als
. . "‘
@ MOTOROLA digital dna

intelligence everywhere”

MPC7450UM/D
2/2003
Rev. 3

MPC7450 RISC Microprocessor
Family User’'s Manual

Devices Supported: MPC7457
MPC7455
MPC7451
MPC7450
MPC7447
MPC7445
MPC7441

HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.;

SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku,
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;

Silicon Harbour Centre, 2 Dai King Street,

Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:
1-800-521-6274

HOME PAGE:
http://www.motorola.com/semiconductors
DOCUMENT COMMENTS:

FAX (512) 933-2625,
Attn: RISC Applications Engineering

Information in this document is provided solely to enable system and software implementers to use
Motorola products. There are no express or implied copyright licenses granted hereunder to design

or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein.
Motorola makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Motorola assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be provided in
Motorola data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated
for each customer application by customer’s technical experts. Motorola does not convey any
license under its patent rights nor the rights of others. Motorola products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or for any other application in which
the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was

negligent regarding the design or manufacture of the part.

m MOTOROLA

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital
dnais a trademark of Motorola, Inc. All other product or service names are the property of their
respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2001

Overview

Programming Model

Cache

Exceptions

Memory Management Unit
Instruction Timing

Altivec Technology Implementation
Signals

System Interface

Power Management

Performance Monitor
Instruction Set Listings

Invalid Instructions
Special-Purpose Registers

User’s Manual Revision History
Glossary of Terms and Abbreviations

Index

o

9]
L
o

IND

o

9]

L

IND

Overview

Programming Model
Cache

Exceptions

Memory Management Unit
Instruction Timing

Altivec Technology Implementation
Signals

System Interface

Power Management
Performance Monitor
Instruction Set Listings
Invalid Instructions
Special-Purpose Registers

User’'s Manual Revision History

Glossary of Terms and Abbreviations

Index

CONTENTS

Paragraph . Page
Number Title Number
About This Book
8o (1= oo ST xlv
(@407 0 2= 1o o ORI xlv
SUQQEStEd REAING.....cvi et sre st sr e xlvii
General INfFOrMaLioNooev e xlvii
Related DOCUMENTALIONc.civeiiiiriereeie et xlvii
CONVENTIONS ...ttt b et e bt r et b e b e b snenesneneas xlviii
Acronyms and ADDrEVIBLIONS ..ot xlix
Terminology CONVENLIONScivieieriesesiesesesesese e sesse e ssesseseessessessessessessenes lii
Chapter 1
Overview
11 MPC7451 MiCroprOCESSOr OVEIVIEWccueveerierieriesiesiesiesieseeseessessessessessessessessens 1-1
111 MPC7441 MiCroproCessor OVEIVIEWccvrueeerermsrerenenesseseesesseseesessesenenes 1-5
112 MPC7450 MiCroproCeSSOr OVEIVIEWcceeveieriesiesiesiesiesiesessesiessessesseseseens 1-5
113 MPC7455 MiCroproCeSSOr OVEIVIEWccuervererieriesiesiesiesieseessessessessessesseseens 1-5
114 MPC7445 MiCroproCessor OVEINVIEWccrruerenerenrerenesesserenesesseseesessesenenes 1-5
115 MPC7447 MiCroproCeSSOr OVEIVIEWcceivereriesiesiesiessesiesessesessessessesessens 1-6
116 MPC7457 MiCroproCeSSOr OVEIVIEWccvereerieriesiesieseeseeseeseesseseessessessesseseens 1-6
12 MPC7451 MiCroproCessor FEBLUMESccuoiuereirereereireseeiesee st 1-6
121 Overview of the MPC7451 Microprocessor FEatUres.........coovvvvvvesvseenennn 1-6
122 INSEFUCHTON FIOW ...ttt e 1-12
1221 Instruction Queue and Dispatch UNitcoeovvvneinnneinneecsesene 1-13
1222 Branch Processing Unit (BPU) ..o e seeneens 1-13
1223 COoMPIELION UNIT ...ttt sttt 1-14
1224 Independent EXECULion UNITS.........ccoviveinnneineneee e 1-15
12241 AltiVec Vector Permute Unit (VPU)......ccooviiviviiiiiccccc e 1-15
12242 AltiVec Vector Integer Unit 1 (VIUL)....ccoooviiiiiiiniininnnene e 1-15
12243 AltiVec Vector Integer Unit 2 (VIU2)......cocvviieieinnieiinneeeneneees 1-15
12244 AltiVec Vector Floating-point Unit (VFPU)........ccccvivvivvivininnesesenn 1-15
12245 Integer UNitS (TUS) ..o s 1-16
12246 Floating-Point UNit (FPU)ccoeiririeiirneeesesieee s 1-16
12247 Load/StOre UNit (LSU) ..ccveveeeeeereeiee e seseeeene s 1-16

MOTOROLA Contents Y

Paragraph
Number

123
124
125
1.2.6
127
128
1281
1282
129
1291
1292
1293
12931
1.2.10
1211
1212
13
131
132
1321
1322
1323
133
1331
1332
134
1341
1342
135
1351
1352
1.3.6
137
14
15
16
17

21

Vi

CONTENTS

. Page
Title Number
Memory Management UnitsS (MMUS) ... 1-17
On-Chip L1 Instruction and Data Caches.............ccocvviiinininninininneneneneens 1-18
L2 Cache IMPlementation............covveenrnerininsereese s 1-20
L3 Cache Implementation..........cccociiiienenesesesese s 1-22
SYSIEM INEEITACE . .viiiiicic 1-23
MPC7451 BUS Operation FEAIUIES...........coevirirrrereineniereise s 1-23
MPX BUS FEBIUMES. ..ottt ettt 1-24
BOX BUS FEALUIES.......c.eeeeiererereeete s 1-25
Overview of System Interface ACCESSES........ccvireirrneinireee e 1-25
System Interface OPErationcccceverereresese e se s 1-26
SIgNAl GrOUPINGS ...uveueeueeieiesiesiesee e see st see e seesteste st ste st stesteseeseeseeseeseeseas 1-27
MPX Bus Mode Functional GroUDINGS..........corereerermereeneneereeseseereenenens 1-28
(01 oo (1 0 PP 1-30
POWEr ManaQEmMENLcocueiieiieieseere e 1-30
Thermal ManagemMentcovreirriei e 1-31
Performance MONITON ..ot e 1-31
MPC7451 Microprocessor: Architectural Implementationc.ccocevevvenene 1-32
PowerPC Registers and Programming Model ... 1-33
INSEFUCHTION SEL ...ttt e 1-45
POWErPC INSIIUCLION SEL.......c.eiveiiiiiriireeic e 1-45
AlIVEC INSTUCLION SEL ... 1-46
MPC7451 Microprocessor INStruction SEfccocvvvvvrenenieniesieninsennnenns 1-47
On-Chip Cache Implementation ... 1-48
PowerPC Cache MOEccooveiieeiree e 1-48
MPC7451 Microprocessor Cache Implementationcc.ccoevvevviviiennninns 1-48
EXCEPLION MOUEL ...ttt 1-49
PowerPC EXCeption MOdE] ..o 1-49
MPC7451 MicCroprocessor EXCEPLIONS.......ccccuivrerienesiesnsesesieseeseeneenenns 1-50
MemOory Management.........cceeiirieieerireeseee e e 1-52
PowerPC Memory Management Model ... 1-52
MPC7451 Microprocessor Memory Management Implementation......... 1-53
INSEFUCEION TIMING c.viviiiriesiesese ettt see s 1-54
AIIVEC IMPIEMENALIONoovieireiiireeiee e 1-59
Differences between MPC7451 and MPC7400/ MPC7410.......ccccoovirerennnne. 1-60
Differences Between MPC7441/MPC7451 and MPC7445/MPC7455.......... 1-63
Differences Between MPC7441/MPC7451 and MPC7447/MPC7457 1-64
User's Manual ReVISION HiStOMY.......ccvierienesesiesesie e e sie e e e se e 1-65
Chapter 2
Programming Model
MPC7451 Processor REQISIEN SEL.....ccuiiiiririreresese et 2-1
MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Paragraph
Number

211
212
213
2131
2132
2133
2134
2135
214
2141
215
2151
2152
2153
2154
2155
21551
21552
21553

21554
21555
2.155.6
21557
21558
2.155.9
215510
2156
2157
21571
21572
2158
21581
2159
21591
21592
21593
21594
21595
21596
21597
21598
21599

MOTOROLA

CONTENTS

. Page
Title Number

REGISLEr SEL OVEIVIEW ...cvveeieieiesiesiesie e e st e st te st ste et ste e seessesseseens 2-2
MPCT7451 REGISIEN SEL......coeieieeiiiririeeiri ittt 2-5
PowerPC Supervisor-Level RegiSters (OEA) ... 2-11
Processor Version REGISEr (PVR) ..ovvivviviiiiienisese s sie e 2-11
Processor Identification Register (PIR)ccocuvvviniinenienenesenesesiesieneens 2-11
Machine State Register (MSR)ccvrrireirieie e 2-12
Machine status save/restore registers (SRRO, SRR1)......c..ccccevcvvivivrnnnnns 2-14
SDRL REGISIESeiuiieietiererieieiesesie ettt ettt 2-15
Power PC User-Level RegisterS(VEA) ... 2-16
Time Base Registers (TBL, TBU) ..o sie e e e 2-16
MPC7451-Specific Register DESCriptionS........ccucuvirineneneneniesesesieseeseenes 2-17
Hardware Implementation-Dependent Register 0 (HIDO)ccccovevennee 2-17
Hardware Implementation-Dependent Register 1 (HID1)c..cecvvveene 2-23
Memory Subsystem Control Register (MSSCRO)........ccocvvvvinininniennninns 2-25
Memory Subsystem Status Register (MSSSRO).........covvvrrreirireniereninennns 2-27
Instruction and Data Cache REQISLENS........cccvvvivvvieniennnnnn e 2-28
L2 Cache Control Register (L2CR)......cccvvvvinininnnnnieniesiesiesieseesieneens 2-28
L3 Cache Control Register (L3CR)......ovcveirerrereinerieieeinesesieiee s 2-30

L3 Cache Output Hold Control Register
(L3OHCR)—MPC7457-SPECITIC ...vcvverereceiiierieiee e 2-35
L3 Cache Input Timing Control (L3ITCRO)ccocvvrveeinererrerinereniereenes 2-36
L3 Cache Input Timing Control (L3ITCRL) ...c.ccccvvvvvnvninenesieninnenns 2-38
L3 Cache Input Timing Control (L3ITCR2)ccccvvvvinvnineninnninniens 2-39
L3 Cache Input Timing Control (L3ITCR3)cccovvrreeinrenieieereneeieenes 2-40
Instruction Cache and Interrupt Control Register (ICTRL) 2-41
Load/Store Control Register (LDSTCR)cccvvvvininienienienienieniesiesieniens 2-42
L3 Private Memory Address Register (L3PM)coeeirrnreinenenieeenenes 2-43
Instruction Address Breakpoint Register (IABR)........ccccvvvvivvviivnnnnnennn 2-44
Memory Management Registers Used for Software Table Searching 2-44
TLB Miss Register (TLBMISS)vvurureeereeeeeesseeessessesesssssnenns 2-44
Page Table Entry Registers (PTEHI and PTELO)ccccocvvvvivinnnnenns 2-45
Thermal Management REQISIEN ... 2-46
Instruction Cache Throttling Control Register (ICTC)oovveveerenes 2-47
Performance Monitor REQISLENS.........cuvviiiiiinerenese e e se e e 2-47
Monitor Mode Control Register 0 (MMCRO)coovvvninvnnnnnnnieninns 2-48
User Monitor Mode Control Register 0 (UMMCRO).........cccovevvenvevenene. 2-50
Monitor Mode Control Register L (MMCRL)ccovvvviivninnnnninninns 2-51
User Monitor Mode Control Register 1 (UMMCRL)........ccccovevvviinnnne 2-51
Monitor Mode Control Register 2 (MMCR2)ccocevnvnieeininniereens 2-51
User Monitor Mode Control Register 2 (UMMCR2)........cccccevvviennne 2-52
Breakpoint Address Mask Register (BAMR)......cccoovviiniininieninninninninns 2-52
Performance Monitor Counter Registers (PMC1-PMCB)c....... 2-53
User Performance Monitor Counter Registers (UPMC1-UPMCE) 2-54
Contents Vii

Paragraph
Number

2.1.5.9.10
215911
215912

216
22
221
222
223
224
2.3
231
2311
2312
2313
2314
232
2321
2322
2323
2324
23241
23242
23243
233
234
2341
23411
23412
23413
234.14
234.2
23421
23422
23423
23424
23425
234.2.6
2343
23431
23432
23433
23434

viii

CONTENTS

. Page
Title Number
Sampled Instruction Address Register (SIAR)cccvcvvivvivvcvvvncnnenennn, 2-54
User-Sampled Instruction Address Register (USIAR)ccocvvviiinine 2-55
Sampled Data Address Register (SDAR) and
User-Sampled Data Address Register (USDAR)ccccvvevvvvvvninninnnnnn 2-55
RESEL SEIINGS. ... veuveeeiesiesiesiese sttt sttt sttt st st sttt see s 2-55
Operand CONVENLIONS..........cueirirerrerieresreree s e nese e 2-57
Floating-Point Execution Models—UISAccccviviiviennnenenesese e 2-57
Data Organization in Memory and Data Transfers........c.covvvvvivninininnnnenn 2-58
Alignment and Misaligned ACCESSES.........cuueuerirrrerinerenierie s 2-58
Floating-Point OPErands...........cuceiererenenesesesese e e e se e seenes 2-58
INSLrUCLION SEL SUMMAIY....c.ciiiieieieie ettt st 2-59
Classes Of INSLIUCHIONScccoviree et 2-60
Definition of Boundedly Undefined...........coovvivvinieneninninninnnnennsennninns 2-61
Defined INSrUCtion ClaSSccviirrineeirieiseesese e 2-61
[11egal INSLrUCLION ClESS......c.ccvviieriirerieieirere et 2-61
Reserved INStruCtion ClasS ..o 2-62
AdAressiNg MOGESccuiiiiiiiiii e ses 2-63
MEMOrY AAArESSINGcvcueeerrereririrerierie et 2-63
MEMOTY OPErANGSccveieeriesiesiesiesiesesesese e seeseestestesre e sreseeseesreseessessens 2-63
Effective Address CalCulationccoeiieiiennenninee e 2-63
SYNCHAFONIZALION ...ttt 2-64
Context SYNChroNiZatiONccccviereneneresese s 2-64
EXecution SynChroniZation............cuuveienenenenesenesesesee e e seeseeneens 2-67
Instruction-Related EXCEPLIONS..........ccvvirrieriririeeine e 2-68
INSEFUCETON SEE OVEIVIEW ... 2-68
POWEIPC UISA INSIIUCTIONS......ccueiveiiiieestisesee et 2-69
INteger INSIIUCHIONSc.civieieirerie e 2-69
Integer Arithmetic INSEIUCLIONS........ccooviiiiiiiiir e 2-69
Integer Compare INSLIUCLIONScoviiiininininiesese e 2-70
Integer Logical INSLIUCLIONS........cvoivereeiiriniereesesie e 2-71
Integer Rotate and Shift INSrUCLIONS..........ccvevvviviininicrecece e 2-72
Floating-Point INSLIUCLIONSovviriirenieniesesiese e se s see s seeseeseeseeseens 2-72
Floating-Point Arithmetic INStructions............cocovveeinineinnnece, 2-73
Floating-Point Multiply-Add INStrUCLIONS.......cccccvvviiiiiiieiesesesieieens 2-73
Floating-Point Rounding and Conversion INStructions...........cc.ceeene 2-74
Floating-Point Compare INStFUCLIONS..........coiveveinriereinenesieee s 2-74
Floating-Point Status and Control Register Instructions............c..c...... 2-75
Floating-Point MOVE INSITUCLIONS........cooiiininininise s see e 2-75
Load and StOre INSrUCLIONS.......ccovereeeereeee e 2-75
Self-Modifying COoE........cceieiiiecese e 2-76
Integer Load and Store Address Generation............ccuevvevvneneneneneens 2-77
Register Indirect Integer Load INStrUCtionsS.c.coeevrreneecnerenieeeenes 2-77
Integer SEOre INSITUCLIONS.viviiiiiriesn e 2-78
MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Paragraph
Number

23435
2.34.3.6
23437
23438
2.34.3.9
234.3.10
2344
23441
23442
23443
23444
2345
2346
2346.1
234.6.2
2347
235
2351
2352
2353
23531
2354
236
236.1
236.2
2.36.3
23631
2.3.6.32
237
238
24

25
251
2511
2512
2513
2514
252
2521
2522
2523
2524
2525

MOTOROLA

CONTENTS

. Page

Title Number

Integer Store Gathering........ccocviviiiiiiiise e 2-79
Integer Load and Store with Byte-Reverse Instructions.............c.cc...... 2-79
Integer Load and Store Multiple INstructions.............c.cccovvvrvrneene 2-80
Integer Load and Store String INStructions...........covvvvvvvsinnnsesnsenns 2-80
Floating-Point Load and Store Address Generation..........ccocecvveneneens 2-81
Floating-Point Store INSrUCLIONS.........coveveireriereineree s 2-82
Branch and Flow Control INSErUCLIONS.........c.ccoeerireneninc e 2-83
Branch Instruction Address CalCulation.............ccccoeerereereeienenenenenns 2-84
Branch INStrUCtIONS.........covviireei e 2-84
Condition Register Logical INStructions...........ccccvvvvivniesienieninsinsnsennens 2-85
Trap INSLIUCTIONS.....uveuieeeieie ettt sttt sttt 2-85
System Linkage INStruction—UISA ..o 2-85
Processor Control INstructions—UISA ... 2-86
Move to/from Condition Register INSIruCtions.........ccocvvvvvviennninnninns 2-86
Move to/from Special-Purpose Register Instructions (UISA).............. 2-86
Memory Synchronization Instructions—UISAccccvivvivviininninninninnnns 2-88
POWEIPC VEA INSIIUCLIONSveviieeiesieesieseeie e 2-88
Processor Control INStructionS—VEA ... 2-89
Memory Synchronization Instructions—VEAccocvivviiininninninnnnnns 2-89
Memory Control INSIrUCIONS—VEA ..o 2-90
User-Level Cache INStructions—VEA ... 2-90
Optional External Control INStrUCLIONS.ccvveveneseseneseseseseseseenens 2-93
POWEIPC OEA INSIIUCHIONSvcveeeieieestesesee et 2-94
System Linkage INStructionS—OEA ..o 2-94
Processor Control INStructionsS—OEA ... 2-94
Memory Control INStructionS—OEAccoviirinienenine e 2-98
Supervisor-Level Cache Management Instruction—(OEA) 2-99
Trangation Lookaside Buffer Management Instructions—OEA 2-99
Recommended Simplified MNEMONICS.......cccoviiininininnnene s 2-100
Implementation-Specific INSLIUCLIONS..........ccoeeirreie e 2-100
AlLIVEC INSITUCLIONS......ceeiieieieesieeet ettt e 2-103
AlIVEC UISA INSITUCTIONS......cvieirieeiirieii it 2-104
VeCtor INteger INSIIUCHIONScoveveeieiericeie e 2-104
Vector Integer Arithmetic INSIructions..........cccvvvviivniesiese s 2-104
Vector Integer Compare INStrUCtiONS.........ccooviiiiienenenieneseseseseseenes 2-106
Vector Integer Logical INSrUCtIONS..........cveivererieeinirneie s 2-107
Vector Integer Rotate and Shift INStrUCtionS...........ooevvvvvivnviienieninnninnns 2-107
Vector Floating-Point INSIIUCLIONS..........ccocviiiiiininiienene s seeneens 2-108
Vector Floating-Point Arithmetic Instructions...........cccevveicrnccene, 2-108
Vector Floating-Point Multiply-Add INStruCtionS.........cc.coevvvvivininnnnns 2-109
Vector Floating-Point Rounding and Conversion Instructions............... 2-109
Vector Floating-Point Compare INStrUCtioNS..........ccovvveeieerenierinenenieeeenes 2-110
Vector Floating-Point Estimate INStruCtionscocvvvvieniiieninninnnnnnns 2-110
Contents iX

Paragraph
Number

253
2531
2532
2533
254
255
2551
2552
2553
2554
2555
2556
2557
2558
26
26.1
26.2

31
311
312
3121
3122
3123
3124
3.13
3131
3132
3.133
3.14
32
321
322
3.3
331
3311
3312
332
3321

CONTENTS

. Page
Title Number
Vector Load and Store INSIIUCLIONScoccuviveerienenenene e 2-110
Vector Load INSIIUCHIONSc.coviveeeiieecriec e 2-111
Vector Load Instructions Supporting Alignmentccovevernereene 2-111
VECLOr SLOre INSLTUCLIONS ..ottt e 2-111
CONEIOl FIOW ..ottt s 2-112
Vector Permutation and Formatting INStrUCtioNS..........cccvveveinernecnenennene 2-112
VeCtor Pack [NSLIUCLIONS.cccci e e 2-112
Vector UnNpack INSEUCTIONS........viviiiiiiiinesese s seas 2-113
VeCtor Merge INSLrUCIONS.........c.vvvivereireriniccne et 2-113
Vector Splat INSITUCLIONSccvviviiiiic s 2-114
Vector Permute INSITUCLIONSovvveeeieeerieeseeseses e 2-114
Vector SElECt INSITUCIONccviiiicecc e 2-115
Vector Shift INSIrUCHIONS........coceiiieiieeee e 2-115
Vector Status and Control Register INSrUCtioNSccocvvvvivinienennniens 2-115
AIIVEC VEA INSITUCLIONS.......ociiiieiecieciece ettt sne e 2-116
AltiVec Vector Memory Control Instructions—VEAcccovivviviinninnnnns 2-116
AltiVec Instructions with Specific Implementations for the MPC7451..... 2-117
Chapter 3
L1, L2, and L3 Cache Operation
(@Y= V= 32
2] Fole: g BT o = o FO RSN 35
Load/StOre UNit (LSU) ..ovveeeiiesienieniesesie st sseseens 37
Cacheable Loads and LSU........c.coovirriiee e 37
LSU SIOr€ QUEUIESeotiiiirieeie ettt sttt sttt st eeesneas 37
Store Gathering/Mergingcoccerererererese e 3-8
LSU Load Miss, Castout, and PUsh QUEUES..........ccceevreeeerienereneeeeneneeseenes 3-8
Memory SUDSYSEEM BIOCKSccuiireririesiesesesesesiesie e sieseeseeseesseseessnssesenns 39
L1 SErViCE QUEUES......cccueeiecieecie et steeste e este st s este e s re e teennesneenreennesnean 39
L2 CaChe BIOCKccccveeeieesee e 3-10
System INterface BIOCK........ooevereiesese e 311
L3 Cache Controller BIOCKcoeierrireirec e 311
L1 Cache OrganiZations...........cueueeerererrerinerenresenesesiesee s sessesese s 312
L1 Data Cache OrganiZatioN.........cccceereresesesesesesesesiesesseseesseseessesseseenes 312
L1 Instruction Cache OrganiZation..........cocuveverenenesienenenesesesee e seeseenes 313
Memory and Cache CONEIENCY.......cccvurreirrreirre e 3-15
Memory/Cache Access Attributes (WIMG BitS).......ccocvvvvivivnnnnnnsnnenns 315
Coherency Paradoxes and WIMG ... sie e see s 3-16
Out-of-Order Accesses to Guarded MemOryoceeerrereinerneenenennas 3-17
(00]01= (= 0103 VA U oo 1 AT RPN 3-18
Coherency Between L1, L2, and L3 CaChes......ccvcvvvvvnennnnnnnenienennens 3-18
MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

