save save %90, $g0, %g0 (trivial save)
Warning: trivial save
should only be used in ker
code!
set value, reg y or %g0, value, reg (if -4096 < value < 4095)
&ﬂz?@ S u n Revision A of 27 Marc!

16 Sun-4 Assembly Language Reference

Table 2-5 Synthetic Instruction to Hardware Instruction Mapping— Continued
Synthetic Instruction Hardware Equivalent(s) Comment
set value, reg sethi $hi (value) , reg (if ((value&Ox1ff) == 0))
set value, reg d sethi $hi (value) ,reg ; (otherwise)
or reg . %lo (value) , reg

Warning: do not use set in
an instruction’s delay slot.

not reg ,rTeg xnor reg s %g0, reg . (one’s complement)

not reg XNOr reg ,» %90, reg (one’s complement)

neg reg ,rreg sub %g0, reg ,ireg (two’ s complement)

neg reg sub %g0, reg . reg (two’ s complement)

inc reg add reg «1,reg (increment by 1)

inc constl3, reg o add reg . const]? Teg (increment by constl3)

inccc reg , addcc reg 1, reg (increment by 1 and set icc)

inccc constl3 reg addcc reg . constl3 reg (increment by constl3 and
seticc)

dec - reg sub reg .« 1,reg (decrement by 1)

dec constl3, reg sub reg ,constl3,reg (decrement by constl3)

d rd .
deccc reg subcc reg ,1, reg , (decrement by 1 and set icc)
deccc constl3, reg subcc reg . constl 3,reg’d (decrement by constl3 and

seticc)
btst reg_or_imm, reg andcc reg «reg_or_ imm, %$g0 (bit test)
bset reg_or_imm, reg or reg ,reg_or_imm, reg (bit set)
bclr reg_or_imm, reg andn reg (reg_or_imm, reg (bit clear)
btog reg_or_imm, reg xor reg (reg_or_imm, reg (bit toggle)
clr reg or %90, %90, reg (clear(zero) register)
clrb [adrddress] stb %g0, [address] (clear byte)
clrh [address] sth %g0, [address] (clear halfword)
clr (address) st $g0, [address] (clear word)
mov reg_or_imm, reg . or %90, reg_or_imm, reg ,
mov %y,reg rd %y,reg
mov ¥psr, reg rd %psr, reg
mov Fwim, reg 1 rd Swim, reg
mov %tbr, reg rd $tbr, reg
mov reg_or_ zmm 5y wr g0, reg_ or _imm, $y
mov reg_or_imm,%psr wr %90, reg_or_imm, $psr
mov reg or_imm,%wim wIr %g0,reg_or_imm, $wim
mov reg or_imm, %tbr Wr %$g0,reg or_imm, $tbr

4»sun

microsvstems

Revision A of 27 March, 1990

Chapter 2 — Instruction-Set Mapping

2.6. Leaf Procedures

Leaf procedures are the outermost routines on the tree of a program, as a tree
leaf is at the end of a stem on the branch of a tree.

Some leaf procedures can be made to operate without their own register win
or stack frame, using their caller’s instead. Such a leaf procedure is called ai
optimized leaf procedure. This can be done when the candidate procedure
meets all of the following conditions:

O it contains no CALLS or JMPLs to other procedures
o it contains no references to $sp, except in its SAVE instruction
o it contains no references to 3 £p

o it refers to, or can be made to refer to, no more than 8 of the 32 integer 1
ters, inclusive of $07, the “return address”.

If a procedure conforms to all of the above conditions, it can be made to ope
using its caller’s stack frame and registers an optimization that saves both ti
and space. When optimized, the procedure may only safely use registers wh
its caller already assumes to be volatile across a procedure call: $00 ... %0f
%07, and $gl. This may be expanded to registers $g1 ... $g7 if SPARC /

compliance isn’t required.

Leaf routines are most useful when they prevent expensive window
overflow/underflow situations, saving many tens of cycles each.

@% S u n Revision A of 27 Marct