CONTENTS

Paragraph . Page
Num%erIo Title Numbger
33211 Cache Closer to Core with Modified Data.........c.ccocveeveeceneienieneniene 3-19
33212 Transient Data and Different Coherency States.........ccocvvvvivnierenenienn 3-19
3322 SNOOP RESPONSE........cvieiiireerreee et 3-19
3323 INEEIVENTION.....ctiiiee e e 3-20
3324 Simplified Transaction TYPES.....cccuveriririresese e see e seeseas 321
3.3.25 MES] State TranSitiONS.covceveeeeereeiereeee et seenes 321
33251 MESI Protocol in MPX Bus Mode with Data Intervention Enabled.... 3-22
33252 MESI Protocol in 60x Bus Mode and MPX Bus Mode

(with Intervention Disabled)..........coeerirreeinnnee e 3-24
3.3.2.6 RESErVation SNOOPING .. .evereerierreriesiesesiesesessesessesessessessessessessessessessessens 3-27
333 L oad/Store Operations and Architecture Implications...........ccocvveeveneneneenn 3-27
3331 Performed Loads and StOreooeereereeenee e 3-28
3.3.3.2 Sequential Consistency of MemOry ACCESSES......cuvvrvrerereresnsesesnsees 3-29
3333 Load Ordering with Respect to Other LOads........ccvevvivineninnninnennnenns 3-29
3334 Store Ordering with Respect to Other StOresoccecvvveeinnneenenenns 3-30
3335 Enforcing Store Ordering with Respect to Loads.........ccccoevvvvvnninnnnnnns 3-30
3.3.3.6 AtomMiC MemOory REFEIENCES. ..o 3-30
34 L1 CaChe CONntrolcueieeeeeieste ettt 331
341 Cache Control Parametersin HIDOcooiieiiiinennenee e 3-32
3411 Enabling and Disabling the Data Cache..........cccocvvivneniininieninennsenieneens 3-32
3412 Data Cache Locking With DLOCKcocirrnmerinereneie e 3-33
34.1.3 Enabling and Disabling the Instruction Cacheccccvevvivvivivninniennnenns 3-33
3414 Instruction Cache Locking With ILOCKccocviinininnninninnennnesienees 3-34
34.15 L1 Instruction and Data Cache Flash Invalidationccccoceeevrerenne. 3-34
34.2 Data Cache Way Locking Setting in LDSTCRccccvivvvvivnennnnnesieseeseens 335
343 Cache Control Parametersin ICTRL ..o 3-35
3431 Instruction Cache Way LOCKINGoeveinrinreinerineineseseee e 3-35
34.3.2 Enabling Instruction Cache Parity Checking........c.coevvivvivnieninninninniennnenns 3-35
34.33 Instruction and Data Cache Parity Error Reporting...........ccocvevvvreneneenn 335
344 Cache Control INSLrUCHIONSc.coeeieerereeee e 3-36
3441 Data Cache BIock ToUCh (ACDt)ccceieieieirsesesese e seeneens 3-36
34.4.2 Data Cache Block Touch for Store (dChtst)coovvererineninnennnesnnnnenns 3-37
3443 Data Cache BIOCK Zero (dCHz)cvevverierinirnierie et 3-38
3444 Data Cache BIock Store (dChst)cvvvveieienenenesesesese e sieseseesenneens 3-39
34.45 Data Cache Block FIUSh (ACDf)cceveviniiininesineesesese s 3-39
3446 Data Cache Block Allocate (ACha).......c.coveverirrrerirererieie e 3-40
34.4.7 Data Cache Block Invalidate (dChi)cccovvvierenieneninnnsese e 3-40
34.4.8 Instruction Cache Block Invalidate (1Chi)........ccocvininiinininnnninnnnnneneens 3-40
35 L1 CaChe OPEIaliONc.covveveeierieteiinesesietee s sesres et 341
351 Cache Miss and Reload OperationsS..........ccocvuviriiieiinninnienieseseseseseseeneens 341
3511 Data Cache FillS.......cciiriiieiriees e 341
35.1.2 Instruction Cache FillS........cccviviiiiii e 3-42
35.2 Cache AlOCELION ON MISSEScueiveiieirierere et 3-43

MOTOROLA Contents Xi

Paragraph
Number

3521
3522
353
354
355
3.5.6
356.1
3.56.2
3.5.6.3
3564
3.5.7
35.8
3.6
36.1
36.2
3.6.3
3631
36311
36.3.12
3.6.3.1.3
36314
3.6.3.15
3.6.3.1.6
3632
3.6.3.3
3634
364
364.1
3.6.4.2
3643
3644
3.6.4.5
37
371
3.7.2
3.73
3731
3.7.3.2
3.7.33
3.7.34
37341
37342
3.7.35

Xii

CONTENTS

. Page

Title Number
Instruction Access Allocation in L1 Cache........ccoeeevennennennc e 3-43
Data Access Allocation in L1CaChe........ccoeovieeiennire e 3-43
SLOrE MISSMEIGING ...vuvvieiseriereeere et 3-43
Store Hit to a Data Cache Block Marked Sharedccoccovveeninncnncnenne. 3-44
Data Cache BIock PUSh Operation.........ccuuurerenenennsenesesesieseesiesenseeseenes 3-44
L1 Cache Block Replacement SEleCtion..........c.oeeevvrieieinnneinesneecnenns 3-44
PLRU REPIGCEMENT ..ottt e s snen 3-44
PLRU Bit UPELES.....c.ocvieieiieiiiiesieiee et 3-45
AltiVec LRU INStruction SUPPOIT.........c.covvrvereinermnrerinenenieree e 3-46
Cache Locking and PLRUcoceiiiiiesesiesesesie e 3-47
L1 Cache Invalidation and FIUShING........cccviirininininesenese e 3-47
L1 Cache Operation SUMMAIYccerreriererineniereeneseesesesesesseseesesseneesennns 3-48
2 o o 1 TSRS 3-52
L2 Cache OrganiZationcccurerenenesiesiese e sie s nes 3-52
L2 Cache and Memory CONEIENCYcoouererireriereineseeresese s sesneree e 3-53
L2 CaChe CONLIOLcoueeriierierieie ettt s e 3-54
L2CR Parameters.......ccoiviiiiiiesiesiesesesesesesrese e 3-54
Enabling the L2 Cacheand L2 Initialization...........ccccccovveinirnieenncne, 3-54
Enabling L2 Parity Checkingcccouviviinienienineniesiesesesesesesensenneens 3-54
L2 Instruction-Only and Data-Only MOdES..........coevvcvnennneniennnnninns 3-55
L2 Cache InValidationcccooeoeienneneesee e 3-55
Flushing of L1, L2, and L3 CaChes........cccccocvvvviniinennsnnesesesesieniens 3-55
L2 Replacement Algorithm SEleCtion ... 3-57
L2 Prefetch Engines and MSSCRO...........ccieirierinerenieie s 3-57
L2 Parity Error Reporting and MSSSROcccocvviiinienennneneseseseneens 3-57
Instruction INteraCtionS With L2.........cccooiiinineiieieesees e 3-57
L2 CaChe OPEratioN........c.eirereereeiirenietie sttt nenese e 3-58
L2 Cache Miss and Reload Operationscc.ccucvvierenienesienesesnsnsnnenns 3-59
L2 CaChe AIOCELTIONccccviieeiiiieisieist ettt 3-59
Store DataMerging and L2ccvevrierininnieeineneeese e 3-60
L2 Cache Line Replacement AlQOrithmsccccvvvvviivninninsinsnnesesnneens 3-60
L2 and L3 Operations Caused by L1 REQUESEScovrvrereninnennsinninnenns 3-61
G O ol T g1 (= = o= 3-67
L3 Cache INterface OVEINVIEWcciuirriirire e 3-67
L3 Cache OrganiZationccourererinenienese e sie s see s nes 3-68
L3 Cache Control Register (L3CR)c.covreririreirereinesiereine e 3-68
Enabling the L3 Cache and L3 Initialization..........cc.ccccvviviivivnnninsiennnnnns 3-68
L3 CaCNE SIZE.....ceiitietee et 3-69
L3 CaChe SRAM TYPES....ccvrmrreriirerietieresiereesesier et sesee e 3-70
L3 Cache Data-Only and Instruction-Only Modes..........ccccvvvrvnieieinnnnns 3-70
L3 Instruction-Only and Data-Only Operation..........c.cucuvvrenernnnnenns 3-70
L3 Cache Locking Using L3CR[L3DO] and L3CR[L3IO]cc.c..... 3-70
L3 Cache Parity Checking and Generationc.ccccvvcvvivnienesinnnsesnnnnns 371

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Paragraph
Number

3.7.3.6
3.7.3.7
3.7.38
3.7.3.9
37391
3.7.39.2
3.74
3.7.5
3.76
3.7.7
3.7.7.1
3.7.7.2
3.7.7.3
3.7.74
3.7.8
3781
37811
3782
3.7.8.3
3.7.84
3785
3.7.9
3.79.1
3.79.2
3.79.3
3.8
381
382
3.8.3
384
384.1
3.84.2
3843

41
4.2
4.3
431
432

MOTOROLA

CONTENTS

. Page
Title Number
L3 Cache INValidation.ccereerieniriineei e 372
L3 Cache FIUSNING......coiiiireiesiese s 372
L3 Cache Clock and Timing CONLrolS.........ccovueeinirnieineneniereeseseereenenens 3-73
L3 Sample Point Configuration............cccureieneninnieseseseseseseseseseeneens 3-74
Pipeline Burst and Late-Write SRAM ..o 3-74
MSUG2 DDR SRAM ...ttt et see e s enessnee e eee s 3-75
L3 Private Memory Address Register (L3PM).....cccovvvvvvnvnnnnnnsnseseneens 3-76
L3 Parity Error Reporting and MSSSRO ..o 377
Instruction InteractionSWith L3..........oo i 3-77
[IRCT 0o o TST @] 1< - 1o o HS R 3-78
L3 Cache Miss and Reload Operationscocuvvrenenenenenesesnsesnneens 3-78
[IRCT @ =7 2N 1 o o= 1o o [3-79
Cland WT ACCESSES AN L3oucvieeieiciee ettt benae s 3-79
L3 Cache Replacement SElECtioN ... 3-79
L3 Private Memory OPEration...........ceereruereniresrereineseeresesesesreseesesneseenennns 3-80
Enabling and Initializing L3 Private MemOryccccvcvvivnienienennsiennnenns 381
Initializing the L3 Private Memory when Parity isEnabled................. 3-82
CI and WT Accesses Not Supported for Private MEMOrYccocevveneee. 3-83
Castouts and Private MemOrYcccuoeierenesesesesiesesiesieseeseeseeseesseseeses 3-83
Snoop Hits and Private MemOry.........couererenenenesiesiesieseeseeseeseeseeseeseas 3-83
Private Memory and Instruction INteractions...........c.ccovevvneerinnieenenennns 3-84
L3 Cache SRAM Timing EXaMPIES.......cccoviivrerenesesene e 3-84
MSUG2 DDR Interface TiMiNgccocevererenenenesesiesesieseesieseeseeseesenseens 3-85
Late-Write SRAM TimMiNG.....cucvrrrreririrenrerine e 3-87
Pipelined BUrst SRAMociiiiiiesiesese e nnens 3-89
SyStEM BUS INEEITACEvviiiici s 3-90
MPC7451 Caches and System BuUS TranSaCtionS..........ccoceverveeenerenrerenenennns 3-90
Bus Operations Caused by Cache Control Instructions............ccccceevvevinnenne 3-92
Transfer AMIDULES..........cov i 3-94
Snooping of External TranSaCtioNnS...........cccceviereinrneinnneee e 3-96
Types of Transactions Snooped by MPC7451c.ccoovivviviinninninnnnnnnn, 3-97
L1 Cache State Transitions and Bus Operations Due to Snoops.............. 3-98
L2 and L3 Operations Caused by External Snoops.........cccovvvevrererienee 3-100
Chapter 4
Exceptions
MPC7451 Microprocessor EXCEPLiONS.........cuererririeerieireneseseee e 4-3
MPC7451 Exception Recognition and PrioritieS........ccouvurvninenenenieniennnnniens 4-5
EXCEPLION PrOCESSINGc.vivveriererier ittt 4-9
Enabling and Disabling EXCEPLIONS.......cccuiviiieresesesesiesiesiesee e e seeseeseees 4-13
Steps for EXCEPLioN ProCESSING........cuiviiiiiiiinisese e siesiesie s siesiesseseeseeseens 4-13
Contents Xiii

CONTENTS

Paragraph . Page
Number Title Number
433 Setting MSRIRIT ...ttt e e 4-14
434 Returning from an Exception Handler ... 4-14
4.4 Process SWITChINGc.evrvireieirrieeere e 4-15
45 Data Stream Prefetching and EXCEPLIONS.........ccvveveierenesesesesesieseseseeseees 4-15
4.6 EXCEPLION DEfINITIONS ..ottt 4-15
46.1 System Reset Exception (0X00100)eveeerererrerenerenreriesenieree s seseenens 4-17
46.2 Machine Check Exception (0X00200)cccourererereseseesnseseessesessessessenes 4-18
46.21 Machine Check Exception Enabled (MSR[ME] = 1)......ccccvvvvivninniinnninns 4-21
4.6.2.2 Checkstop State (MSRIME] = 0) ...c.ovvvviierierneiineriereeseseseee s 4-22
46.3 DSl Exception (OX00300)eueuererereerenereriereeseseeeesesesessesesesessesesesessesenesesens 4-22
46.3.1 DSI EXception—Page Fallt.........ccccviviiininnninesesesese e sie e see e 4-22
4.6.32 DSl Exception—Data Address Breakpoint Facilityc.ccovevieceinennns 4-23
46.4 ISl Exception (OX00400).......ccueueirerereeeenererieteesesieeenesesessesesesessesesesessesenesesens 4-23
4.6.5 External Interrupt Exception (0X00500)ccovererereenenieneneneseseseseeseenes 4-24
4.6.6 Alignment Exception (0X00600)cerrmrrerirermrrereneneniereesessereeseseeseenennns 4-25
4.6.7 Program Exception (0X00700).......cccuuierereneresnsesieseeseeseessessesseseessessessenes 4-26
46.8 Floating-Point Unavailable Exception (0X00800)ccocuvvrerereneneseeneenes 4-27
4.6.9 Decrementer Exception (0X00900)couruererirrrrereineseereeresesrereesesnereenennns 4-27
4.6.10 System Call Exception (OXO0CO0)coueveuerereruerenererierenesereeseesesessenesesessens 4-27
46.11 Trace Exception (OX00D00)........cciuiiiiriienienieniesiesiesiesieseeseeseeseessesseseessesees 4-27
4.6.12 Floating-Point Assist Exception (OX00EQD)ccovvriereinenenrerineseniereenennns 4-28
4.6.13 Performance Monitor Exception (OXO00F00)........ccccuvvrierenennnnnnneneesenneees 4-28
4.6.14 AltiVec Unavailable Exception (OXO0F20)ccovvvneneneneneneneneesenseenes 4-29
4.6.15 TLB MiSSEXCEPLIONScvveviiieietie ettt sttt 4-30
46.15.1 Instruction Table Miss Exception—ITLB Miss (0x01000)...........cc.ceeeune. 4-31
4.6.15.2 Data Table Miss-On-Load Exception—

DTLB Miss-On-Load (0X01100).........curirermererenermnrerenerensereesennenenees 4-31
4.6.15.3 Data Table Miss-On-Store Exception—

DTLB Miss-On-Store (0X01200)cccrerurverenermriemeneresiereesesesieenenens 4-31
4.6.16 Instruction Address Breakpoint Exception (0X01300)cceeeerererrerererennns 4-32
4.6.17 System Management Interrupt Exception (0X01400)cccevvvrivreiiennnenns 4-33
4.6.18 AltiVec Assist Exception (0X01600)courueeererereerenerenierenesesieeeesesesieenenens 4-34

Chapter 5
Memory Management

51 IMMU OVEIVIBW ...ttt s see et ne st eeneseenessenesseenes 5-2
511 MEMOTY AQUrESSING ..veveveeeriesiesiesiesiesestestessesesessessessessessessessessessessessessessens 55
51.2 MMU OFganiZaLION.....ccuevvereeriesiesiesiesiesiesiesieseeseeseessessessessessessessessessessessessessens 55
513 Address Trandation MechaniSms..........ccooeerireieneie e 5-11
514 Memory Protection FaCilitieS.......ccouvvveiinisesisesese s 5-14
515 Page History INfOrmation..........ccoeveneninnnnnesesesesie s 5-14

Xiv MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Paragraph
Number

516
516.1
516.2
517
518
52
521
522
53
531
532
5321
533
54
541
5411
5412
54.2
5421
5422
54.2.3
543
544
544.1
5442
54421
54422
54423
545
55
551
5511
5512
5513
5514
5515
552
5521
5522
5523
553
554
555

MOTOROLA

CONTENTS

. Page

Title Number
General Flow of MMU Address Tranglation...........ccoeeveereienenenenenenene. 5-15
Real Addressing Mode and Block Address Trandation Selection........... 5-15
Page Address Tranglation SEleCtionccovveinrneinnnece s 5-16
MMU EXCEPLIONS SUMMEIY ...c.veveiiesiesiesieseesiesieseeseessessesssssessessessessessessessenes 5-19
MMU Instructions and Register SUMMEAIYccccuvvrereneneneneseseneseseenes 5-22
Real AdAressing MOGE.........ccooiiiiinrinei et 5-24
Real Addressing Mode—32-Bit AddreSsingccovvevenenennnnnennsesenseees 5-25
Real Addressing Mode—Extended Addressingcocuvvvenenenenennsenneens 5-25
Block Address Translation............coveeeireiiee e 5-25
BAT Register Implementation of BAT Array—Extended Addressing........ 5-26
Block Physical Address Generation—Extended Addressing.........ccoccvvene. 5-30
Block Physical Address Generation with an Extended BAT Block Size. 5-31
Block Address Trandation Summary—Extended Addressing..........c..cc...... 5-33
Memory Segment MOE!ooviririreere e 5-35
Page Address Tranglation OVEIVIEW............cvoriereinniereene e 5-36
Segment Descriptor DefiNitioNS ..o 5-37
Page Table Entry (PTE) Definition—Extended Addressing..........cc.coou.. 5-38
Page HisStory RECOIINGc.civeveuiririnrerii ittt 5-39
REFEIENCEA Bl ...t 5-40
Changead Blcocueieieieieee ettt sttt 5-40
Scenarios for Referenced and Changed Bit Recordingcocovevvecnennes 5-41
Page MemOry ProteClionccceiererenesesesesesesiesesee e see e sse e seesseseenes 5-42
TLB DESCIHPLION .eveiviiiiiie ittt sttt sttt st see s 5-43
TLB Organization and OPEration.............oeeeerreereennsrerinenesereeseseereees 5-43
TLB INVAITABIION .. 5-45
EIDIE INSIIUCTION ..o s 5-45
HIDSYNC INSLFUCTION.....c.eovei s 5-47
Synchronization Requirements for tlbie and tibsync..........cccceevvvnenee. 5-48
Page Address Trand ation Summary—Extended Addressingc.cocvevene. 5-49
Hashed Page Tables—Extended AdAreSsing.........cocvevvrerenennerineneneeeneneene 5-51
SDR1 Register Definition—Extended Addressing.........c.ccoevvvvviinnienininninns 5-51
Page Tahle SIZE......cooiiesesesesee e 5-53
Page Table Hashing FUNCLIONSccovieinineie e 5-54
Page Table Address GENEration.........ccccuvvreieneneniesesieseseseseseseseeseens 5-55
Page Table Structure Example—Extended Addressingcc.cvevverennens 5-58
PTEG Address Mapping Examples—Extended Addressing............c...... 5-59
Page Table Search Operations—Implementation............ccocvevvevrivninnivnnnennns 5-61
Conditions for a Page Table Search Operation.........c.ccocvvvenenenienenenens 5-62
AltiVec Line Fetch SKipPiNgcvovrrrereinrineineseseese e 5-62
Page Table Search Operation—Conceptual FIOWccccoevvvvviinnieiinnnnns 5-63
Page Table UPUateScccuviririiriere ettt 5-66
Segment RegiSter UPAALES........ccuvivereiririnreineriseee s 5-67
Implementation-Specific Software Table Search Operation............c.......... 5-67
Contents XV

Paragraph
Number

5551

55511
555.1.2
55513
555.2

55521
555.22

6.1

6.2

6.3

6.3.1
6.3.2
6321
6.3.2.2
6.3.2.3
6.3.24
6.3.24.1
6.3.2.4.2
6.3.3
6.33.1
6.3.3.2
6.4

6.4.1
64.1.1
6.4.1.2
6.4.1.3
64131
6.4.1.3.2
6.4.2
6.4.3
6.4.3.1
6.4.4
64.4.1
6.4.4.2
6.4.4.3
6.44.3.1
6.4.4.3.2
6.4.5

XVi

CONTENTS

. Page
Title Number
Resources for Table Search Operations............cocvvivienieninsiesesiesesiesnneens 5-68
TLB MissRegister (TLBMISS)ccoieinrinieiinerenieieesesieiee e 5-70
Page Table Entry Registers (PTEHI and PTELO)ccocoevvvnieeenne. 5-71
Special PUrpoSe REQISIEIS (A7) ...vcvvererinesiesesesesieseseseseesseseeseenes 5-72
Example Software Table Search Operation.........ccocvvvvnineneneneneneneens 5-72
Flow for Example Exception Handlers...........ccoeovvvneinnneincnneeenes 5-73
Code for Example Exception Handlers.........cccovvvvvveniennnnnnsinsenennen 5-79
Chapter 6
Instruction Timing
Terminology and CONVENLIONS.........cc.cuiiririnenesiesesie s seeseeseeseeseenes 6-2
INStruction TiMiNG OVEINVIEW........c.couiiieriirerieieiseseeree e 6-4
TimiNG CONSIAEIALIONS.ccveiieieiriesisiesesese e se e se e e sre st sre e e e seeseesresseses 6-11
General INSITUCEION FIOW ..o s 6-12
INStruction FEtCh TimMiNGcooeirrici e 6-17
Cache ArDItratioN........c.eeieiiereeeee e 6-17
CACNE HIT .. 6-17
L@ o 1 S 6-21
L2 Cache Access Timing CONSIAErationsccccuvvvererenenesesinsnsnnenns 6-23
Instruction Cache and L2 Cache Hit.........cc.coovivnineineienenncneecee 6-23
Instruction Cache Miss/L3 Cache Hit.......c.coovireeiieiiiecreeeree e 6-25
Dispatch, Issue, and Completion Considerations.........cocvvevvvienenesnsnnenns 6-27
Rename RegiSter OPEration.........cuvurirenerenesesesesiesieseseesiesseseeseeseeseens 6-28
INStruction SerialiZation...........ccoevieeeiererere e 6-28
EXECUtiON UNIt TIMINGS.....coviieiesiesieriesiesiesiese e se e see e see e see e ssessessessessesseses 6-29
Branch Processing Unit EXeCUtion TiMiNgcocvireninennnennneneseseseenes 6-29
Branch Folding and Removal of Fall-Through Branch Instructions........ 6-29
Branch Instructions and CoOmMpletionccocovvenienieninnienieneneseseseneens 6-31
Branch Prediction and RESOIULION ..o 6-32
Static Branch PrediCtioncccvveeveeeiieneseeeenee e 6-33
Predicted Branch Timing EXamPplesS.......c.ccccovviiniininnieninnnnenenennnenns 6-34
Integer Unit EXECULION TIMING ..ccveiirireninieneniesesiesiesiesie e see e seeseeseeseeseeses 6-36
FPU EXECULION TIMINGvietieiieieiieiesietie et nenese e 6-37
Effect of Floating-Point Exceptions on Performance..........c.ccocvevvcvinnnnns 6-37
Load/Store Unit EXECUtioN TimMiNg.......cuourererereseneseneseseseeseesesseseeseenes 6-37
Effect of Operand Placement on Performance.............cooevvevnnnnenenenen. 6-37
SEOre GANEITNG ..o 6-39
AltiVec Instructions Executed by the LSU ..o, 6-39
LRU INSLFUCHIONS ...t s st 6-39
TranSient INStrUCLIONSceiueirieiriererierere e e 6-39
AlLIVEC INSITUCTIONS. ...ttt 6-40
MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Paragraph
Number

6.4.5.1
6.45.1.1
6.45.1.2
6.4.5.1.3
6.45.14
6.5
6.5.1
6.6

6.7
6.7.1
6.7.1.1
6.7.1.11
6.7.1.1.2
6.7.1.2
6.7.1.2.1
6.7.1.2.2
6.7.1.3
6.7.1.4
6.7.1.4.1
6.7.1.4.2
6.7.1.5
6.7.2
6.7.2.1
6.7.2.11
6.7.2.2
6.7.2.2.1
6.7.3
6.7.3.1
6.7.3.2
6.7.3.3
6.7.4
6.7.4.1
6.7.5
6.7.6
6.7.6.1
6.7.6.2
6.7.6.3
6.7.6.4
6.7.6.5
6.7.6.5.1
6.7.6.5.2
6.7.6.5.3
6.7.6.5.4

MOTOROLA

CONTENTS

. Page

Title Number

AltiVec Unit EXeCUtion TIMIiNG........coovviiiriinninieinsiesn e e sesee e 6-40
AltiVec Permute Unit (VPU) Execution Timing........cc.ccuevvvnieneneneens 6-40
Vector Simple Integer Unit (VIU1) Execution Timing...........cccoeeeeene. 6-40
Vector Complex Integer Unit (VIU2) Execution Timing..........cccceee.. 6-41
Vector Floating-Point Unit (VFPU) Execution Timingccoceveevvne 6-41
Memory Performance CoNSIAErationsS...........cvorereeirerenrerinenenieseeseseeree s 6-44
Caching and Memory CONEIENCYccccvivieiiinieiesesesnse e siesessessessessens 6-44
INSLruction LatenCy SUMIMEIYcoererierieriesiesiesiesie e sieseeseeseeseeseeseeseesseseesenses 6-44
Instruction Scheduling GUIdEIINES...........cov i 6-57
Fetch/Branch CONSIAErations..........cccoerererirerieerieenienesiesesie s 6-58
FetChing EXAMPIES......ociiiirieniesiesie sttt st neen 6-58
Fetch Alignment EXaMPIE. ..o 6-58
Branch-Taken Bubble EXample.........c.ccooiiiiniinieninninnnsese s sesieseens 6-60
Branch ConditionalS..........coevieiiirnire s 6-61
Branch Mispredict EXample.........ccocvieiinnieinrcc s 6-61
Branch Loop EXGMPIE......cccviiiiiiiiiesesese et see e 6-61
Static versus Dynamic PrediCtion..........coeveveneneneseseseseeseeseeseseeseenens 6-63
Using the Link Stack for Branch INdirect...........cccccoveinnneinnncciinennns 6-64
Link Stack EXaMPIE......cccviiiiiiiisesese e see st see e 6-64
Position-Independent Code EXamplecocvivinininnnnnnnnnsennnieneens 6-65
Branch FOIAINGcvoviirreirieirec e 6-66
Dispatch Unit Resource REQUIFEMENS........cccvvvrerereseneseesieseeseeseseeseeseenes 6-67
DiSPALCN GIrOUDPINGS ...veuveeeeesiesiesieseesiesieseeseessessessassessessessessessessessessessessens 6-67
Digpatch Stall due to Rename Availability..........cocoeeeinineinincene, 6-67
Dispatching Load/Store Strings and MUItipleS..........coovviviivinninninniennnenns 6-68
Example of Load/Store Multiple Micro Operation Generation............ 6-68
| ssue Queue ResoUrce REQUITEMENES...........cvoriereineniereine e 6-69
GPR Issue QUEUE (Gl Q)oveieieieieriesiesiesiesiesie e see e ste e sse e sse e seeseeseas 6-69
Vector [ssue QUEUE (VIQ) ..vvviiiiiiiiiiiisii s s 6-70
Floating-Point Issue Queue (FIQ)c.covieirrnieieiseie e 6-71
Completion Unit Resource ReQUIFEMENESccccvvvieivienesiesnsiesesesinneens 6-71
COMPIEtion GrOUPINGS......cervereereereerierieseesseseeseeseessessessessessessessessessessessesses 6-72
Serialization EffECtS.....cooiiie e 6-72
Execution Unit CONSIAErations...........coeerrereeerieerienesiesesieseee e see e 6-72
TUL CONSIAEIELIONS......cveuereerrineeie ettt s et sr e en e 6-72
TU2 CONSIAEIBEIONS.......cueeeeeeiireeee et st seene e tee e seeneseeneseenens 6-73
FPU CONSIEIELIONS......cerueeeierieesieesiesesie et 6-74
Vector Unit CONSIAEIatioNnSccuiveervererrirnieriee et 6-76
Load/Store UNit (LSU)coveereirerieeieneseree et 6-76
Load Hit PIPEIINE.....coiiiicecece sttt 6-78
StOre Hit PIPEIINE.....oiieeesesese e 6-78
L0ad/Store INteraCtioncoevveerenerereeese e 6-80
Misalignment EffeCtS.........coivviiiiniiniinisese s 6-80
Contents XVii

Paragraph
Number

6.7.6.5.5
6.7.6.5.6
6.7.6.5.7
6.7.7
6.7.7.1
6.7.7.2
6.7.7.3

7.1
711
7111
7112
7113
7114
7.1.15
7.12
7121
7122
7123
71231
7.1.232

7.1.2.33
71234
7.1.2.35
7.1.2.3.6
7.1.2.3.7
7.1.2.38
7124
7.1.25
7.13
7.131
7.1.3.2
7.133
7.2

7.3

7.4

7.5

xviii

CONTENTS

. Page
Title Number
Load MiSS PIPEIINE.....ccoiiiiiesesese s 6-81
StOre MiSS PIPEIINE ..o 6-84
DST Instructions and the Vector Touch Engine (VTE)cccovevenene. 6-86
Memory Subsystem CoNSIAErationSccccvvvrerenesesieneseseseseseseseseenes 6-86
L2 CaChe EffECES......coeiieeireee et 6-86
L3 CaChe EffeCES......cceieceecieseseses ettt 6-87
Hardware PrefetChing ..o 6-87
Chapter 7
AltiVec Technology Implementation

AltiVec Technology and the Programming Modelcccovvininiinininnennninnn 7-1
REGISIEN SEL ...ttt e 7-2
Changes to the Condition REQISLENcoveverereierese e 7-2
Addition to the Machine State RegiSter ..o 7-2
VeCtOr REGISLEFS (VRS) ...vviuiieiereirerieie sttt 7-2
Vector Status and Control Register (VSCR)cccoovvvvvivnnnininsiesesesesees 7-3
Vector Save/Restore Register (VRSAVE) ..o 7-4
AIIVEC INSITUCLION SEL ... 7-5
LRU INSLIUCLIONS ...ttt 7-5
Transient Instructions and Caches...........ccoerrireineeneesees e 7-5
Data Stream Touch INSITUCLIONScceieiececesececes e 7-6
Stream ENQINE TaOS. .. cceieiererieresesiesiesiesiestessesessessessessessessessessessesseses 7-8

Speculative Execution and Pipeline Stalls
for Data Stream INSETUCLIONScccviiiiiiiesc e 7-8
Static/Transient Data Stream Touch INStructions..........ccoceeveecieicnienens 7-9
Relationship with the sync/tblsync InStructions..........ccccvevevnienenenenen, 7-9
Data Stream Termination.........cc.cuiviererenesesesesesese e se e e e seeseeses 7-9
Line FELCh SKIPPING. . ..viiiiieieiisesesesesese e se e e e e sse e e sseseens 7-10
Context Awareness and Stream PalSiNgcoovvevenenenenenesenesenes 7-10
Differences Between dst/dstt and dstst/dststt Instructions.................... 7-11
dss and dssall INSLFUCLIONScccciieeirieirieinee e 7-11
Java Mode, NaNs, Denormalized Numbers, and Zeros...........ccccoceeervenene. 7-11
Differences between the MPC7400/MPC7410 and the MPC7451 7-15
Java and NON-JaVa MOde.........c.corirririiieee e 7-15
AltIVEC INSITUCTIONS.....oiieeiiieesteestese et 7-15
AltiVeC INStruction SEQUENCING.......c.civereirererreirereeierire e 7-16
AltiVec Technology and the Cache Model ..o, 7-17
AltiVec and the EXCeption MOGE.........ccccuvivininienininesesesese s 7-18
AltiVec and the Memory Management Modelcccovreinnneinnneeenes 7-19
AltiVec Technology and Instruction Timing.......cccccevvievennninninninsinsesinsesenens 7-19
MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Paragraph
Number

8.1
811
812
8.2
821
822
8.2.3
8231
8232
8.23.3
8234
8235
8.2.3.6
8.23.7
824
8.25
8.25.1
8.252
8.2.6
8.26.1
826.11
8.26.1.2
8.26.2
826.21
8.26.2.2
8.2.7
8271
82711
82712
8.27.2
82721
82722
8.27.3
8274
8.27.5
82751
8.275.2
8.2.7.6
8.2.7.7
8.2.8

MOTOROLA

CONTENTS

. Page
Title Number
Chapter 8
Signal Descriptions
SIgNAl GIOUPINGS ...eveveieeiieiiesiesie e sie e et ste e ste et stesbesbesbesbesbestestessessessessens 81
SIgNAL SUMMBIY ..cviiiiiiiiiie bbb bbb bbb e e 82
Output Signal StateS DUIMNG RESELccovviveriirerieieirere e 8-4
MPX Bus Signal Configurationccceeereresesesesesesesiesesseseseessessessessessens 8-5
MPX/60x Bus Protocol Signal Compatibilitycoevvieriniiniiniiniininninisnninns 8-6
MPX BUSMOOE SIGNAIScvvevieririerie ittt 8-6
60x Bus Signals Not inthe MPCT7451.........cccccooviiiiiiiiniinnn e seenees 87
Address Bus Busy and Data Bus Busy (ABB and DBB)ccc......... 8-7
Data Bus Write Only (DBWO).........cuorrieieinrinieine e 8-7
Data Retry (DRTRY) ...ttt nee s 8-7
Extended Transfer ProtoCol (XATS) ..ocvveririnininieniesiesiesiesie e sieseeseeseesens 87
Transfer Code (TCLO:1]) ..vuurrereirrrereireresreree e 8-7
Cache Set Element (CSE[0:1]) cvvvververerierieniesiesiesiesieseesieseeseeseesseseeseessessnes 87
Address Parity Error and Data Parity Error (APE, DPE)cccocvvvvvninn 87
MPX Bus Mode FUNCtional GIrOUDINGSc.courrererermrrereeresiereesesnereeseseesenenes 8-8
Address Bus Arbitration SIgnalS..........ccoovvviiiiiniinnininnnnnse s 8-10
Bus ReqUESE (BR)—OULPULcoverierierieriesieniesieseeseeseesieseeseeseeseeseeseeseesenns 8-10
BUS Grant (BG)—INPULcoveiriririeiiirenerie et 8-10
Address Bus and Parity in MPX BUSMOUEccccvviinnnnniennnenesnsinnens 8-11
AdAress BUS (A[0:35]) ...veiviriiniiiiniiniiniisesiesiesiesie e sie e sseseeseeseesseseeseas 8-11
Address Bus (A[0:35])—OULPULccourrerrrermnrereirenieree e 8-11
Address Bus (A[0:35])—INPULccviviniiininin e 8-13
Address Bus Parity (AP[0:4]) ..o 8-13
Address Bus Parity (AP[0:4])—OULPUL..........coererirrreriineniereeneniereees 8-13
Address Bus Parity (AP[0:4])—INPULccccoiviviinniininiisnnnsese e 8-14
Address Transfer Attribute Signalsin MPX BusMode..........ccoovevvinnniennn. 8-14
TranSfEr SEArt (TS)...ueueereerreerreierseessessseseesssssssssse s ssssssssse s sssssssssnes 8-15
Transfer Start (TS)—OULPUL..........ceevevereeeceereeeeeeeeteiee e eseeeetessneneens 8-15
Transfer Start (TS)—INPULc.ovveereeeeeecreee ettt 8-15
Transfer TYPe (TTLO:A]) «.evorerrerirereriereeresie e s 8-15
Transfer Type (TT[0:4])—OULPULccererererieresesese e e se e 8-16
Transfer Type (TT[0:4])—INPUL.......cccorirerirerenerese s 8-16
Transfer Burst (TBST)—OULPULc.coureriereinerireeine s 8-16
Transfer Size (TSIZ[0:2])—OULPULc.cceeviirerinnisnsenese e e e e e e 8-16
Lo I (= T 8-17
Gl0DEA (GBL)—OULPULcorerereieeieieessesssesseeesssssssssssssesessssssssssnes 8-17
GIODEl (GBL)—INPULcecvveereceeveee et eeete e st sesenesee e en et senens 8-17
Write-Through (WT)—OULPULcoeiirininiininesie e 8-17
Cache INhibit (C1)—OULPUL.......ccveveeiereeerie et 8-18
MPX Address Transfer Termination SignalS.......c.cceevvievvieninnnnnninsinsnseens 8-18
Contents Xix

Paragraph
Number

8.28.1
8.2.8.2
82821
8.28.22
8.2.8.3
82831
8.2.8.3.2
8.2.84
8.29
8.29.1
8.29.2
8.293
8.2.10
8.210.1
821011
8.210.1.2
8.2.10.2
821021
8.210.2.2
8.211
82111
82112
8.3
831
8.3.2
8321
8322
8.3.3
8331
8332
8.3.3.3
8334
834
834.1
83411
834.12
8.34.2
83421
834.22
8.34.3
8344
8345
83451

XX

CONTENTS

. Page

Title Number
Address Acknowledge (AACK)—INPULcccoevvivrinninninnnnnsnnese e 8-18
AdAress Retry (ARTRY) ..o 8-19
Address Retry (ARTRY)—OUIPULcovereirerieriineriereesesiereeseseereeees 8-19
Address Retry (ARTRY)—INPUL........cccovriiiiiiinniiininsese e see e 8-20
Shared (SHDO, SHD1) SIgnalS.......cccovureerinirnieieinerieieenesesieiese s 8-20
Shared (SHDO, SHD1)—OULPULcccvrerrereeiirenieriesesieree e 8-21
Shared (SHDO, SHD1)—INPUEccueueireirieenerenieene e 8-22
SNOOP Hit (HIT)—OULPUL.......cerveieieriisiesiesie et 8-22
Data Bus Arbitration SIgNalS.......cccoeeeirinierinineneeinesie s 8-23
Data Bus Grant (DBG)—INPUL...........cccerrvrveererereeeeeeeeteessessesesesesessesesenans 8-23
Data Transaction Index (DTI[0:3])—INPULccocvrierenienieneninesenenieneens 8-24
Data Ready (DRDY)—OULPULcueveererreriiresierie e 8-24
Data Transfer SIgNAlS......cvieeireresesese et 8-25
Data Bus (D[0:63]) .evereereereerieniesiesiesiesiesiesseseessessessessessessessessessessessessessens 8-25
Data Bus (D[0:63])—OULPULc.eourerrereirereereienerenrerene e sesnerenees 8-26
Data Bus (D[0:63])—INPUL.......cccoiivririieiennsisesesesesesieseeseseeseeneens 8-26
Data Bus Parity (DP[0:7]) .oooerererereneniesiesiesiesesssessessesseseessessessessesseseens 8-26
Data Bus Parity (DP[0:7])—OULPULc.coermrrereinerenieinesenieree s 8-26
Data Bus Parity (DP[O:7])—INPUL.......ccccoreiiniinninesesesesieseesieseeneens 8-27
Data Transfer Termination SIgNalS.......ccocvvvrerineneneninnese s 8-27
Transfer Acknowledge (TA)—INPULc.ccreerrerreeiererneessensse e sesssessenes 8-27
Transfer Error Acknowledge (TEA)—INPUL..........ccoceveveveeeeeeeeecee e 8-28
60X Bus Signal ConfiguIation...........cuuvuririiinenenenesesesesie e seeseeseeseeseeseeseens 8-29
60x Bus Mode Functional Groupings.........c.covererirerenierineseniereeseneeseeseseenens 8-29
60x Address Bus Arbitration SIgnalsS........cccuviviiiiniinninninninsnnesnsese e 8-30
Bus ReqUESE (BR)—OULPULeovereirieriesiesiesiesiesiesiesiesieseeseeseeseeseeseeseesenns 8-31
BUS Grant (BG)—INPULcrverieeiieieeeirsississiese s sssssssssse e ssssssssssnens 8-31
Address Bus and Parity in 60X BUSMOUE..........cocvvivivinnnninnnnnnesesnseenens 8-31
Address Bus (A[0:35])—OULPUL.........ccuiririninenesesiesie e siesieseeseeseeseas 8-32
Address Bus (A[0:35])—INPULcorereinrinreineineee e 8-32
Address Parity (AP[0:4])—OULPUL.........cccvriviiiininniniesesesesesesee e e 8-32
Address Parity (AP[O:4])—INPUL........cccoiiiiiininininiinee s 8-32
Address Transfer Attribute Signalsin 60x Bus Mode...........ccccoovrrvreeene. 8-32
TranSfer StArt (TS) ...vivieeiiiriiiesi s see e 8-32
Transfer Start (TS)—OULPUL.......ccererereriereriesesie s s nes 8-33
Transfer Start (TS)—INPULcoveveirerieeireeee e 8-33
Transfer Type (TTI0:4]) .ooveviiiiiiie s 8-33
Transfer Type (TT[0:4])—OULPULccerererieriereniese e see e see e 8-33
Transfer Type (TT[0:4])—INPUL.........oeirrieinrreee e 8-33
Transfer Burst (TBST)—OULPULccoivivieniiinnsesiesiesiesiesiesieseeseeseeses 8-34
Transfer Size (TSIZ[0:2])—OULPULccccuriririninininene e e see e e 8-34
Lo = (= T 8-34
GlObal (GBL)——OULPUL.....c.ciereeeemererieeerenesinieseresesie e sesiesene e s seseeeens 8-34

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Paragraph
Number

8.34.5.2
8.3.4.6
8.34.7
8.35
835.1
8.35.2
83521
8.35.2.2
8.3.5.3
83531
8.3.5.3.2
8.3.6
8.36.1
8.3.6.2
8.3.7
8371
837.11
837.12
8.3.7.2
83721
83722
8.3.8
838.1
8.38.2
8.4
84.1
8411
84.1.2
84121
84122
84.1.3
84.131
84.132
84.2
8421
84.2.2
84221
84222
84.2.3
84231
84.23.2
84.24
8.4.3

MOTOROLA

CONTENTS

. Page

Title Number
Global (GBL)—INPULeveiesiesiesiesiesie e sie e sie s sees 8-34
Write-Through (WT)—OULPULcoviirininiinieniesiese e 8-35
Cache INhibit (C1)—OULPUL.......ccoeveeiererierieiesie e 8-35
60x Address Transfer Termination SIgNalS..........coevviviiviiininiinninsinseseseneens 8-35
Address Acknowledge (AACK)—INPUL.........ccoivriiinininnnnne e 8-35
Address Retry (ARTRY) oot 8-36
Address Retry (ARTRY)—OULPULcueuirirerieieererieiee s seseeeenees 8-36
Address Retry (ARTRY)—INPUL........cccoriiiiiniinininie s 8-36
S == o (ST T 1) LSS 8-37
Shared (SHDO)—OULPULeueueeeireeereririeeere e eeeees 8-37
Shared (SHDO)—I NPUL.....cccoririiesierieniesesie e seas 8-37
Data Bus Arbitration SIgNalS.......c.coeeeirinierinnneecsesee s 8-37
Data Bus Grant (DBG)—INPULccooererieninennseseseseseseeseeseeseeseeneens 8-37
Data Transaction Index (DTI[0:3])—INPULcooerereniininininenesenieneens 8-38
Data Transfer Signalsin 60X BUS MOdE..........c.oeeoinneieinnncinineccnenns 8-38
Data BUuS (D0:63]) .c.vveverererereererererierenesesiesenesesieseeseseesenesesessenesessssenesssens 8-38
Data Bus (D[0:63])—OULPULccereerierieriesiesiesiesiesiesieseesseseeseesenssesenns 8-38
Data Bus (D[0:63])—INPUL.........oeuirererreriinerereinesesreree e 8-38
Data Bus Parity (DP0:7]) ..coeeveererereerenererierenesesiereesesieieeseseeseesessesenesesens 8-39
Data Bus Parity (DP[0:7])—OULPULccvvrererienieniesiesieseeseeseeseeseeseens 8-39
Data Bus Parity (DP[0:7])—INPUL.........cveirreieinrieece e 8-39
Data Transfer Termination Signalsin 60x Bus Mode...........ccocvvvviviviennennn 8-39
Transfer Acknowledge (TA)—INPULccccevereeeeeereeeeeeee e 8-39
Transfer Error Acknowledge (TEA)—INPUL.........c.cererreereenreererseesnensennes 8-40
Non-Protocol Signal DESCIIPLiONSccvveverenesesesie e e see e 8-40
L3 Cache AJAreS/Data........ccuoeueiveerrereniineeeseee e 8-40
L3 Address (L3_ADDR[17:0])—OULPULccevererermrreriirerrereinennereenennas 8-40
L3 Data (L3 DATALD:B3]) «eceeeererereererereriereneresiereesesierenesesessenesesessenesesens 8-41
L3 Data (L3 DATA[0:63])—OULPULcveuereeeeerirerenieeeeserieieeseseeeenes 8-41
L3 Data (L3 DATA[0:63])—INPUL........ceoirerrererirerinrerinesenreree s 8-41
L3 DataParity (L3 DP[0:7]) ..ccererereeeenererieieneresieienesesieieeseseeseesesesseneseens 8-41
L3 Data Parity (L3 _DP[0:7])—OULPUL.......cccorerirererienieniesiesiesiesieneens 8-42
L3 Data Parity (L3_DP[O:7])—INPULc.coorrrereirerinieinnnieee s 8-42
L3 Cache ClOCK/CONLIOLc.ciueuiieeerieesienesie e 8-42
L3 Clock (L3 _CLK[0:1])—OULPULevvereereerieriesieseesiesieseeseeseeseeseeseeseeseens 8-42
L3 Clock Synchronization (L3_ECHO_CLK[0:3])cvevrervereerenrereinennns 8-42
L3 Clock Synchronization (L3_ECHO_CLK][1,3])—Outptt 8-42
L3 Clock Synchronization (L3_ECHO_CLK][O0:3])—Input..........c...... 8-43
L3 Control (L3_CNTRL[O:Z]) . cererrereererrerieresieree e 8-43
L3 Control (L3_CNTLO)—OULPULeueererererrerereriereneseseeeeeseseneenees 8-43
L3 Control (L3_CNTL1)—OULPULcererririereiriesiesiesiesieseeseeseeseeseeseens 8-44
L3 Voltage Select (L3_VSEL)—INPUL......c.ccvrrerirerrieieneneiecsesiereeneeas 8-44
INtErrUPLYRESEL SIGNEAIS....ccveveeieiesiesese e 8-45
Contents XX

Paragraph
Number

8431
8432
8433
8434
84341
84.34.2
8435
8.4.3.6
844
844.1
8.4.4.2
8443
84.4.4
8.4.4.5
84451
8.4.45.2
84453
84454
8.4.4.6
8.4.4.7
845
845.1
8.4.5.2
8453
84.54
8.4.6
84.6.1
8.4.6.2
8.4.6.3
84.6.4
8.4.6.5
8.4.7
8.4.8

9.1
9.11
9111
9112
9.12

XXii

CONTENTS

. Page
Title Number
INterrupt (INT)—INPUL.....cceieieceseseses s 8-45
System Management Interrupt (SMI—INPUtccccoverenininninenenenenen 8-45
Machine Check (MCP)—INPUL...........cccoireirrnerieneee e 8-45
RESEL SIgNAIS. ..c.veiiiiiiesiesies e nne 8-46
Soft Reset (SRESET)—INPUL......cociuiuiiriiieirereeee et 8-46
Hard Reset (HRESET)—INPUL......c.ccvimriinnireinereieree e 8-46
Checkstop Input (CKSTP_IN)—INPUL.......ccccovreiereneneseseseseesesee e 8-47
Checkstop Output (CKSTP_OUT)—OULPULccovereerieriereeseeseeseeseeseeneas 8-47
Processor Status/Control SIgNalS........c.covvveeerirniereinneeeneseseee e 8-47
Timebase Enable (TBEN)—INPUL.........cccciiviininiinninnnnne e see e 8-48
Quiescent Request (QREQ)—OULPUL.........coervererereresiesiesieseeseeseeseeseeses 8-48
Quiescent Acknowledge (QACK)—INPUL........ccccrieeiinnneinnneeienes 8-48
Bus Voltage Select (BVSEL)—INPUL......ccccivreriiniennnnsesesesesesesinneens 8-49
Bus Mode Select (BMODE[O:1]) ...vuvvvvererereenieseenieseesiessesseseesseseessesseseens 8-50
Bus Selection Mode (BMODEO)—Input During HRESET 8-50
Address Bus Driven Mode (BMODEQ)—Input After HRESET 8-51
Bus Selection Mode (BMODEL)—Input During HRESET 8-52
Bus Selection Mode (BMODE1)—Input After HRESETc.c..... 8-52
Performance Monitor In (PMON_IN)—INput...........cccovivnivninninninninninnnns 8-53
Performance Monitor Out (PMON_OUT)—OULPULcoceerererereraneans 8-53
CloCK COoNtrol SIgNAIS....c.cvieiereirerieieererie et 8-53
System Clock (SY SCLK)—INPUL........ccererereriesieseseseseeseeseeseeseseeseenes 8-53
PLL Configuration (PLL_CFG[0:4])—INPUL......cccrivriirinriinininineninnenns 8-54
Extension Qualifier (EXT_QUAL)—INPUL........ccccvrmeinirnieiineniereinenes 8-54
Clock Out (CLK_OUT)——OUEPULE.......cvrvereereeereererenieenesesieseneseseeseesesens 8-55
IEEE 1149.1a-1993 (JTAG) Interface DesCriptioncoevvvverenesnsenneens 8-55
JTAG Test ClocK (TCK)—INPULcoeoireriereirerieieiresesieee e 8-56
JTAG Test Data Input (TD1)—INPUL.....cociueeeirerieiecrereeeee e 8-56
JTAG Test Data Output (TDO)—OULPULcccervriririnninninniesieseeseeseenees 8-56
JTAG Test Mode Select (TMS)—INPULc.ccoovimereinreeie s 8-56
JTAG Test Reset (TRST)—INPUL......c.coireerieererinieene st 8-56
Configuration Signals Sampled af RESEL ..o 8-57
Power and Ground SIgNalSccovrreeirrnieriinsereese e 8-57
Chapter 9
System Interface Operation
MPC7451 System INterface OVEINVIEWcooreririieeereireneseseee e 9-1
MPC7451 BUS Operation FEAUIES..........ccoeiiererireeiseee e 9-1
MPX BUS FEAIUIES.......cctiieiiieesiieie et 9-2
BOX BUS FEALUIES.......c.eieiieeeeetete et 9-2
Overview of System INterface ACCESSES.......c.cvviiiiiiiine s 9-2

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Paragraph
Number

9.1.3
9.14
9.15
9.1.6
9.1.7
9.18
9.1.9
9.1.10
9.2
921
9.3
931
9311
9312
932
9321
9322
9323
9324
93241
93242
9.3.24.3
9.3.25
9326
9.3.26.1
9.3.2.6.2
9.3.3
9331
9.33.2
9.3.3.3
9.3.34
9.4
94.1
94.11
94.2
9421
94.2.2
94221
94.2.3
94.24
94.24.1
94.24.2
94.24.3

MOTOROLA

CONTENTS

. Page

Title Number
Summary of L1 Instruction and Data Cache Operationccccvevvvienennne. 9-5
L2 CaChNE OVEIVIBIW ..ottt 9-6
L3 CaChE OVEIVIEW ...t sttt nne 9-6
Operation of the System INterface.........ccoovvviviiiiiiiiiii e 9-7
Memory Subsystem Control Register (MSSCRO)......c.cvvvininenienieniennneninns 9-7
Memory Subsystem Status Register (MSSSRO).........cvvrenerirereneeiseniereens 9-8
Direct-Store Accesses NOt SUPPOEd.........covrvierenenienesesese e e seseseneens 9-8
Common Timing Diagram SymbOIS.........ccccveiiiiniiini e 9-8
MPX BUS PrOtOCOIc.eeueeieieieieseeee ettt sttt sttt snenne 9-9
MPX BUS PIPEIINING ...cveieieiesiesesesesesiese et 9-10
MPX BUS ACUIESS TENUIE ...ttt 9-11
MPX Bus Address Bus Arbitrationcccccceeeeeveeerenneneee e 9-11
Qualified Bus Grant in MPX BUSMOUE..........ccovvverennnnsennsesnsesennens 9-12
MPX Address BuS Parking ..o siesieseeseesensenns 9-13
MPX BUS AAUresS TranSfErcooeeeiererieneee e e 9-15
Address Bus DIVeNn MOGE...........ccooeiriinriinineneee e 9-16
AdAress BUS SIFEAMING........cuiiiiiiiiniisisese s sseseeseesseseeseas 9-16
AdAresSS BUS Paityc.cccoviieriiriieieinsieeese st 9-16
Address Transfer AtIHDULES.........ccooeeeiirrirre e 9-17
Transfer Type (TT[0:4]) SIgNalS ...cccovcvrerererenenese e 9-17
Transfer Size (TSIZ[0:2]) and Transfer Burst TBST Signals.............. 9-19
Write-Through (WT), Cache Inhibit (Cl), and Global (GBL) Signals. 9-20
Burst Ordering During Data Transferscovvvennenieninnieneseseseseneens 9-21
Effect of Alignment in Data TranSfers ... 9-21
Misalignment EXAMPIE........cccuviiiinieiniiiisesese s see e 9-22
Alignment of External Control INStructions..........c.ccoevvvvviennnieneneneenn 9-23
MPX Bus Address Tenure TErmMinationcccoceeerererereeerereseeeseeneneenenns 9-23
Address Retry Window and Qualified ARTRYccccovivvivnivnnnnnnnnninnns 9-24
Snoop Copybacks and the Window-of-Opportunityc.ccoevevenenenens 9-27
Shared (SHDO, SHD1) Signalsin MPX BusMode.........c.ccccocevrererinnne. 9-28
Hit (HIT) Signal and Data INtervention.............coeeeveeeveeereveeeeeeeesesenenans 9-29
MPX BUS DAa TENUIE........ceeeirieeeeeeiesresieresre e 9-30
MPX Bus Data Bus ArbDitration...........cccooveeererieneseneseseee e e 9-30
Qualified Data Bus Grant in MPX Bus Mode.........ccccoevvvnennnnnnnnnennnn 9-30
MPX BUS DA TIaNSIENccveviieeeiiieesieesese s 9-31
Dat@a BUS PaliLYcccueieieeieeiereiciie et 9-32
Earliest Transfer Of Datal.........ccoierrinriieeseserese s 9-33
Data Streaming in MPX BUS MOGE.........cccoeuvininininnnnne e siesieneens 9-33
Data Tenure REOIENNGccerrerreririririerie s 9-33
MPX BUS Data INtErVENLIONcoveririirieiiieeisieesiesesie e 9-34
Data-Only Transaction ProtOCOIccocuvirinininininnnsesesieseesiesieneens 9-35
DRDY TiMING .ttt s es 9-36
Pipelining of Data-Only TranSactionS..........cocvvvveriennsesesesesesenenns 9-37
Contents XXiii

Paragraph
Number

94244
9.4.24.5
94.24.6
943
9431
94.3.2
9.4.3.3
9.5
951
9.6
9.6.1
96.1.1
9.6.1.2
9.6.2
9621
9.6.2.2
9.6.2.3
9.6.23.1
9.6.24
9.6.3
9.6.3.1
9.7
9.7.1
9711
9.7.2
9.7.3
9.8

9.9
9.9.1
9.9.2
9.9.3
9.94
9.10
9.10.1

10.1
10.2
10.2.1
10.2.2

XXiv

CONTENTS

. Page
Title Number
Retrying Data-Only TranSaCtionS........ccccuvvverinesesienesesesnsesesnnsens 9-37
Ordering of Data-Only TranSaCtioNS........c.cuvevereneseseseseseseseeseenes 9-38
SNAMTING vttt 9-39
MPX Bus Data Tenure TErmMiNation...........cccourerenenesenennnenesesesnseeseenes 9-39
Normal Single-Beat Transfer Termination..........ccocvvvvveninieniinienieniennnens 9-40
Normal Burst Transfer Terminationccccvceeeeieseseseseseseseseseennens 9-40
Data Transfer Termination Dueto a BUS ErTorccocvvevvcevvnieniennnnnnnns 9-41
B0X BUS PrOtOCOceiviiiiiiiiiiniisiisie sttt bbbt sttt seeseeseessessens 9-42
B0X BUS PIPEITNING.....oiveviireietiine st 9-42
60X BUS AQUrESS TENUIE.......ceiviiiiiiiiieiiesiesie e sie e sie et sre e sse e sse e ssessessesnens 9-43
60X Bus Address Bus Arbitralionccucuieiiienennnenesesesese e seeseeseens 9-43
Qualified Bus Grant in 60X BUSMOCE...........ccocevreeirienerenene e 9-43
60X Address BuS Parking........coeeereresesesesese e e e see e see e see s 9-44
60X BUS AQAress TranSfer.......cuiiiiiiiiiiiisi s see s e 9-44
60X Address Bus Driven MOdE..........ccooeveveniesesie e seese e 9-45
60X AAAress BUS Paritycccoeeerierieniesesiesesesie e siesie e e see e seesee e seeseas 9-45
60X Address Transfer AttrDULES. ... 9-45
60x Transfer Size (TSIZ[0:2]) and Transfer Burst (TBST) Signals..... 9-45
Aligned and Misaligned Transfers..........ccoovviinninninninninninnese e 9-46
60x Bus Address Transfer TErmMination..........cocuvvvveienennnesenesinseseseneens 9-46
Snoop Response and SHD Signalocvevrereinnneineseee e 9-47
60X BUS DAL TENUIEceveeiieeeiieeie ettt ettt sttt e 9-47
60X Bus Data BUS ArDItration..........ccoviiiinienininsenesiesesesiesesieseseesseseeseens 9-47
Qualified Data Bus Grant in 60X Bus Mode..........ccccoovrrenreneeeninnenenn, 9-47
60X BUS Dat@ TraNSFEN'S......civieiiiiiiiiiisiisinsie e e sie et ste s ste e ssesseseessens 9-48
60x Bus Data Tenure Termination............cuouvuieiinenenesesesesesessesesseseens 9-48
60X BUS Timing EXAMPIES......ccuvvireiiiierieiit et 9-49
Reset, Interrupt, Checkstop, and Power Management Signal Interactions....... 9-54
RESEL INPULS......eoeeeeet et 9-54
EXTErNal INEEITUPES ...c.oivveeieireriet st 9-55
CRECKSIOPS. .. ettt sttt ettt nre s 9-55
Power Management SIgNalS.......couverererinenenesesesie s see s see e seesee s 9-55
|EEE 1149.18-1993 Compliant INterface..........cocvveirrneinnneceneneecseseene 9-56
JTAG/COP INEEITACE.....ecvv it 9-56
Chapter 10
Power and Thermal Management
Dynamic POWer Management..........coererereresieseseesiesseseeseeseessessessessesseseesseses 10-1
Programmable POWEr MOUEcocvirrirei e 10-1
FUIT-POWES MOUE ..ottt sttt sttt sne s 10-3
NP MOOE ...ttt sttt et 10-3

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Paragraph
Number

10.2.2.1
10.2.2.2
10.2.2.3
10.2.3
10.2.3.1
10.2.3.2
10.2.3.3
10.2.4
10.3

111
11.2
1121
11.2.2

11.3
1131
11.32
11321
11.33
11.331
11.34
11.34.1
11.35
11.36
11.36.1
11.3.7
11371
114
115
1151
11.5.2
1153
1154
1155
11.5.6

MOTOROLA

CONTENTS

. Page
Title Number
Entering NAP MOGEccoiieeesesesese e 10-3
EXIiting NaD MOooiiiiiriesieniesiese sttt see 104
Snooping IN Nap MOde (DOZE).........coourreriririieriinerieeese e 10-4
SIEED MOUE ..ot nrenre s 10-4
ENtering SIEep MOGEc.coviriiriirieniisesie ettt s 104
EXiting SIEEP MOUEocvieiiciieiestetee et 10-4
(DS oIS L= o 1Y [oTo TR 10-5
Power Management Software Considerations...........ccucuvvveneneneneneseneenes 10-5
Instruction Cache Throttling.........ccoveeirine e 10-6
Chapter 11
Performance Monitor

OVEBIVIBIW ...ttt bbbt b e e bt et b et b e et seeneseeneas 11-2
Performance Monitor EXCEPLION.........coouvirinenesesesie e 11-3
Performance Monitor SIgNalS..........oceerrieinnnerense e 11-3

Using Timebase Event to Trigger or Freeze a Counter
or Generate an EXCEPLIONccovereriineresiesiese e 11-4
Performance MOonitor REQISIENS ..ot 11-4
Performance Monitor Special-Purpose REQISLENS......ccovvvvvvivnennsnsnneens 11-4
Monitor Mode Control Register 0 (MMCRO)cccovvvinienenienenieniesieseeneees 11-5
User Monitor Mode Control Register 0 (UMMCRO)........occvevvniereninennes 11-8
Monitor Mode Control Register 1 (MMCRL)cccovvvvivnnneinneseseeseesees 11-9
User Monitor Mode Control Register 1 (UMMCRL).......cccoocvviiniininininns 11-9
Monitor Mode Control Register 2 (MMCR2)cccoveieinnneinennereenennns 11-9
User Monitor Mode Control Register 2 (UMMCR2).........ccccveviviinnene 11-10
Breakpoint Address Mask Register (BAMR).....ccoovviviniiniinnnnnenenienienens 11-10
Performance Monitor Counter Registers (PMC1-PMCB).........cccveverenenes 11-11
User Performance Monitor Counter Registers (UPMC1-UPMCS) 11-12
Sampled Instruction Address Register (SIAR) ... 11-12
User Sampled Instruction Address Register (USIAR)ccoveieireninee 11-13
Y= 000111 o [OOSR P 11-13
EVENE SEIECHION ...t 11-14
O B Y o1 S 11-14
PIMC2 BEVENES ...ttt sttt ettt eb e s b e s b e seen 11-20
PIMC3 EVENES.....c.etiuieiesiet ittt sttt s s 11-25
PMCA EVENLS ...ttt sttt st sne sttt sne e 11-27
PIMCE EVENES ...ttt sttt bee b 11-29
PIMCB EVENES.......oveuiiiesietie ittt s 11-30

Appendix A
MPC7451 Instruction Set Listings

Contents XXV

Paragraph
Number

Al

A2

A3
A4
A5
A.6
A7

XXVi

CONTENTS

Title

Instructions Sorted by Mnemonic

(Decimal and HexadeCimal)cocovevevenenenieseseseseseseeseeneens

Instructions Sorted by Primary and Secondary Opcodes

(Decimal and HexadeCimal)ccevereereniesesenesesesiesesesenneens
Instructions Sorted by Mnemonic (BiNary)ccocvevenieneseneneens
Instructions Sorted by Opcode (BiNary)ccccevereerererenrereneneneenns
Instructions Grouped by Functional Categories.........cc.ccoevvvvvnene
Instructions Sorted by FOrM........ccoviiiiinineneseeses s
INSrUCtion Set Legend.........ccoovvvereinerenrerine et

Appendix B
Instructions Not Implemented

Appendix C
Special-Purpose Registers

Appendix D
User’s Manual Revision History

MPC7450 RISC Microprocessor Family User’s Manual

Page
Number

MOTOROLA

FIGURES

Figure . Page
Nt?mber Title Numbger
11 MPC7451 Microprocessor BIOCK Diagramccccevvreininneiineneneee s 1-5
1-2 L1 Cache OrganiZationcccceeueseniesiesiesiesiesiesieses e s e ssestesae e ste e stessessessessessesseses 1-19
1-3 Alignment of Target Instructionsinthe BTIC........cccvvviiiininiinnninnnesesesese s 1-20
1-4 L2 Cache Organization for MPCT745L........ccooeiiirieieenesieeise s 1-21
1-5 L2 Cache Organization for the MPC7447 and MPCT7457cccovvovveiesesecesesieen 1-21
1-6 MPX BUS SIGNal GrOUPS.......cveieieieieniesiesiesieseeseeseessessessessessessesssssessessessessessessessesees 1-29
1-7 Programming Model—M PC7441/MPC7451 Microprocessor Registers...........ow... 1-37
1-8 Programming Model—MPC7445, MPC7447, MPC7455, and

MPC7457 MiCroproCeSSOr REJISIEIS.cvuirieriirieriesiesiesiesiesie e seesieseesee e seesseseeseeseeseas 1-38
1-9 Pipelined EXECULION UNIt ..ot 1-55
1-10 Superscalar/Pipeling DiagraM..........ccoiviiiiiiiiiise s ses 1-57
2-1 Programming Model— MPC7441/MPC7451 Microprocessor Registers.........cove.. 2-3
2-2 Programming Model—M PC7445, MPC7447, MPC7455, and MPC7457
Microprocessor Registers2-4
2-3 Machine State RegiSter (MSR)cceviiiririnesiesie et seas 2-12
2-4 Machine Status Save/Restore Register 0 (SRRO)c.eovvviveieinnieieinerieeene e 2-15
2-5 Machine Status Save/Restore Register 1L (SRRL)ocvvvvevevesienesesie e e e e e 2-15
2-6 SDR1 Register Format—Extended Addressing........cocvvvveieninnnnnenenese e seeseees 2-16
2-7 Hardware |mplementation-Dependent Register 0 (HIDO) for the

MPC7441 and the MPCT7A51 ...ttt ne e s ee e 2-17
2-8 Hardware Implementation-Dependent Register 0 (HIDO) for the

MPC7445 and the MPCT455.........oeeeeecesee ettt sttt sttt st sne e 2-18
2-9 Hardware Implementation-Dependent Register 1L (HID1).....ccocevvvvveiecnnnceseseene, 2-23
2-10 Memory Subsystem Control Register (MSSCRO).......cccuvvrireninenenenenieseseseeseeneas 2-25
2-11 Memory Subsystem Status Register (MSSSRO)........cvoiriiereirmrieeinereeese e 2-27
2-12 L2 Cache Control RegISter (L2CR)ccuecuecieiesiesiesie et sie et e e 2-28
2-13 L3 Cache Control Register (L3CR) for the MPCT7457ccccviviiiininninenesesesennens 2-30
2-14 L3 Cache Output Hold Control Register (L3OHCR) for the MPC7457 2-35
2-15 L3 Cache Control Register (L3ITCRO) for the MPC7451 and MPC7455................. 2-37
2-16 L3 Cache Control Register (L3ITCRO) for the MPC7457ccccovivvivniinnnieniineninnens 2-37
2-17 L3 Cache Control Register (L3ITCRL) for the MPC7457 ..o 2-38
2-18 L3 Cache Control Register (L3ITCR2) for the MPC7457ccocovvvvvieiececeseceee 2-39
2-19 L3 Cache Control Register (L3ITCR3) for the MPC7457cccocvvivvivviinnninineninens 2-40
2-20 Instruction Cache and Interrupt Control Register (ICTRL)........ccoeovvvieeinneieiinenes 2-41
2-21 Load/Store Control Register (LDSTCR)coovieieiesiesesiesiesie e sie e e 2-42
2-22 L3 Private Memory Address Register (L3PM).....ocvvirinennnenenenesie e see e seeseeseeseas 2-43
MOTOROLA Figures XXVii

Figure
Number
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
31
3-2
33
34
35
3-6
37
3-8
39
3-10

311
312
3-13
314
315
3-16
317
3-18
3-19
3-20

321
322
3-23
3-24
3-25
3-26
3-27
4-1
4-2
4-3
51

XXViii

ILLUSTRATIONS

. Page
Title Number

Instruction Address Breakpoint REJISIENcuririererninieeiresieeese e 2-44
TLBMISS Register for MPCT7A51couiiiieeeeieiene sttt 2-45
PTEHI and PTELO Registers—Extended Addressing........cocvvvvvnenenennneseseneenens 2-45
Instruction Cache Throttling Control Register (ICTC)......evvvrreeeinereieinesseeenenes 2-47
Monitor Mode Control Register 0 (MMCRO)ccvveiieieiesesesese e sie e 2-48
Monitor Mode Control Register 1 (MMOCRL)coocovirininenenenesiesiesiesee e seeseeseas 2-51
Monitor Mode Control Register 2 (MMCR2)oevririiieeinneeenesseee e 2-52
Breakpoint Address Mask Register (BAMR)ooovviiieiesesesese e 2-52
Performance Monitor Counter Registers (PMCL-PMCB)......cccvvverenineneneneninnens 2-53
Sampled Instruction Address RegIStErS (SIAR)cvvvveeirrieeineree s 2-54
Cache/Memory SUbSyStemM INEEGIratioN...........cccviiieieiiiniese s 3-6
L1 Data Cache OrganiZatiON..........ccevereresieriesieseseesiesieseeseeseesseseesseseessesssssessessessesees 312
L1 Instruction Cache OrganiZation............coveueeirirmnierenenesiereinesee e senas 314
Read Transaction—MPX Bus Mode, MSSCRO[EIDIS] = 0......coeoeeererieeneririeceeeneae 322
RWITM and Flush Transactions—MPX Bus Mode, MSSCRO[EIDIS] =0.............. 3-22
Write Transaction—MPX Bus Mode, MSSCRO[EIDIS] = 0.......cccuovrieinirneininennes 3-23
Clean Transaction—MPX Bus Mode, MSSCRO[EIDIS] = 0......ccccovvevvvvvnesnsnsenen, 323
Kill Transaction—MPX Bus Mode, MSSCRO[EIDIS] = 0.....cccoevvvrininnnininieninnens 3-24
Read Transaction—60x and MPX Bus Modes, MSSCRO[EIDIS] =1ccccccevnenee 3-25
RWITM, Write, and Flush Transactions—
60x and MPX Bus Modes, MSSCRO[EIDIS] = 1cccviiinnnieinerenieiee e 3-25
Clean Transaction—60x and MPX Bus Modes, MSSCRO[EIDIS] =1ccccceueuene. 3-26
Kill Transaction—60x and MPX Bus Modes, MSSCRO[EIDIS] =1ccccceeveeennee 3-26
Read Transaction Snoop Hit on the Reservation Address Register..........ccocvvvvenennne. 3-27
Reskill Transaction Snoop Hit on the Reservation Address Register.........c.cooevevnenee 3-27
Other Transaction Snoop Hit on the Reservation Address Register..........ccocvevvvennee. 3-27
PLRU Replacement AIQOrithim..........cooeriiinininesisesese e 3-45
L2 Cache Organization for MPCT745L........coveiiineieinerieieise st 3-52
L2 Cache Organization for the MPC7447 and MPCT7457cccovvovvvicenesecesiesieens 3-53
Random Number Generator for L2 (and L 3) Replacement Selection..........c.ccecevvnee. 3-61
Example L3 Accumulator Sample Point Configuration for PB2 and
LatE-WIHLE SRAM ...ttt et ebeseenas 3-75
Example L3 Accumulator Sample Point Configuration for MSUG2 DDR SRAM ... 3-76
Typical 1-Mbyte L3 Cache using MSUG2 DDRcccoviiieiininnieiiinenieree e 3-86
MSUG2 DDR Memory ACCESS EXAMPIE.....ccuievierieciesiesie e et e e et ste e 3-87
L3 Cache Configuration for Late-Write or PB2 SRAMS......cccvivviiniininiinnnesesiesinnens 3-88
Late-Write SRAM TiMING...c.coiiiieieirerieieineiees e 3-89
Pipeling Burst SRAM TiMiNG.....ccueiereresiesiesiesesiesieseseseeseesiessessessessessessessessessessesees 3-90
Double-Word Address Ordering—Critical Double Word First..........ccoovevviinienieninnn. 3-92
Machine Status Save/Restore Register 0 (SRRO)covvvvveeinirenierineninieie e 49
Machine Status Save/Restore Register 1L (SRRL)ocvvvvevevesiesesesesesie e e sve e 4-10
Machine State RegiSter (MSR)ccuiiiiriirinesiese et seas 4-10
MMU Conceptua Block Diagram for a 32-bit

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Figure
Number

5-2
5-3
5-4

5-5
5-6
5-7
5-8
59

5-10

5-11
5-12
5-13

5-14
5-15

5-16

5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35

ILLUSTRATIONS

. Page

Title Number
Physical Address (NOt the MPCT745L) ..o 57
MPC7451 Microprocessor IMMU Block Diagram,
36-Bit PhySiCal AdAreESSING.......ccviiiiiieiiiiiese sttt sesre e sresnens 5-8
MPC7451 Microprocessor DMMU Block Diagram,
36-Bit PhySiCal AQUrESSING.cciviveeiireietie sttt e 5-9
MPC7445, MPC7447, MPC7455, and the MPC7457 Microprocessor
DMMU Block Diagram with Extended Block Size and Additional BATS................ 5-10
Address Trandlation Types for 32-Bit Physical Addressing.........ccouovveenrneinennnnes 5-12
Address Tranglation Types for 36-Bit Physical Addressing........cc.ccoevvvvvrvsvnnnnnnnns 5-13
General Flow in Selection of which Address Trandation to Use..........cccoevveienienene 5-16
General Flow of Page TranSlation ... 5-18
Format of Upper BAT Register (BATU)—Extended Addressing for the
MPC7441 and the MPCT7451 ..ottt e 5-26
Format of Upper BAT Register (BATU)—Extended Block Size for the
MPC7445, MPC7447, MPC7455, or the MPCT7457 ..o 5-27
Format of Lower BAT Register (BATL)—Extended Addressingccccoevverereenne. 5-27
Block Physical Address Generation—Extended Addressingcccoveeenvenveecninennes 5-31
Block Physical Address Generation—Extended Block Size
for a36-bit PhySiCal AQArESS.......oiiiiiiiiiisie st 5-33
Block Address Trandation Flow—Extended AddreSsingccoeveereeveinireniecnenennes 5-34
Block Address Trandlation Flow—Extended Block Size for a
36-Dit PhySICal AQUIESS......cciiiiiiiiiiisie e bbbt sre s 5-35
Generation of Extended 36-bit Physical Address
for Page Address TranSlalion..........ccceieieieienesese e sese e sese e e se e e sressessensens 5-37
Page Table Entry Format—Extended Addressing.......cocoevenenenenenesennneseseseenes 5-38
Segment Register and DTLB Organizationccoiveeeinrieeeinenesieese e sesieseees 5-44
tlbie Instruction Execution and Bus Snooping FIOWcccceveierennienesinsnsesennens 5-46
tlbsync Instruction Execution and Bus Snooping FIOWccccvvvvnininnninnnnnnninns 5-48
Page Address Tranglation Flow—TLB Hit—Extended Addressingc.ccocceevvenee 5-50
SDR1 Register Format—Extended Addressing..........ccocvvvvvvieiesinniesiesesesesese e 5-52
Hashing Functions for Page Table Entry Group Address..........cvvvvvvnennnenesenennens 5-55
PTEG Address Generation for a Page Table Search—Ext. Addressing............c........ 5-57
Example Page Table Structure—Extended Addressingccccvvevvevenesesesesesennens 5-58
Example Primary PTEG Address GENeration..........cocuverenenenennsesnsnsesesesessenees 5-60
Example Secondary PTEG Address GENEration............oueveirreereinernreinesesesenenennns 5-61
Primary Page Table Search—Conceptual FIOWccccovvveverenesece e 5-65
Secondary Page Table Search Flow—Conceptual FIOWccccvevviniinininicninnnninnn 5-66
Derivation of Key Bit for SRRcccoeueiiiieiiinecnseeese e 5-69
TLBMISS REJISIEN ...cueeveeiieieteieeerieieiesesestesese e tese e seseese e seseese e e bebee e aebeneseseeseneaeens 5-70
PTEHI and PTELO Registers—Extended Addressing........ccoouvvvvnenenenenennnennnes 571
Flow for Example Software Table Search Operation...........c.coveeenreeinnneinenennes 5-74
Flow for Generation Of PTEG AQUrESScoeoiieeirirnerienerereeieseee e 5-75
Check and Set R and C Bit FIOWcoiueiiieiienceec e 5-76

MOTOROLA Figures XXiX

Figure
Number

5-36
5-37
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
7-1
7-2

81
82

9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11

9-12
9-13
9-14
9-15
9-16
9-17

XXX

ILLUSTRATIONS

. Page
Title Number

Page Fault SELUP FIOWcveviiiiiieieieee et 5-77
Setup for Protection Violation EXCEPLIONSc.ccccviiiiiieiieicse s 5-78
Pipelined EXECULION UNIT......ccuiiiieieeiesiesie ettt st 6-5
Superscal ar/Pipeling DIagram.........cceiriiereinrieie et 6-6
StAGES ANA EVENES ...t 6-10
MPC7451 Microprocessor Pipeling SAgEScoccvvvrerinenenenesese s siesie e see e 6-11
BTIC OFQaNiZaHION......cveeieeereiresieteieseses ettt 6-13
Alignment of Target Instructionsinthe BTIC........c.ccoovivvieviiiennsecesese e 6-14
INSLrUCtION FIOW DIagraiMcveeeieiesiesiesiesie sttt sttt sttt seeneas 6-16
Instruction Timing—Cache Hitcoeiiiiicieer e 6-19
Instruction TiMiNG—CacChe MiSS.......cccceiiiirere et 6-22
Instruction Timing—Instruction Cache Miss/L2 Cache Hit.........cc.ccocvvviviniiniinicnnnn, 6-24
Instruction Timing—Instruction Cache Miss/L3 Cache Hit.........ccccovveinnicinnnnnes 6-26
(2= 1o a0 o] o (1 oo USSP 6-30
Removal of Fall-Through Branch INSIFUCLION.........ccoiiirinininiresese s 6-30
Branch Completion (LR/CTR WHte-BaCK)cccorueriniriieiiirrieeene e 6-31
Branch INStruCtion TiMiNG.......cceevereresesesiesesese e se e see e see e see e ssessessessessessesseses 6-35
Vector Floating-Point Compare Bypass Non-BIocking ..o 6-42
Vector Float Compare Bypass BIOCKING........c.cuevirirrieriniinierie st 6-43
LSU BIOCK DIGQIaMcueeieieieieiesie e ste e sie et sae e e sesaessesae e stestestessessesnessessessessas 6-77
VECIOr REGISIEIS (VRS) .iiiiiiiiiisie sttt sttt st sttt sttt st e 7-2
Vector Status and Control Register (VSCR)cvvriieieinreieinisiseee e 7-3
Vector Save/Restore Register (VRSAVE)......ccv i 7-4
MPX BUS SIGNal GrOUPS.......oveieierieieniesiesieseesieseeseessessassessessassessessessessessessessessessessenes 89
BOX BUS SIGNAl GFOUPSecuvvteeieieietie ettt sttt et es 8-30
MPC7451 Microprocessor BIOCK Diagramcccceeeeereseseniesesesesesiesesseeseesenseeens 9-4
Timing Diagram LEgENG........ccocuiiiiiinininesise et se et see st ssesse e ssessessessassnsens 9-8
Overlapping Tenures on the MPC7451 Busfor Transfers........oovveenenenneneneneneneene 9-9
MPX Address Bus Arbitration—Non-Parked Case...........ccoeeveerenenennenneseeeene 9-13
MPX Address Bus Arbitration—RParked Case............coceerireineieneneneneseseseseee e 9-13
Address Parking in MPX Bus MUltiprocessor SYSteMSc.coveeenrmnierenenenierenenennns 9-14
AdAress BUS TraNSFENciiiiiiiiniirerie ettt 9-16
Overlapped ARTRY and TS (with aDelayed AACK) in MPX BusMode................ 9-26
Snooped Address Cycle With ARTRY ..o 9-28
SHDO and SHD1 Negation TimMiNgccccuvivirieieinieneseseseseseseseesreseessessessessesees 9-29
Data Intervention for Read (Atomic) and RWITM (Atomic)
Using Data-Only Transfer ProtOCOlcovieirinieininieeese e 9-35
Data-Only Transaction for a Flush Operationccccevevevesesescesesese e e 9-36
Pipelined Data-Only TranSaCtioNS.........cuviverierieneniesesesee e see e see e seesseseeseessessesseses 9-37
Retry Examples of Data-Only TranSaCtioNS..........coveeerirenieieinesieeineseeeese e 9-38
Normal Single-Beat Read TermiNationcccceeevererenesesesesese e e e e e e seeees 9-40
Normal Single-Beat Write TEermMinNation..........ccocuvereninenenenenese s seas 9-40
NOrmMal BUISt TraNSBCION.cuviieeieesieeeie e ee et see et ee st e s seeseseenes 9-41

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Figure
Number

9-18
9-19
9-20
9-21
9-22
9-23
9-24
9-25
9-26
9-27
10-1
10-2
11-1
11-2
11-3
11-4
11-5
11-6

ILLUSTRATIONS

. Page
Title Number
Read BUrst With TA Wait StatES........ccucriericiricsieisssss ettt 9-41
60x Address Bus Arbitration—Non-Parked Case............cccvvevenrenee e 9-44
60x Address Bus Arbitration—Parked-Casecccoeiieerennenneseee e 9-44
Fastest SINGle-Beat REAAS..........ccoiiirireesiese ettt 9-49
Fastest SINGIE-BEAE WITLES.........oueueirrieieiserie ettt 9-50
Single-Beat Reads Showing Data-Delay COntrolSs........ccovvvvvivivieiivsnsese e 9-51
Single-Beat Writes Showing Data Delay Controls.........ccocvvvvininininininninnienieseseens 9-52
Burst Transfers with Data Delay CONtrolS........ccovrveeinirerieieineseeineseeese e 9-53
Use of Transfer Error ACKNOWIEAGE (TEA)cvueveeeeeeeveeeeeeteeeseestete e s sessneneens 9-54
IEEE 1149.1a-1993 Compliant Boundary-Scan Interface.........ccoovvvvieninencneneninnens 9-56
Power Management State Diagramcccoveeirrnereninenieeese e 10-2
Instruction Cache Throttling Control Register (ICTC).....cccvvvvevivneseseneseeeseeseeens 10-6
Monitor Mode Control Register 0 (MMCRO)ooivirienenenienienesie e see s seeseeseas 11-5
Monitor Mode Control Register 1 (MMCRL)ccovvevevireniereineneeeneseseree e 11-9
Monitor Mode Control Register 2 (MMCR2)cccooviiiesesecesese e sieneens 11-10
Breakpoint Address Mask Register (BAMR)ccoiiiiiinininininesesiesesie s seeneens 11-10
Performance Monitor Counter Registers (PMC1-PMCB).........ccvvererrcrinerenereninennns 11-11
Sampled Instruction Address RegiSter (SIAR)c.vcviviviiiececese e 11-12

MOTOROLA Figures XXXi

ILLUSTRATIONS

Figure . Page
Number Title Number

XXXii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Table
Number

i

ii

iii
11
1-2
1-3
1-4
1-5
1-6
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27

MOTORO

TABLES

. Page
Title Number

. Acronyms and Abbreviated TErMS.........ccoieiirieeirreee e xlix
. Terminology CONVENLIONSccueiieiieieriesiesesie e e e s e see e sresae e stestessessessestessessesseneas liii
. Instruction Field CONVENLIONS..........cceiieiieinieeesee et liii
Register SUMmMary for MPCT45L............ociiiei e 1-39
MPC7451 Microprocessor Exception Classifications.........ccoccovvvvenienesnsnsnsennenns 1-50
EXceptions and CoNAItiONScceriereriereriesie ettt 1-51
MPC7451 and MPC7400/MPC7410 Feature COMPariSON..........eeererrrrererermsrerenenennns 1-60
MPC7451 and MPC7455 DiffErENCESccviure et 1-63
MPC7451 and MPC7457 DiffErENCES.......cvveuiieeirieirieresieseeie ettt 1-64
Register Summary for the MPCT7451...........coeiiiieiieee s 2-5
Additional PVR BitS.....ccuciiieieeneiee ettt e e 2-11
MSR Bit SELINGSeeveveeiiteerieneet sttt st b e e 2-12
| EEE Floating-Point EXCEption MO BitS.........ccvvueeinirnieiiinnieeinesieece s 2-14
SDR1 Register Bit Settings—Extended Addressingccocvevvvvvvienivnnnnsesiesesennens 2-16
HIDO Field DESCIHIPLIONS....c.veiiieiesiesiesie e sie e st see e see st seeseeseestesee e stessessessesseseeseeseas 2-18
HIDL Field DESCIIPLIONS.cveuiieiereiiresietetene sttt sttt 2-23
HID1[BCLK] and HID1[ECLK] CLK_OUT Configurationc.cceserrerenerenne. 2-24
MSSCRO Field DESCIIPLIONS.......coviiieiesiesiesiesiesie et sie s see e e see s e seesseseesseseesseseeseas 2-25
MSSSRO Field DESCIIPLIONScveveeiieeeeiine ettt 2-27
L2CR Field DESCIIPLIONScveieeeiesiestesiesiestestesaesees e ssesaessesaessestessessessessessessessessesss 2-29
L3CR Field DESCIIPLIONSceveeeieiesieseeseesieseesee et seesteseeseeseesseseesseseessessessessessesseses 2-31
L3OHCR Field DESCITPLIONS......cveveeieresierineresiereesesiesee st sen s nen e 2-35
L3ITCRO Field Descriptions for the MPC7451 and MPC7455...........ccooviininnennnne. 2-37
L3ITCRO Field Descriptions for the MPCT7457 ... 2-38
L3ITCR1 Field Descriptions for the MPC7457.........ccciiinnneensneee e 2-38
L3ITCR2 Field Descriptions for the MPCT7457 ... 2-39
L3ITCR3 Field Descriptions for the MPCT7457 ... 2-40
ICTRL Field DESCIIPLIONS. . ..cutieiereeiirieierine sttt sieb et 2-41
LDSTCR Field DESCIIPLIONS.......ccueiieiesiesiesiesiestesiesiesiesteseeseesae e sse e ssessessessessessesseses 2-43
L3PM Field DESCIIPLIONS. ..cuveveieieiesiesiesiesiesieseeseeseesseseeseesseseessesessseseessessssssssessessasens 2-43
Instruction Address Breakpoint Register Field DesCriptions...........ooeeinveeininnnnes 2-44
TLBMISS Register—Field and Bit Descriptions for the MPC7451ccccoeveeeene 2-45
PTEHI and PTELO Bit DEfiNItiONS........cccvireiieiieesieseseseee e 2-46
[CTC FIeld DESCIIPLIONS.vieeeieteeieseeteeese ettt ettt 2-47
MMCRO Field DESCIIPLIONS.....cveveieiesiesiesiesieste e stese e saesaesae e seessessessessessessessessesss 2-48
MMCRL Field DESCIIPLIONS.....cveveieriesiesiesiesieseeseeseeseessessesseseessessessessessesssssessessessesees 2-51

LA Tables XXXiii

TABLES

Table . Page

Number Title Numbger

2-28 MMCR2 Field DESCIIPLIONS.....cveveieiesiesiesiesieste e stese e saesaesaessessessessessessessessessessesses 2-52
2-29 BAMR Field DESCIIPLIONScuviveieeeiesie e sie ettt see st st ste st st sse e stessesseseas 2-53
2-30 PMCN Field DESCIIPLIONS.veutevereiiresieieiise sttt 2-53
2-31 Settings Caused by Hard Reset (Used at POWEr-OnN)........ccccccvivvenennsenesesesesennnns 2-55
2-32 Control Registers Synchronization ReqUIreMENtS...........cvvvverinenienesenenesesesienes 2-65
2-33 Integer Arithmetic INSEUCLIONS.coiveveiirieei e 2-69
2-34 Integer Compare INSIIUCLIONS..........ceierieriesiesese e se e se e se e ste et re e sae e sre e ens 2-70
2-35 Integer LOgiCal INSITUCHTIONScviviieiesiesiesie ettt sttt 2-71
2-36 INnteger ROAtE INSTUCHIONS.......coviveveieieieecsese et 2-72
2-37 Integer Shift INSIIUCHIONS.......ccveiieieieie ettt sne e 2-72
2-38 Floating-Point ArithmetiC INStrUCHIONSooiiiiiriseesesere s 2-73
2-39 Floating-Point Multiply-Add INSIrUCLIONSc.covrieeiirerieees e 2-74
2-40 Floating-Point Rounding and Conversion INStructions...........cccevveesesesesesesesennens 2-74
2-41 Floating-Point Compare INSIrUCHIONS.ooeririnenenesesie e 2-74
2-42 Floating-Point Status and Control Register INStrUCLIONScocoveveirereeieinerrieienees 2-75
2-43 Floating-Point MOVE INSITUCLIONS........cceieieiesiesesese et 2-75
2-44 INteger LOad INSLIUCLIONS......cviriiieiesie ettt sttt sttt st st seeneas 2-78
2-45 INteger SEOre INSIIUCHIONS.c.civiveieiririeiee ettt 2-79
2-46 Integer Load and Store with Byte-Reverse InStructions............ccceevvvevecesesvsesennn, 2-80
2-47 Integer Load and Store Multiple INSIrUCHIONS........oovieiinenesenesesese e 2-80
2-48 Integer Load and Store String INStrUCLIONS........c.covvveeiiririeeisseeese e 2-80
2-49 Floating-Point Load INStTUCLIONSccecieieesiese et 2-81
2-50 Floating-Point StOre INSEIUCLIONS.........oiiiirieieriesie e seas 2-82
2-51 Store Floating-Point SINGIE BENAVIOFcccviieiiiiieieinseeise s 2-82
2-52 Store Floating-Point Double BENAVION...........cccov i 2-83
2-53 BranCh INSLIUCHIONS.......coviieeiiiieiiiiee et 2-84
2-54 Condition Register Logical INSIIUCLIONS..........coeiriiieicinirnecre st 2-85
2-55 TraP INSEIUCLIONS ... eveieiecee ettt testestesbestestestestesaesseseesaesrensens 2-85
2-56 System Linkage INStruction—UISA ..o 2-86
2-57 Move to/from Condition Register INSIrUCLIONS..........cvoiririeieineieeinere e 2-86
2-58 Move to/from Specia-Purpose Register Instructions (UISA)cccccevvevvvvcvnenennne. 2-86
2-59 User-level POWerPC SPR ENCOUINGS.coviriiriiriirieniesiesiesiesiesiesieseeseeseesseseesssssessessnsens 2-87
2-60 User-level SPR Encodings for MPC7451-Defined RegiSters........covveeinrnieininennes 2-87
2-61 Memory Synchronization INStructions—UISA ... 2-88
2-62 Move from Time Base INSTUCLION...........eoeireiiieerieesieesesee e 2-89
2-63 Memory Synchronization INStructionS—VEAcccooiiiiineieec e 2-90
2-64 User-Level Cache INSIIUCLIONS........c..ioiiirriiee e e 2-91
2-65 External Control INSIFUCTIONS.c.couiriiireiirei et 2-93
2-66 System Linkage INStruCtioNS—OEAccvoirrimieirerieene st 2-94
2-67 Segment Register Manipulation Instructions (OEA)ccccvvivvvviesiesenese e 2-94
2-68 Move to/from Machine State Register INSLrUCLIONS........cccuvvveninenenesinene e sesienees 2-95
2-69 Move to/from Special-Purpose Register Instructions (OEA)ccoveeininreininennes 2-95
2-70 Supervisor-level PowerPC SPR ENCOAINGS.......cccoviviiiiiiiinieie e 2-95
XXXIV MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

TABLES

Table . Page

Number Title Numbger

2-71 Supervisor-level SPR Encodings

for MPC7451-Defined Registers2-97

2-72 Supervisor-Level Cache Management INSEFUCHION.........c.ccvvvveveinreeecinenesece s 2-99
2-73 Trandation Lookaside Buffer Management INStruction...........ccocveevvvvenvninnesnnnnnnns 2-99
2-74 Vector Integer ArithmetiC INStrUCHIONScoviiiinininisesese e 2-104
2-75 CRG6 Field Bit Settings for Vector Integer Compare INStructions............cccovvveeenne. 2-106
2-76 Vector Integer Compare INSITUCHIONS........ccviiieieiesesesie e e sie s se e see s 2-107
2-77 Vector Integer Logical INSEIUCLIONS.......ccuiiiiiiniiisisesiesie s see s 2-107
2-78 Vector Integer ROtate INSITUCLIONS......c.covivireeiereieeceseeeese e 2-107
2-79 Vector Integer Shift INSIFUCLIONS.........cocvieiiiiiesesese e 2-108
2-80 Vector Floating-Point Arithmetic INSITUCLIONScccoviiiniiinisisccse e 2-108
2-81 Vector Floating-Point Multiply-Add INStrUCLIONSceovrieeeinreeee e 2-109
2-82 Vector Floating-Point Rounding and Conversion INStructions............ccocveeeeienene 2-109
2-83 Vector Floating-Point Compare INSErUCLIONS..........coiviinininenenene e see e 2-110
2-84 Vector Floating-Point EStimate INStrUCLIONS.........cvovriierennenieieiseseeese s 2-110
2-85 Vector Integer Load INSITUCLIONSccovieiiiieiinesese e 2-111
2-86 Vector Load Instructions Supporting Alignment..........ccoevveneninnnnnnnenenenenees 2-111
2-87 Vector Integer StOre INSTUCHIONS........c.coviveiceiririeicerietee et 2-112
2-88 VECtOr PaCk INSLIUCHIONS.......c.ciueiiiiieiereee et 2-112
2-89 VeCtor UNPack INSLIUCTIONSvvveiiiriiriesiisiesie st sse e s 2-113
2-90 VeCtor Merge INSIIUCIONSc.eviiiereiiirieiee sttt e 2-114
2-91 VeCtor Splat INSITUCLIONS......ccuciiieiecese ettt re e 2-114
2-92 VECtOr PErMUEE INSEIUCTION........veueivietieetiiee et 2-114
2-93 VECtOr SEIECE INSEIUCION........cuiieeeeiieeeece ettt 2-115
2-94 Vector Shift INSLIUCHIONS.......c.couiiiiieereeerie e e 2-115
2-95 Move to/from VSCR RegiSter INSITUCLIONS......ccveveririeiiresiesiesese e see s sie e seeseens 2-116
2-96 AltiVec User-Level Cache INStrUCtiONS...........eovvererireeriee e 2-117
31 Data Cache SEAUS BitS........c.ciueiiieiieesieresie et 3-18
3-2 SNO0P RESPONSE SUMIMENY ...couveeiiiieesieeie ettt re st e e e be s sbe e e sre e e eaes 3-19
33 SNOOP INLEVENLTION SUMMEIY ..ottt 3-20
34 SiMplified TranSaCtioN TYPES.....ccviviiiiii sttt sresre e 321
35 Load and Store Ordering With WIMG Bit SEttiNgS.......cvcvverenininnennnnneneseseesennens 3-28
36 L1 PLRU Replacement Way SElECHION........ccoeirrrieriirerieieisesieeese e 3-45
3-7 PLRU Bit Update RUIES.........ccci ettt 3-46
3-8 PLRU Bit Update Rulesfor AltiVec LRU INSIrUCLIONS........ccccovvveneneninenennsiesinnens 3-46
39 Definitionsfor L1 Cache-State SUMMEIY.........ccoiruereniriniereinesieeeseseeesese e 3-48
3-10 L1 Cache-State Transitions and M SS REQUESES........cccevererierieniesesiesiesiesee e sesseseeneas 3-49
311 L2 Cache ACCESS PriOMTIES......c.ciueiiieertieeieseeie ettt 3-59
312 Definitionsfor L2 and L3 Cache-State SUMMANYccoeueirerieieininieieineseseiceneeas 3-62
313 L2/L3 Cache State Transitions for Load, lwarx,

Touch, and | Fetches3-62

3-14 L2/L3 Cache State Transitions for Store Touch Operations............cocoeeevnrieinnnnnes 3-63
315 L2/L3 Cache State Transitions for Store (and stwcx.) Operations...........coeeeeverennne. 3-63
XXXV MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

TABLES

Table . Page

Number Title Numbger

3-16 L2/L3 Cache State Transitions for Castout Operations...........cccvevveresesesesesenennnns 3-64
317 L2/L3 Cache State Transitions for L2 Castout Operations...........ccocuverereneseneneenens 3-65
3-18 L2/L3 Cache State Transitions for L3 Castout Operations............cccoveeenrenreinennnnes 3-65
319 L2/L3 Cache State Transitions for dcbf Operations.........cccvevveveecesesenesesese e 3-65
3-20 L2/L3 Cache State Transitions for dchz Operations............cuervrerieneneneneseseseenes 3-65
321 L2/L3 Cache State Transitions for dchst Operations..........ccovveeeinneeinnseinenennes 3-66
3-22 L2/L3 Cache State Transitions for Write with Clean Operations.............ccccccevvvrenee. 3-66
323 L2/L3 Cache State Transitions for Remaining INStructionscc.cvevvevenienenenennn. 3-67
3-24 L3 Cache Sizes and Data RAM Organizations for the MPC7451..........cccccoveininnnne 3-70
325 L3 Data Parity Signal ASSINMENLS........ccceverierieriesiesesesese e sesie e e e sse e e ssesseses 371
3-26 L3 Cache ACCESS PriONtIES......c.ciueiiieeriireeiisee et 3-78
327 L3 Cache/Private Memory Configurations...........oueeeorereereinenmereenesesesese s 3-80
3-28 Signal Function Changes for Late-Write and PB2 SRAMS........ccccocvvivvvivnvsesnsennnn 3-88
3-29 Bus Operations Caused by Cache Control Instructions (WIM =XX1)c.ccocvverenne. 3-93
3-30 Bus Operations Caused by Cache Control Instructions (WIM = XX0)c.ccceevrvrennee 3-94
331 Address/Transfer Attributes Generated by the MPC7451.........ccccovvvvvieinienncnnnnns 3-95
332 Snooped BUs Transaction SUMIMEIYciviiienineninesese e sieseesieseessessessessessesseseeses 3-97
3-33 Definitions of Snoop Type for L1 Cache/Snoop SUMMEYcocoveveeeinerenieenennnnes 3-98
3-34 Definitions of Other Terms for L1 Cache/Snoop SUMMarycccceeevevenesesenennnns 3-99
335 L1 Cache State Transitions DUE L0 SNOOPS......cververeeriereerierieriesieseesieseesseseesseseessessesees 3-99
3-36 Definitions for L2/L3 Cache/SN00P SUMMEYcccvrreererirerenieinesesieree e 3-100
3-37 External Snoop Responsesand L1, L2, and L3 ACiONS........ccccvveverenesesnsinsinnenns 3-101
4-1 MPC7451 Microprocessor Exception ClassifiCationS.........ccocuvvvinienienennnenenennneens 4-3
4-2 EXceptions @and CONAITIONScueiririeieireriieeint st 4-3
4-3 MPC7451 EXCEPLION PriOritiES......cieiecieiesiese e sie e se e te e e ettt sne s 4-7
4-4 MSR Bit SEINGS ...cvvveaeieietee sttt ettt sttt b e st b e e 4-10
4-5 | EEE Floating-Point EXCeption MOde BitS.........cccovueeinirnieieinseeine et 4-12
4-6 MSR Setting DUE tO EXCEPLION.......c.veiieeeieiesiesiesie e e se et e et enas 4-16
4-7 System Reset Exception—Register SEttingS ... 4-18
4-8 Machine Check ENable BitS.........cccuieririneiree e 4-19
4-9 Machine Check Exception—Register SEttings........ccocvveverevesesnse e 4-21
4-10 DSl EXCeption—RegiSter SEttiNGS.......oiiviririririesiese s seeseas 4-23
4-11 External Interrupt Exception—Register SEttings.........cocoveerirneeiinneeinessecenenes 4-25
4-12 Alignment Interrupt—RegiSter SEtiNGS......cccviviviiriiere e 4-26
4-13 Performance Monitor Exception—Register SEttingsS........ccoovvvvivinienieniinnnenesesenens 4-29
4-14 TLB Miss EXceptions—Register SEttiNGS.......cvorrrerinrrieriinesieeesesesiesese e 4-30
4-15 Instruction Address Breakpoint Exception—Register Settings..........ccocvvevvvvivrenenne. 4-32
4-16 System Management Interrupt Exception—Register SettingS.........ccoevvvvvininieneninnn 4-33
4-17 AltiVec Assist Exception—Register SEttiNgS.........ovveverrrrrerinrnieie e 4-34
51 MMU FEALUrES SUMIMAIYo.veeieeieiiiesieeie et eee e stesee e steseesreessesneesseensesneesseesesnes 54
52 Access Protection OptionS fOr PAgES..........cuviiiiiiiniiinnsesesese s e sen e sesseesenseens 5-14
5-3 Trandation EXCeption CONGItiONS...........oeeirririeeininierie et 5-20
54 Other MMU EXception CONAitioNS.........cc.ccoiviiiiieiiiiiesn e sesese e see e e seesee s 5-21
XXXVi MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

TABLES

Table . Page
Number Title Numbger
55 MPC7451 Microprocessor Instruction Summary—Control MMUS...........c..cccceeenee. 5-22
5-6 MPC7451 Microprocessor MMU ReQISIErS.......cccuiiririrenenieniesiesiesiesiesee e seeseeseeseas 5-24
5-7 BAT Registers—Field and Bit Descriptions for Extended Addressing...........c.ccceeu.e. 5-28
5-8 Upper BAT Register Block Size Mask ENCOAiNg........cccvvvveveresesesesese e sesie e 5-29
59 Upper BAT Register Block Size Mask Encoding when the Extended Block Sizeis En-
abled (HIDO[XBBSEN] = 1)5-32

5-10 PTE Bit DEfINITIONS.....ccitiieetiieeie ettt ebe e 5-38
511 Table Search Operations to Update History Bits—TLB Hit Caseccoccvcvvviennne 5-39
5-12 Model for Guaranteed R and C Bit SEttiNGS........ccovvererirerieieinenieeene e 5-42
5-13 SDR1 Register Bit Settings—Extended Addressingccccvevvvvieniennnnnesesiesesennens 5-52
5-14 Minimum Recommended Page Table Sizes—Extended Addressing..........cc.cceeeveenee. 5-53
5-15 Implementation-Specific Resources for Software Table Search Operations.............. 5-68
5-16 Implementation-SPecific SRRL BilS......ccccuveviiererisesesesese e 5-69
5-17 TLBMISS Register—Field and Bit DeSCriptioNS.........ccocvvirinenieneninneneseseeseeseneens 5-70
5-18 PTEHI and PTELO Bit DEfiNitiONS.......ccoeiieireeeseeseresesee e seenas 5-71
6-1 Performance Effects of Memory Operand Placementccccoovvvvevesevesesesesennn, 6-38
6-2 Branch Operation EXeCUtiON LALENCIEScoevererienienieniesiesiesiesie e e see s seeseas 6-45
6-3 System Operation Instruction EXecution LatenCies...........coeeirrercinnnieinennieneens 6-45
6-4 Condition Register Logical EXeCution LAENCIEScccvvvvvvivinnesnnecese e e 6-46
6-5 Integer Unit EXECULION LAlENCIES......ccueiiirierieniesiesie e sie et see e see e sie s s sseseeseas 6-46
6-6 Floating-Point Unit (FPU) EXECUtiON LALENCIES........c.couveiveeeirerieieinesieieiine e 6-48
6-7 Load/Store Unit (LSU) INStruction LatenCIeS........cccvierereresesiesesesesiesiesieseseeseeneas 6-50
6-8 AltIVEC INSIFUCION LEIENCIEScvieeeiieeiiiieisieeeieseeie et 6-52
6-9 Fetch AlIGNMENt EXAMPIEcoiviieieiiieieiere et 6-59
6-10 Loop EXample—Three HErationsccceceieresesesiesese e e sie e ste et enas 6-60
6-11 Branch-Taken Bubble EXampPle........cocoiiiinininesiesesese e 6-60
6-12 Eliminating the Branch-Taken Bubble ... 6-61
6-13 MisprediCtion EXMPIE......cc.coeiuerieieresiestesie et se st e e sae e sae st ste e teste e sne e snesnenns 6-61
6-14 Three lterations Of COUE LOOP......uicviiiiiiiiirinisise e s s see e e 6-62
6-15 Code Loop EXample USING CTRccciieriiirieieisesieieese s es 6-63
6-16 Link StaCK EXAMPIE.....cveieieieieieieste et e ettt te st te st sne e snesnennas 6-65
6-17 Position-Independent Code EXaMPIE........ccccuviririninenesesese s see s seeseeseas 6-66
6-18 Dispatch Stall Due to Rename Availabilityococeoriciiinneiececee 6-68
6-19 Load/Store Multiple Micro Operation Generation Example........cc.ccocvvevvvrvcvnenennne. 6-69
6-20 GIQ TimMiNG EXAMPIE . .iviiiiiiiiiiiiii sttt sre st s 6-70
6-21 VIQ TIimiNG EXAMPIE ...t 6-71
6-22 Serialization EXAMPIE.......ooiiiiici s 6-72
6-23 TUL TimiNg EXGMPIE ...ttt sttt sttt st sttt st sttt s neas 6-73
6-24 FPU Timing EXaMPIE ...ttt 6-74
6-25 FPSCR Rename Timing EXamPlecceceieeeiesesiese e e e e sie e se st sneneas 6-75
6-26 VECtOr EXECULTION LAENCIESeevieeiiieeiesieesieesi sttt 6-76
6-27 VECLOr UNit EXAMPIE ...ttt 6-76
6-28 Load Hit Pipeling EXAMPIE......cccoieeiesesesieseste ettt eas 6-78
XXXVii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

TABLES

Table . Page
Number Title Numbger
6-29 Store Hit PIpeling EXaMPIE........ccviiiiiiiiie sttt 6-79
6-30 Execution of Four Stfd INSLIUCLIONS.........ccoireiieiieesieesesese s 6-79
6-31 Load/Store Interaction (AsSUMING FUll AlI@S)........coeerriieiinieeie e 6-80
6-32 Misaligned Load/Store DELECHIONcceeverieriesiesiesie e se et ste e se st sne e e 6-81
6-33 Data Cache Miss, L2 Cache Hit TimiNg......cocuvereneneninenenesesiese e siesie e seeseeseas 6-81
6-34 Data Cache Miss, L2 Cache Miss, L3 Cache Hit Timing.......ccccovvevevvennvnnennnnenne, 6-82
6-35 Load MissLine Alias EXAMPIE......cccoeiuerierieriesiesiestesie e sie e sie e sae e ste e sse e snesnas 6-82
6-36 Load Miss Line Alias Example With Reordered Codecocuvvvvneninnnenesenennens 6-83
6-37 Store Miss PIpeling EXAMPI.......ccoieiiirieiiieicesesee e 6-84
6-38 Timing for Load MissLine Alias EXamPle........ccccovvviiieiinnsiesnsese e sese e e e 6-88
6-39 Hardware Prefetching Enable EXample........cocooiiinininenenensesesesese s 6-88
7-1 VSCR FEld DESCIIPLIONS....c.vveviiieieree sttt 7-3
7-2 VRSAVE Bit SEHINGS. ... ecueerereeteererieteesesieteesesesiesesesesteseseseseesenesessssesssssesensssssssensassens 7-4
7-3 AltiVec User-Level Cache INStrUCHIONS.........cooviveiieineeseee s 7-6
7-4 Opcodes fOr AStX INSITUCLIONSc.ereeererie it 7-8
7-5 DST[STRM] DESCIIPLION.ceteieiesiesiesiesiestesiesestestese s e stestesses e s e ssessessessessessessessessenes 7-8
7-6 The dstx Stream Termination CoNditioNS...........ccvveiieiienneree s 7-10
7-7 Denormalization for AltiVEC INSITUCLIONSc.ccevieereeeree e 7-12
7-8 Vector Floating-Point Compare, Min, and Max
in Non-Java Mode7-12
7-9 Vector Floating-Point Compare, Min, and Max in JavaMode............cccovvvervreenene. 7-13
7-10 Round-to-Integer Instructionsin Non-JavaMode.........cccceevverenenesesesesesese e 7-14
7-11 Round-to-Integer Instructions in JAVaMOdeccovverinineneninesese e 7-15
7-12 AltiVec Implementation-specific Differences between the

MPC7400/MPC7410 and the MPCT7A51cciiiieeieeeerieieene e 7-16
7-13 MPC7400/MPC7410 and MPC7451 AltiVec Instructions

Using a Different EXeCUtioN UNit ..o 7-17
81 MPC7451 Signal Cross REFEIENCE.......cc.ccerierieriesiesiese e siesie e e e e e ste et sesae e 8-3
8-2 Output Signal States During System RESEL.........cvcviiviiiiiinin s 85
83 Signal Compatibility SUMMENY.........ceiriieiiininei s 8-6
84 Address Parity Bit ASSIQNMENTSccciviiiiieiesiesesesesesesesesesesessessesessessessessens 8-14
8-5 Data Bus Lane ASSIGNMENTS........couiuirierieriesiesiesieseeseeseeseessessesesssessessessessesssssessessessesees 8-25
8-6 DP[0:7] SIgNal ASSIGNMENES......civeveiirireereiiniresieree ettt sre et es e bes e 8-27
8-7 Function of L3_CNTL[O:1] SigNalcceceeverierieriesiesiese e siesie e e ste e e 8-43
8-8 Signal Voltage SElECHIONS ... 8-44
89 Signal Voltage SElECHIONS.......c.civiiieiiiireie e 8-49
8-10 BMODE CONfigUIation.........cceeerieriesiesiesiesieseseseesieseseseesseseessessessessessessessessessessesses 8-50
8-11 IEEE Interface Pin DESCIiPLIONS.......coouiiririesiesiesiesiesie s sie e sie e see s seesse e seeseessessnsens 8-55
812 MPC7451 Reset Configuration SIgNalS.........oeeorriereninnieeineseeene e 8-57
9-1 Transfer Type Encodings for MPX BUSMOGE..........cccouvviiiiiennnenese e sie e 9-18
9-2 TBST and TSIZ[0:2] Encodingsin MPX BUS MOCE..........ccocuvvnininnnnnnnesnsinsinniens 9-19
9-3 BUPSE OFTEIING ...ttt ettt 9-21
9-4 AlIGNEd Data TraNSFErS.....ccviiiiieiesese sttt te e sresreseennens 9-22
XXXViii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

TABLES

Table . Page

Number Title Numbger

9-5 Misaligned Data Transfers (Four-Byte EXamples)ccccvevvereneneneseseseseseseeens 9-23
9-6 Correspondence of Data Parity Signalswith Data Signals.........c.ccoevenininiinincnienn, 9-32
9-7 TBST and TSIZ[0:2] Encodingsin 60X BUSMOGE...........cooeuinirmnieeininerieiieseniereenenes 9-46
10-1 Power Management State TranSitioNSccccvveeeresesese e e se e ees 10-2
10-2 ICTC Field DESCIIPLIONS. ...cveieieieiesie e sie sttt see st see e et see e seeste st st s teseeseeneas 10-6
11-1 Performance Monitor SPRS—SUPErVIiSOr LEVEL ..o 11-4
11-2 Performance Monitor SPRs—User Level (Read-Only)cccoovvvvevvienenencsesenen, 11-5
11-3 MMCRO Field DESCIPLIONS.....cveveeeriesiesiesieseesieseesee e seeseeseeseesseseeseeseesseseesseseessesseses 11-6
11-4 MMCRL Field DESCIIPLIONS.....c.civeveeirerieierine ettt 11-9
11-5 MMCR2 Field DESCITPLIONS.ccivierierieie ettt s seenesnenas 11-10
11-6 BAMR Field DESCIIPLIONScuveieeeiesieiesiesiesie e sie st ste st ssessessessesseseesseseasenns 11-11
11-7 PMCN Field DESCIIPLIONS.eevveiie ittt 11-11
11-8 MONILOrablE SEALES.......eeue ettt st 11-13
11-9 PMC1 Events—MMCRO[PM C1SEL] Select ENCOdiNgS.......ccccuvvrerenenenennnnnenns 11-15
11-10 PMC2 Events—MMCRO[PMC2SEL] Select ENcOdingS........covvvvererermnvereneneriereens 11-20
11-11 PMC3 Events—MMCRI1[PMC3SEL] Select ENcodings.........cccoeeerererienerienenenennes 11-25
11-12 PMC4 Events—MMCRI1[PMCASEL] Select ENcodings.........cccoevrvevenreneneeneennene 11-27
11-13 PMC5 Events—MMCR1[PMC5SEL] Select ENcodings........covvvevenerenvereneneniereens 11-29
11-14 PMC6 Events—MMCRI1[PMCG6SEL] Select ENcodings.........cccoeevrvererienerienenenennes 11-30
A-1 Instructions by MnemoniC (DEC, HEX).......cvuiirirenenieneniesesiesie st see e seens A-1
A-2 Instructions by Primary and Secondary Opcodes (DeC, HEX)covveerirnieeinirennenee A-12
A-3 Instructions by MNemoniC (BiN)ccccerereiesesesese e A-24
A-4 Instructions by Primary and Secondary Opcode (Bin)ccccuvevvreneninnenenennneneenes A-35
A-5 Integer Arithmetic INSEIUCHIONS.ccvoviiriieicie e A-46
A-6 Integer Compare INSEIUCLIONS.ccueieeieriesesie e se sttt sre e A-46
A-7 Integer LOgical INSITUCHTIONSccviiveieieriesiesie ettt A-47
A-8 INteger ROALE INSTUCHIONS.......cveveiiiieieeiisiiee et A-47
A-9 Integer Shift INSIIUCTIONcveveieees e A-48
A-10 Floating-Point Arithmetic INSITUCLIONSoiviiiiiiiiiisese s A-48
A-11 Floating-Point Multiply-Add INStIUCLIONSc.coviveveiriieieireriscee e A-48
A-12 Floating-Point Rounding and Conversion INStruCtionsS..........ccccucvvvveseseseseseseenens A-49
A-13 Floating-Point Compare INSIFUCLIONS.......ccocviiiiiinininnsiese s seesenseeseas A-49
A-14 Floating-Point Status and Control Register INStruCtionsccoovveinrenieeneneneenes A-50
A-15 Integer Load INSIUCHIONS........ccviiieiiisiesiesie e e sie e stesie e e ettt stestesee e sseseeseas A-50
A-16 Integer SEOre INSITUCLIONS.....cciiiiiiiiiisi sttt e e neas A-51
A-17 Integer Load and Store with Byte Reverse INStructions..........ccoveveecnenesieeecneneenes A-51
A-18 Integer Load and Store Multiple INStrUCLIONS.........cccvivieiisesese e A-51
A-19 Integer Load and Store String INStrUCHIONSuvviiiiiineneneniesiesiesiesiesieseeseeseeseeses A-51
A-20 Memory Synchronization INSrUCIONS..........c.couviiereinrieieie e A-52
A-21 Floating-Point Load INStIUCLIONScccviiiiiiiiiesese e nes A-52
A-22 Floating-Point StOre INStrUCHIONSoiviiiiiinisinisie s s seeseeseeseas A-52
A-25 Condition Register Logical INSrUCLIONS..........ccuviieveiniieieineriseee et A-53
A-26 System Linkage INSLIUCLIONS.ccviiiirieieiesiesiesesie e sie s e e sie e ssesse e ssessessessesseses A-53
XXXIX MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

TABLES

Table . Page
Number Title Numbger
A-23 Floating-Point MOVE INSEIUCLIONS........cciiiiieiiiesese ettt neas A-53
A-24 BranCh INSIIUCHIONS... ..ottt A-53
A-27 TP INSITUCHIONSvcvieieiet ettt e A-54
A-28 Processor Control INSIIUCLIONS...........cciueeriereriinereseee et A-54
A-29 Cache Management INSLIUCTIONS.uiviiiirinenesiesiesesiesie e sie e see e sseseeseesseseeseeses A-54
A-30 Segment Register Manipulation INSIIUCLIONS.........c.covreiveieineriereininee e A-54
A-31 Lookaside Buffer Management INStrUCLIONS...........cccovivivieiesesese e see e A-55
A-32 Externa Control INSIFUCHIONS.c.coueuiiieirienesiineei st A-55
A-33 Vector Integer Arithmetic INSITUCLIONS.........cuviieiieieirrieece e A-55
A-34 Floating-Point Compare INSITUCLIONS..........cciiviiierenisesesesesese e see e see e A-58
A-35 Floating-Point ESimate INSIrUCHIONS.......coiiiiniiinisi e seas A-58
A-36 Vector Load Instructions Supporting AligNment............cccevreeinrneineseseee s A-58
A-37 Integer StOre INSITUCLIONS........ccuviiieiisie s ste ettt ettt sre e seenns A-58
A-38 Vector PaCK INSIIUCHIONS.......cccotiieeiiieeiiieisiees sttt A-59
A-39 Vector Unpack INSITUCLIONSc.eoiierieiiirerieieise st A-59
A-40 VeCtor Splat INSITUCHIONS......ccviiiiisiesiesesie e ste ettt sttt stesneseeseennas A-59
A-41 Vector PErmute INSIFUCTIONc.oiveeiieeiiiieesiee sttt A-60
YAV VA< v (o S T= = o g 0 1 o T A-60
A-43 Vector Shift INSEUCHIONS.......cooiiiiriieee e A-60
A-44 Move to/from Condition Register INSIUCLIONS........cccoiiririinenenenenenesie e e seeseeneas A-60
A-45 User-Level Cache INSIIUCHIONS........coevieerieesereee e st A-60
G I o o PSPPI A-61
AAT BrFOIMiceiii et b et A-61
T S O o o PP A-61
L T B T o o TSR A-61
AB0 X0 bbb A-63
L D I o o S A-67
F YA G o1 o ISP A-68
A-B3 XL FOMMN ettt bbb et A-68
N @ T e o U A-68
LT o 1 FO SRR A-69
ABE MOttt et bbbt e b r e b A-70
Y A N o S A-70
F Lt Y o1 1 TSR A-71
A-59 WV XRAFOIN ot bbb et bbb e b e ne e A-76
A-60 PowerPC INStruction Set Legend.........cccoiueieirriereiniiiniecne s A-77
B-1 32-Bit Instructions Not Implemented by the MPC7451...........ccccoovviviiviieieiinsnseinieens B-1
C-1 User-level PowerPC SPR Encodings

Ordered by Decimal VEIUE...........ccoriieieiiriieirecee e C-1
Cc-2 User-level PowerPC SPR Encodings

Ordered by Register NamME.......cccuviviiiiinisisesesie s es C-4
D-1 Load and Store Ordering with WIMG Bit SettingS.........coeovrrvrreinnenieineseee s D-2
D-2 TAU REFEIENCES....c.vieieeeeie ettt et s b e e ae e D-5
x| MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Table
Number

D-3

TABLES

Title

Bus Operations Caused by Cache Control Instructions (WIM = xx0)

MOTOROLA Tables

Page
Number

xli

TABLES

Table . Page
Number Title Number

xlii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

About This Book

The primary objective of thisuser’s manual isto describe the functionality of the MPC7451
for software and hardware developers. In addition, this manua supports the MPC7441,
MPC7445, MPC7455, MPC7447, and the MPC7457. This book is written from the
perspective of the MPC7451, and unless otherwise noted, the information applies also to
the MPC7441, MPC7445, MPC7447, MPC7450, MPC7455, and the MPC7457. The
MPC7451 has the same functionality as the MPC7450 and any differences in data
regarding bus timing, signal behavior, and AC, DC, and thermal characteristics are in the
hardware specifications. The differences for the MPC7451 and MPC7455 are summarized
in Section 1.5, “ Differences Between MPC7441/MPC7451 and MPC7445/MPC7455." In
addition, the differences for the MPC7447/MPC7457 are provided in Section 1.6,
“Differences Between MPC7441/MPC7451 and MPC7447/MPC7457."

Thisbook isintended as acompanion to the Programming Environments Manual for 32-Bit
Implementations of the PowerPC Architecture (referred to as the Programming
Environments Manual).

NOTE: About the Companion Programming Environments Manual

The MPC7450 RISC Microprocessor Family User’'s Manual,
which describes MPC7451 features not defined by the
architecture, isto be used with the Programming Environments
Manual.

Because the PowerPC architecture definition is flexible to
support a broad range of processors, the Programming
Environments Manual describes generally those features
common to these processors and indicates which features are
optiona or may be implemented differently in the design of
each processor.

Note that the Programming Environments Manual describes
features of the PowerPC architecture only for 32-bit
implementations.

Contact your sades representative for a copy of the
Programming Environments Manual.

MOTOROLA AboutThis Book xliii

This document and the Programming Environments Manual distinguish between the three
levels, or programming environments, of the PowerPC architecture, which are as follows:

e PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA definesthe
base user-level instruction set, user-level registers, datatypes, memory conventions,
and the memory and programming models seen by application programmers.

* PowerPC virtual environment architecture (VEA)—TheVEA, whichisthe smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment inwhich multiple processorsor other devicescan
access external memory and defines aspects of the cache model and cache control
instructions from a user-level perspective. VEA resources are particul arly useful for
optimizing memory accesses and for managing resources in an environment in
which other processors and other devices can access external memory.

Implementations that conform to the VEA aso conform to the UISA but may not
necessarily adhere to the OEA.

« PowerPC operating environment architecture (OEA)—The OEA defines
supervisor-level resources typically required by an operating system. It defines the
memory management model, supervisor-level registers, and the exception model.

Implementations that conform to the OEA also conform to the UISA and VEA.

Note that some resources are defined more generally at one level in the architecture and
more specifically at another. For example, conditions that cause a floating-point exception
are defined by the UISA, but the exception mechanism itself is defined by the OEA.

Because it is important to distinguish between the levels of the architecture to ensure
compatibility across multiple platforms, those distinctions are shown clearly throughout
this book.

For ease in reference, topics in this book are presented in the same order as the
Programming Environments Manual. Topics build upon one another, beginning with a
description and complete summary of the MPC7451 programming model (registers and
instructions) and progressing to more specific, architecture-based topics regarding the
cache, exception, and memory management models. As such, chapters may include
information from multiple levels of the architecture. For example, the discussion of the
cache model uses information from both the VEA and the OEA.

Additionally, the MPC7451 implements the AltiVec technology resources. There are two
books that describe the AltiVec technology:

« AltiVec Technology Programming Environments Manual (AltiVec PEM) isa
reference guide for programmers. The AltiVec PEM uses a standardized format
instruction to describe each instruction, showing syntax, instruction format, register
translation language (RTL) code that describes how the instruction works, and a

xliv MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

listing of which, if any, registers are affected. At the bottom of each instruction entry
isafigure that shows the operations on elements within source operands and where
the results of those operations are placed in the destination operand.

« AltiVec Technology Programming Interface Manual (AltiVec PIM) describes how
programmers can accessAltiVec functionality from programming languages such as
C and C++. The AltiVec PIM describes the high-level language interface and
application binary interface for System V and embedded applications for use with
the AltiVec instruction set extension to the PowerPC architecture.

The PowerPC Architecture: A Specification for a New Family of RISC Processors defines
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture. For information on ordering Motorola
documentation, see “Related Documentation,” on page xIvii.

Information in thisbook is subject to change without notice, as described in the disclaimers
on the title page of this book. As with any technical documentation, it is the readers
responsibility to be sure they are using the most recent version of the documentation.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.motorola.com/semi conductors.

A list of the mgjor differences between the MPC7450 RISC Microprocessor Family User’s
Manual Revision 1 and Revision 2 is provided in Appendix D, “User's Manual Revision
History.”

Audience

This manual is intended for system software and hardware developers and applications
programmers who want to develop products for the MPC7441, MPC7445, MPC7447,
MPC7450, MPC7451, MPC7455, and the MPC7457. It is assumed that the reader
understands operating systems, microprocessor system design, basic principles of RISC
processing, and details of the PowerPC architecture.

Organization

Following is asummary and a brief description of the major sections of this manual:

e Chapter 1, “Overview,” isuseful for readers who want a general understanding of
the features and functions of the PowerPC architecture and the MPC7451. This
chapter describes the flexible nature of the PowerPC architecture definition and
provides an overview of how the PowerPC architecture defines the register set,
operand conventions, addressing modes, instruction set, cache model, exception
model, and memory management model. The magjor differences between the
MPC7451 and the MPC7455 are listed in Section 1.5, “ Differences Between
MPC7441/MPC7451 and MPC7445/MPC7455."

MOTOROLA AboutThis Book Xlv

Xlvi

Chapter 2, “Programming Model,” is useful for software engineers who need to
understand the MPC7451-specific registers, operand conventions, and details
regarding how PowerPC instructions are implemented on the MPC7451.
Instructions are organized by function.

Chapter 3, “L1, L2, and L3 Cache Operation,” discusses the cache and memory
model asimplemented on the MPC7451.

Chapter 4, “Exceptions,” describesthe exception model defined in the OEA and the
specific exception model implemented on the MPC7451.

Chapter 5, “Memory Management,” describes the MPC7451’s implementation of
the memory management unit specified by the OEA.

Chapter 6, “Instruction Timing,” provides information about latencies, interlocks,
special situations, and various conditionsto hel p make programming more efficient.
This chapter is of special interest to software engineers and system designers.

Chapter 7, “AltiVec Technology Implementation,” summarizes the features and
functionality provided by the implementation of the AltiVec technology.

Chapter 8, “Signal Descriptions,” provides descriptions of individual signals of the
MPC7451.

Chapter 9, “ System Interface Operation,” describes signal timings for various
operations. It aso provides information for interfacing to the MPC7451.

Chapter 10, “Power and Thermal Management,” provides information about power
saving and thermal management for the MPC7451.

Chapter 11, “Performance Monitor,” describes the operation of the performance
monitor diagnostic tool incorporated in the MPC7451.

Appendix A, “MPC7451 Instruction Set Listings,” lists all PowerPC instructions
while indicating those instructions that are not implemented by the MPC7451; it
also includes the instructions that are specific to the MPC7451. Instructions are
grouped according to mnemonic, opcode, function, and form. Also included isa
quick reference table that contains general information, such as the architecture
level, privilegelevel, and form, and indicatesif theinstruction is 64-bit and optional.

Appendix B, “Instructions Not Implemented,” providesalist of the 32- and 64-bit
PowerPC instructions not implemented in the MPC7451.

Appendix C, “ Specia-Purpose Registers,” lists all MPC7451 SPRs.

Appendix D, “User’'sManual Revision History,” liststhe major differences between
Revision 0, Revision 1, and Revision 2 of the MPC7450 RISC Microprocessor
User’'s Manual.

This manual also includes a glossary and an index.

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Suggested Reading

This section lists additional reading that provides background for the information in this
manual aswell as general information about the PowerPC architecture.

General Information

The following documentation, available through Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA, provides useful information about the PowerPC
architecture and computer architecturein general:

» The PowerPC Architecture: A Specification for a New Family of RISC Processors,
Second Edition, by International Business Machines, Inc.

For updates to the specification, see http://www.austin.ibm.com/tech/ppc-chg.html.

* PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Compuiter, Inc., International Business Machines, Inc., and
Motorola, Inc.

« Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

e Computer Organization and Design: The Hardware/Software Interface, Second
Edition, David A. Patterson and John L. Hennessy

Related Documentation

Motorola documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

e Programming Environments Manual for 32-Bit Implementations of the Power PC
Architecture (MPCFPE32B/AD)—Describes resources defined by the PowerPC
architecture.

e User'smanuals—T hese books provide detail s about i ndividual implementationsand
are intended for use with the Programming Environments Manual.

¢ Addenda/erratato user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and functionality
changes. These addendaareintended for use with the corresponding user’s manuals.

» Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, aswell as
other design considerations. Separate hardware specifications are provided for each
part (MPC7441, MPC7445, MPC7447, MPC7450, MPC7451, MPC7455, and
MPC7457) described in this book (MPC7450 RISC Microprocessor Family User’'s
Manual). Note that when referring to the MPC7451 RISC Microprocessor
Hardware Specifications throughout this book, make sureto refer to the appropriate
hardware specifications for the part being used.

MOTOROLA AboutThis Book XIvii

» Technica summaries—Each device has atechnical summary that provides an
overview of its features. This document is roughly the equivalent to the overview
(Chapter 1) of an implementation’s user’s manual.

« The Programmer’s Reference Guide for the Power PC Architecture;
MPCPRG/D—This concise reference includes the register summary, memory
control model, exception vectors, and the PowerPC instruction set.

» The Programmer’s Pocket Reference Guide for the Power PC Architecture:
MPCPRGREF/D—Thisfoldout card provides an overview of PowerPC registers,
instructions, and exceptions for 32-bit implementations.

» Application notes—These short documents address specific design issues useful to
programmers and engineers working with Motorola processors.

Additional literature is published as new processors become available. For a current list of
documentation, refer to http://www.motorol a.com/semiconductors.

Conventions

This document uses the following notational conventions:

cleared/set

mnemonics
italics

0x0

0b0

rA, rB

rD

frA, frB, frC
frD
REG[FIELD]

Xlviii

When abit takesthe value zero, it is said to be cleared; when it takes
avaue of one, it issaid to be set.

Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, bectrx.
Book titlesin text are set in italics

Internal signals are set initalics, for example, qual BG

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR

Instruction syntax used to identify a destination GPR

Instruction syntax used to identify a source FPR

Instruction syntax used to identify a destination FPR

Abbreviationsfor registersare shown in uppercasetext. Specific bits,
fields, or ranges appear in brackets. For example, MSR[LE] refersto
the little-endian mode enable bit in the machine state register.

In some contexts, such as signal encodings, an unitalicized x
indicatesadon’t care.

An italicized x indicates an alphanumeric variable.
Anitalicized n indicates an numeric variable.

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

e

NOT logical operator
AND logical operator
OR logical operator

Indicates reserved bits or bit fields in aregister. Although these bits

can be written to as ones or zeros, they are always read as zeros.
Indicates functionality defined by the AltiVec technology.

Acronyms and Abbreviations

Tablei contains acronyms and abbreviations that are used in this document.

Tablei.. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
BAT Block address translation
BHT Branch history table
BIST Built-in self test
BIU Bus interface unit
BPU Branch processing unit
BSDL Boundary-scan description language
BTIC Branch target instruction cache
CMOS |Complementary metal-oxide semiconductor
CoP Common on-chip processor
CQ Completion queue
CR Condition register
CTR Count register
DABR |Data address breakpoint register
DAR Data address register
DBAT |Data BAT
DCMP |Data TLB compare
DEC Decrementer register
DLL Delay-locked loop
DMISS |Data TLB miss address
DMMU |Data MMU
DPM Dynamic power management
DSISR |Register used for determining the source of a DSI exception

MOTOROLA

AboutThis Book

xlix

Table i. . Acronyms and Abbreviated Terms (continued)

Term Meaning
DTLB Data translation lookaside buffer
EA Effective address
EAR External access register
ECC Error checking and correction
FIFO First-in-first-out
FIQ Floating-point register issue queue
FPR Floating-point register
FPSCR |Floating-point status and control register
FPU Floating-point unit
GIQ General-purpose register issue queue
GPR General-purpose register
HIDn Hardware implementation-dependent register
IABR Instruction address breakpoint register
IBAT Instruction BAT
ICTC Instruction cache throttling control register
IEEE Institute for Electrical and Electronics Engineers
IMMU Instruction MMU
1Q Instruction queue
ITLB Instruction translation lookaside buffer
U Integer unit
JTAG Joint Test Action Group
L2 Secondary cache (level 2 cache)
L2CR L2 cache control register
L3 Level 3 cache
LIFO Last-in-first-out
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
LSQ Least-significant quad word
Isq Least-significant quad word
LSuU Load/store unit
MESI Modified/exclusive/shared/invalid—cache coherency protocol

MPC7450 RISC Microprocessor Family User’s Manual

MOTOROLA

Table i. . Acronyms and Abbreviated Terms (continued)

Term Meaning
MMCRn | Monitor mode control registers
MMU Memory management unit
MSB Most-significant byte
msb Most-significant bit
MSQ Most-significant quad word
msq Most-significant quad word
MSR Machine state register
NaN Not a number
No-op |No operation
OEA Operating environment architecture
PEM The Programming Environments Manual
PID Processor identification tag
PIM The Programming Interface Manual
PLL Phase-locked loop
PLRU Pseudo least recently used
PMCn |Performance monitor counter registers
POR Power-on reset
POWER |Performance Optimized with Enhanced RISC architecture
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RAW Read-after-write
RISC Reduced instruction set computing
RTL Register transfer language
RWITM |Read with intent to modify
RWNITM |Read with no intent to modify
SDA Sampled data address register
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SIA Sampled instruction address register
SPR Special-purpose register
SRn Segment register
SRRO Machine status save/restore register O
SRR1 Machine status save/restore register 1
MOTOROLA AboutThis Book

Table i. . Acronyms and Abbreviated Terms (continued)

Term Meaning
SRU System register unit

B Time base facility

TBL Time base lower register

TBU Time base upper register

TLB Translation lookaside buffer

TTL Transistor-to-transistor logic
UIMM Unsigned immediate value

UISA User instruction set architecture

UMMCRnN [User monitor mode control registers
UPMCn |User performance monitor counter registers

USIA User sampled instruction address register

VEA Virtual environment architecture
VFPU |Vector floating-point unit

VIQ Vector issue queue

VIUl Vector instruction unit 1

VIU2 Vector instruction unit 2

VPN Virtual page number

VPU Vector permute unit

VSID Virtual segment identification

VTQ Vector touch queue

WAR Write-after-read

WAW Write-after-write
WIMG |Write-through/caching-inhibited/memory-coherency enforced/guarded bits
XATC Extended address transfer code

XER Register used for indicating conditions such as carries and overflows for integer operations

Terminology Conventions

Tableii describes terminology conventions used in this manual and the equivalent

terminology used in the PowerPC architecture specification.

MPC7450 RISC Microprocessor Family User’s Manual

MOTOROLA

Table ii. . Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI)

DSl exception

Extended mnemonics

Simplified mnemonics

Fixed-point unit (FXU)

Integer unit (1U)

Instruction storage interrupt (ISI)

ISI exception

Interrupt

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation Translation
Storage (locations) Memory
Storage (the act of) Access

Store in Write back
Store through Write through

Tableiii describes instruction field notation used in this manual.

Table iii. . Instruction Field Conventions
The Architecture Specification Equivalent to:
BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)
D d
DS ds
FLM FM

FRA, FRB, FRC, FRT, FRS

frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)
Sl SIMM

U IMM

Ul UIMM

N/l 0...0 (shaded)

MOTOROLA

AboutThis Book

liv MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Chapter 1
Overview

This chapter provides an overview of the MPC7451 microprocessor features, including a
block diagram showing the magjor functional components. It also provides information
about how the MPC7451 implementation complies with the PowerPC and AltiVec™
architecture definitions. In addition, this manual supports the MPC7441, MPC7445,
MPC7447, MPC7455, and the MPC7457. Any differences between the other
microprocessors, including the MPC7450, are noted in the user’s manual. The MPC7451
has the same functionality as the MPC7450 and any differences in data regarding bus
timing, signa behavior, and AC, DC, and thermal characteristics are detailed in the
hardware specifications.

1.1 MPC7451 Microprocessor Overview

This section describes the features and general operation of the MPC7451 and provides a
block diagram showing major functiona units. The MPC7451 implements the PowerPC
architecture and is a reduced instruction set computer (RISC) microprocessor. The
MPC7451 consists of a processor core, 32-Khbyte separate L 1 instruction and data caches,
a 256-Kbyte L2 cache for the MPC7451 (512-Kbyte for MPC7457), and an internal L3
controller with tags that support a glueless backside L3 cache through a dedicated
high-bandwidth interface. The core is a high-performance superscalar design supporting
multiple execution units, including four independent units that execute AltiVec
instructions.

The MPC7451 implements the 32-bit portion of the PowerPC architecture, which provides
32-bit effective addresses, integer data types of 8, 16, and 32 bits, and floating-point data
types of 32 and 64 bits. The MPC7451 provides virtual memory support for up to
4 Petabytes (2°2) of virtual memory and real memory support for up to 64 Gigabytes (236)
of physical memory.

The MPC7451 aso implements the AltiVec instruction set architectural extension. The
MPC7451 is a superscalar processor that can dispatch and complete three instructions
simultaneously. It incorporates the following execution units:

e 64-hit floating-point unit (FPU)
« Branch processing unit (BPU)

MOTOROLA Chapter 1. Overview 1-1

®

MPC7451 Microprocessor Overview

* Load/store unit (LSU)
e Four integer units (IUs):
— Three shorter latency 1Us (IUla-1Ulc)—execute all integer instructions except
multiply, divide, and move to/from special-purpose register (SPR) instructions.

— Longer latency 1U (1U2)—executes miscellaneous instructions including
condition register (CR) logical operations, integer multiplication and division
instructions, and move to/from SPR instructions.

« Four vector units that support AltiVec instructions:

— Vector permute unit (VPU)

— Vector integer unit 1 (V1U1)—performs shorter latency integer calculations

— Vector integer unit 2 (V1U2)—performs longer latency integer calculations

— Vector floating-point unit (VFPU)

The ability to execute several instructionsin parallel and the use of simpleinstructionswith
rapid execution times yield high efficiency and throughput for MPC7451-based systems.
Most integer instructions (including VIUL instructions) have a one-clock cycle execution
latency.

Severa execution units feature multiple-stage pipelines; that is, the tasks they perform are
broken into subtasks executed in successive stages. Typically, instructions follow one
another through the stages, so a four-stage unit can work on four instructions when its
pipelineis full. So, although an instruction may have to pass through several stages, the
execution unit can achieve a throughput of one instruction per clock cycle.

AltiVec computational instructions are executed in the four independent, pipelined AltiVec
execution units. A maximum of two AltiVec instructions can be issued in order to any
combination of AltiVec execution units per clock cycle. Moreover, the VIU2, VFPU, and
VPU are pipelined, so they can operate on multiple instructions. The VPU has atwo-stage
pipeling; the VIU2 and VFPU each have four-stage pipelines. As many as 10 AltiVec
instructions can be executing concurrently.

Note that for the MPC7451, double- and single-precision versions of floating-point
instructions have the same latency. For example, a floating-point multiply-add instruction
takesfive cyclesto execute, regardless of whether it issingle- (fmadds) or double-precision
(fmadd).

The MPC7451 has independent on-chip, 32-Kbyte, eight-way set-associative, physicaly
addressed L1 (level-one) caches for instructions and data, and independent instruction and
data memory management units (MMUs). Each MMU has a 128-entry, two-way
set-associative tranglation lookaside buffer (DTLB and ITLB) that savesrecently used page
address trandlations. Block address trandation is implemented with the four-entry
instruction and data block address trandation (IBAT and DBAT) arrays defined by the
PowerPC architecture. During block trandation, effective addresses are compared

1-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Overview

simultaneously with al four BAT entries, as described in Chapter 5, “Memory
Management.” For information about the L1 caches, see Chapter 3,“L1, L2, and L3 Cache
Operation.”

The MPC7451's L2 cache is implemented with an on-chip, 256-Kbyte, eight-way
set-associative physically addressed memory available for storing data, instructions, or
both. For the MPC7447 and MPC7457 the L2 cache is 512-Kbyte. The L2 cache supports
parity generation and checking for both tags and data. It responds with a nine-cycle load
latency for an L1 miss that hits in L2. The L2 cache is fully pipelined for single-cycle
throughput. For information about the L2 cache implementation, see Chapter 3, “L1, L2,
and L3 Cache Operation.”

The L3 cache is implemented with an on-chip, eight-way set-associative tag memory, and
with external, synchronous SRAMs for storing data, instructions, or both. The external
SRAM s are accessed through a dedicated L 3 cache port that supports a single bank of 1 or
2 Mbytes of synchronous SRAMs for L3 cache data. The L3 data bus is 64-bits wide and
provides multiple SRAM options aswell as quick quad-word forwarding to reduce latency.
Alternately, the L3 interface can be configured to use half or al of the SRAM area as a
direct-mapped, private memory space. For information about the L3 cache implementation,
see Chapter 3, “L 1, L2, and L3 Cache Operation.”

The MPC7451 has three power-saving modes, nap, sleep, and deep sleep, which
progressively reduce power dissipation. When functiona units are idle, a dynamic power
management mode causes those units to enter a low-power mode automatically without
affecting operational performance, software execution, or externa hardware.
Section 1.2.10, “Power Management,” describes how the power management can be used
to reduce power consumption when the processor, or portions of it, areidle. Section 1.2.11,
“Thermal Management,” describes how the instruction cache throttling mechanism reduces
the instruction dispatch rate.The information in this section is described more fully in
Chapter 10, “Power and Therma Management.”

The performance monitor facility provides the ability to monitor and count predefined
events such as processor clocks, misses in the instruction cache, data cache, or L2 cache,
types of instructions dispatched, mispredicted branches, and other occurrences. The count
of such events (that may be an approximation) can be used to trigger the performance
monitor exception. Section 1.2.12, “ Performance Monitor,” describes the operation of the
performance monitor diagnostic tool. This functionality is fully described in Chapter 11,
“Performance Monitor.”

Figure 1-1 shows the parallel organization of the execution units (shaded in the diagram)
and the instruction unit fetches, dispatches, and predicts branch instructions. Note that this
is aconceptual model showing basic features rather than attempting to show how features
are implemented physically.

MOTOROLA Chapter 1. Overview 1-3

MPC7451 Microprocessor Overview

m:mmﬂmo w:m_mmm_nn<
ng-v9 ng-9€e

(sa1kan 2 1o 1)
VS [eulax3

v

'SaLIUL QT JO [210} PAUIGUIOD B 10} YINS S3DIN0SAI areys anand ysnd pue anand noised aylL ‘g
‘G2 DdN BU) uo pajuswa|dwl 10U S| 99epIalul BYded €7 YL ‘T :SIION

MOTOROLA

MPC7450 RISC Microprocessor Family User’s Manual

(Anred ng-8) (LS¥LOdW PU L/ DdIN Ul SS2IPPY UE-6T)
! : ! ereq ug-v9 SSalppy 1g9-8T (Thsenbay aiois o|geayoe]
J07e|NWNOJY sng r—=—==/l—— —"— 9 suonuanIBu|) (2) yore4 uononasu
| , , I | Jusnd doous ———— SINOISED T1 @) oied uox —
Joye|nuinddy sng (Osz7) 8nend 2101s 21 (8) yorepaud 21
20D @m0 _ = |e=—Fr—F—
usnd [aoe1 | - = ,m M (S) SSIN peoT 11
/ (6) @nand ! [T T ,_4 [T 1 T i —
noised sne)s sbe| snreis smels sbe|
anand 2101 sng (1) enend | | T/0o0ig eury | | (91hg-ge) To01g (91hg-gE) 039019 aur sanend (77) 8nend peo 11
PEOT | 1811011U0D 8YoeD £ _ (LSPLOdIN PUE LipLOdIN U1 91AG-ZTS) 5010195 T ©s7) M
32eIalul sng WalsAs L B 13]1011U0D aYyaeD Z1 paniun 91AqM-952 anand a101S T1
0 0 0 » walsAsqns Alowa
I
Py T x
T v ol . .
< ng-82t
o . . na-ze «H na-ze THUN zuun uun
ug-v9 | W89 | ssypeoq sel01S na-ce y L _wmnm_v 18691u JELE] sInwiad
¥0Sdd pejeidwod v A 101997 10J08A 101997
. C_—1 + +X
| L = [S S
-Buneoly siayng L SO] siayng 18b31U 18631y sioyng uoneAIaSY | |uonenlasay | [uoneAlasay [(uonenlesey
+ aweuay 9T noysed 11 paysiul aweuay 9T awreuay 9T » » » »
2 suoners 3lld ddd (uonenores v3) [3lld ¥dO oIS @ swoners 3114 WA .
uoneniasay auibu3 yonoL 101097 | <3| onanp uopeniesay uonenissay
vd »o0)0 Jad
A uun 8101s/peo] yonoL suogonisul |
I 10308\ 22y} 0}
v3 dn saye|dwon
(Anuz-z) suonels
uonensasay
=
== || =n
Yy
Reuy 1vaa (enss|-T/Anu3-2) (anssj-g/Anu3-9) (anssj-g/Anu3-v)
Y anss| ydd anss| ¥4do anss| YA (Anuz-o1)
aua (reutbuo) A A K anand uone|dwo)
ayosed d Anu3-ge1 sys - -
> sbel |« I (suononnsuj €) 1g-96
alkadi-ze | 1un uonadwod
NIAIN eled] nn >
Y yoredsiq = A
Keuy 1val 1 7 (Anu3-8v02) 1HE J10)UO\ 8ouBWIOMad
II uswabeueR Jamod/fewayL «
oDl | gpu [(ao | [@wz-gznoid | ! sooyo v LT -
alkgy-z¢ a1Ll (mopeys) | |le—m Al_a_llv) g 191dnN %2010
- i 1un Buissadold youeig [.
Anuz-gzT sds (piom-zZ1) Y 19)UBWAI29(/19IUN0D aseg aWl] «
anan uonannsu|
(suononuisul) ug-8zT OWIW uonannsul » ?__5 uononsul sainyead [euonIppY
!

1-4

MPC7451 Microprocessor Overview

Figure 1-1. MPC7451 Microprocessor Block Diagram

1.1.1 MPC7441 Microprocessor Overview

The MPC7441 is a lower-pin-count device that operates identicaly to the MPC7451,
except that it does not support the L3 cache and the L3 cache interface. In the same way
that the MPC7450 RISC Microprocessor Family User’s Manual describes the functionality
of the MPC7451, this document also describes the functionality of the MPC7441. All
information herein applies to the MPC7441, except where otherwise noted (in particular,
the L3 cache information does not apply to the MPC7441).

1.1.2 MPC7450 Microprocessor Overview

The functionality between the MPC7450 and the MPC7451 is the same. This document
(MPC7450 RISC Microprocessor Family User’s Manual) describes the functionality of the
MPC7450 and any differences in data regarding bus timing, signal behavior, and AC, DC,
and therma characteristics are in the MPC7450 RISC Microprocessor Hardware
Foecification.

1.1.3 MPC7455 Microprocessor Overview

The MPC7455 operates similarly to the MPC7451. However, the following changes are
visible to the programmer or system designer. These changes include:

* 4IBAT and 4 DBAT additional registers

» Additional HIDO bits (HIDO[HIGH_BAT_EN] and HIDO[XBSEN]

e 4 more SPRG registers

The additional IBATs and DBAT s provide mapping for more regions of memory. For more
information on the new features see Section 5.3, “Block Address Translation.”

The SPRGs provide additional registers to be used by system software for table software
searching. If the SPRGs are not used for software table searches, they can be used by other
supervisor programs.

1.1.4 MPC7445 Microprocessor Overview

The MPC7445 is a lower-pin-count device that operates identicaly to the MPC7455,
except that it does not support the L3 cache and the L3 cache interface. In the same way
that the MPC7450 RISC Microprocessor Family User’s Manual describes the functionality
of the MPC7455, this document also describes the functionality of the MPC7445. All
information herein applies to the MPC7445, except where otherwise noted (in particular,
the L3 cache information does not apply to the MPC7445).

MOTOROLA Chapter 1. Overview 1-5

MPC7451 Microprocessor Features

1.1.5 MPC7447 Microprocessor Overview

The MPC7447 is a lower-pin-count device that operates identicaly to the MPC7457,
except that it does not support the L3 cache and the L3 cache interface. In the same way
that the MPC7450 RISC Microprocessor Family User’s Manual describesthe functionality
of the MPC7457, this document also describes the functionality of the MPC7447. All
information herein applies to the MPC7447, except where otherwise noted (in particular,
the L3 cache information does not apply to the MPC7447).

1.1.6 MPC7457 Microprocessor Overview
The MPC7457 operates similarly to the MPC7455. However, the following changes are
visible to the programmer or system designer. These changes include:
e Larger L2 Cache (512 Kbyte)
« Additional support for L3 Private Memory Size (4 Mbyte)
* Anadditional PLL Configuration Signal (PLL_CFG[4])
e Anadditional L3_ADDR Signal (L3_ADDR[18])
« Moadificationsto bitsin the L3 Control Register (L3CR)
All information that appliesto the MPC7455 a so compliesfor the MPC7457, except where

otherwise noted (in particular, the increased L 2 cache and the additional L3 cache support
is new for the MPC7457).

1.2 MPC7451 Microprocessor Features

This section describes the features of the MPC7451. Theinterrelationships of these features
are shown in Figure 1-1.

1.2.1 Overview of the MPC7451 Microprocessor Features

Major features of the MPC7451 are as follows:

¢ High-performance, superscalar microprocessor
— Asmany as 4 instructions can be fetched from the instruction cache at atime
— Asmany as 3 instructions can be dispatched to the issue queues at atime
— Asmany as 12 instructions can be in the instruction queue (1Q)
— Asmany as 16 instructions can be at some stage of execution simultaneously
— Single-cycle execution for most instructions
— Oneinstruction per clock cycle throughput for most instructions
— Seven-stage pipeline control

« Eleven independent execution units and three register files

1-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

— Branch processing unit (BPU) features static and dynamic branch prediction

— 128-entry (32-set, four-way set-associative) branch target instruction cache
(BTIC), acache of branch instructions that have been encountered in
branch/loop code sequences. If atargetinstructionisinthe BTIC, it isfetched
into the instruction queue a cycle sooner than it can be made available from
the instruction cache. Typically, afetch that hits the BTIC provides the first
four instructions in the target stream.

— 2048-entry branch history table (BHT) with two bits per entry for four levels
of prediction—not-taken, strongly not-taken, taken, strongly taken

— Up to three outstanding speculative branches

— Branchinstructionsthat do not update the count register (CTR) or link register
(LR) are often removed from the instruction stream.

— 8-entry link register stack to predict the target address of Branch Conditional
to Link Register (bclr) instructions.

— Four integer units (1Us) that share 32 GPRs for integer operands

— Threeidentical 1Us (IU1la, IU1b, and IU1c) can execute al integer
instructions except multiply, divide, and move to/from special-purpose
register instructions.

— 1U2 executes miscellaneous instructions including the CR logical operations,
integer multiplication and division instructions, and move to/from
special-purpose register instructions.

— 64-bit floating-point unit (FPU)
Five-stage FPU

Fully IEEE 754-1985-compliant FPU for both single- and double-precision
operations

Supports non-1EEE mode for time-critical operations
Hardware support for denormalized numbers

— Thirty-two 64-bit FPRs for single- or double-precision operands
— Four vector units and 32-entry vector register file (VRS)

— Vector permute unit (VPU)

— Vector integer unit 1 (V1U1) handles short-latency AltiVec integer
instructions, such as vector add instructions (vaddsbs, vaddshs, and
vaddsws, for example)

— Vector integer unit 2 (V1U2) handles longer-latency AltiVec integer
instructions, such as vector multiply add instructions (vmhaddshs,
vmhraddshs, and vmladduhm, for example).

— Vector floating-point unit (VFPU)
— Three-stage load/store unit (LSU)

MOTOROLA Chapter 1. Overview 1-7

MPC7451 Microprocessor Features

1-8

— Supports integer, floating-point and vector instruction load/store traffic

— Four-entry vector touch queue (VTQ) supports all four architected AltiVec
data stream operations

— Three-cycle GPR and AltiVec load latency (byte, half-word, word, vector)
with 1 cycle throughput

— Four-cycle FPR load latency (single, double) with 1 cycle throughput

— No additional delay for misaligned access within double-word boundary
— Dedicated adder calculates effective addresses (EAS)

— Supports store gathering

— Performs alignment, normalization, and precision conversion for
floating-point data

— Executes cache control and TLB instructions
— Performs alignment, zero padding, and sign extension for integer data
— Supports hits under misses (multiple outstanding misses)

— Supportsboth big- and little-endian modes, including misaligned little-endian
accesses

Three issue queues FIQ, VIQ, and GIQ can accept as many as one, two, and three
instructions, respectively, in a cycle. Instruction dispatch requires the following:

— Instructions can be dispatched only from the three lowest |Q entries—IQO, |Q1,
and 1Q2.

— A maximum of threeinstructions can be dispatched to theissue queues per clock
cycle.

— Space must be available in the CQ for an instruction to dispatch (this includes
instructions that are assigned a space in the CQ but not in an issue queue).

Rename buffers

— 16 GPR rename buffers

— 16 FPR rename buffers

— 16 VR rename buffers

Dispatch unit

— The decode/dispatch stage fully decodes each instruction.
Completion unit

— The completion unit retires an instruction from the 16-entry completion queue
(CQ) when all instructions ahead of it have been completed, the instruction has
finished execution, and no exceptions are pending.

— Guarantees sequential programming model (precise exception model)
— Monitors all dispatched instructions and retires them in order

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

— Tracks unresolved branches and flushes instructions after amispredicted branch
— Retires as many as three instructions per clock cycle

L1 cache had the following characteristics:

— Two separate 32-Kbyte instruction and data caches (Harvard architecture).

— Instruction and data caches are eight-way set-associative.

— Instruction and data caches have 32-byte cache blocks. A cache block isthe
block of memory that a coherency state describes—corresponds to a cache line
for the L1 data cache.

— Cache directories are physically addressed. The physical (real) addresstag is
stored in the cache directory.

— The caches implement a pseudo |east-recently-used (PLRU) replacement
algorithm within each way.

— Cache write-back or write-through operation programmable on a per-page or
per-block basis

— Instruction cache can provide four instructions per clock cycle; data cache can
provide four words per clock cycle

— Two-cycle latency and single-cycle throughput for instruction or data cache
accesses.

— Caches can be disabled in software
— Caches can be locked in software

— Supports afour-state modified/exclusive/shared/invalid (MESI) coherency
protocol.

— A single coherency statusbit for each instruction cache block alowsencoding
for the following two possible states:

Invalid (INV)
Valid (VAL)
— Two status bits (MESI[0-1]) for each data cache block allow encoding for
coherency, asfollows:

00 = invalid (1)
01 = shared (S)
10 = exclusive (E)
11 = modified (M)
— Separate copy of data cache tags for efficient snooping

— BoththeL 1 caches support parity generation and checking (enabled through bits
inthe ICTRL register) asfollows:

— Instruction cache—one parity bit per instruction

MOTOROLA Chapter 1. Overview 1-9

MPC7451 Microprocessor Features

— Data cache—one parity bit per byte of data
— No snooping of instruction cache except for ichi instruction

— The caches implement a pseudo least-recently-used (PLRU) replacement
algorithm within each way.

6 — Data cache supports AltiVec LRU and transient instructions, as described in
Section 1.3.2.2, “AltiVec Instruction Set.”

— Ciritical double- and/or quad-word forwarding is performed as needed. Critical
quad-word forwarding is used for AltiVec loads and instruction fetches. Other
accesses use critical double-word forwarding.

¢ On-chip Level 2 (L2) cache hasthe following features:

— Integrated 256-Kbyte, eight-way set-associative unified instruction and data
cache for the MPC7451 (512-Kbyte for the MPC7447 and MPC7457).

— Fully pipelined to provide 32 bytes per clock cycleto the L1 caches.
— Total latency of nine processor cyclesfor L1 data cache missthat hitsinthe L2.
— Uses one of two random replacement algorithms (selectable through L2CR).

— Cache write-back or write-through operation programmable on a per-page or
per-block basis

— Organized as 32 bytes/block and 2 blocks (sectors)/line (a cache block is the
block of memory that a coherency state describes).

— Supports parity generation and checking for both tags and data (enabled through
L2CR).

* Level 3(L3) cacheinterface (not supported on the MPC7441, MPC7445, and
MPC7447)

— Provides critical double-word forwarding to the requesting unit

— On-chip tags support 1Mbyte or 2 Mbytes of external SRAM that is eight-way
Set-associative

— Maintainsinstructions, data, or both instructions and data (selectabl e through
L3CR)

— Cache write-back or write-through operation programmable on a per-page or
per-block basis

— Organized as 64 bytes/line configured as 2 blocks (sectors) with separate status
bits per line for 1-Mbyte configuration.

— Organized as 128 bytes/line configured as 4 bl ocks (sectors) with separate status
bits per line for 2-Mbyte configuration.

— 1 Mbyte, 2 Mbytes, or 4AMbytes (4 Mbytesis only for the MPC7457) of the L3
SRAM can be designated as private memory.

— Supports same four-state (MESI) coherency protocol asL1 and L2 caches.

1-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

— Supports parity generation and checking for both tags and data (enabled through
L3CR).

— Same choice of two random replacement algorithms used by L2 cache
(selectable through L3CR).

— Configurable core-to-L 3 frequency divisors
— 64-hit external L3 data bus sustains 64 bits per L3 clock cycle

— Supports MSUG2 dual datarate (DDR) synchronous burst SRAMs, PB2
pipelined synchronous burst SRAMs, and pipelined (register-register) late-write
synchronous burst SRAMs

e Separate memory management units (MMUS) for instructions and data

— 52-hit virtual address; 32- or 36-bit physical address

— Address trandlation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte
segments

— Memory programmable as write-back/write-through,
caching-inhibited/caching-allowed, and memory coherency enforced/memory
coherency not enforced on a page or block basis

— Separate IBATs and DBATS (four each) also defined as SPRs
— Separate instruction and data translation lookaside buffers (TLBS)

— Both TLBsare 128-entry, two-way set-associative, and use L RU replacement
agorithm

— TLBsare hardware- or software-reloadable (that is, on a TLB miss a page
table search is performed in hardware or by system software)

» Efficient dataflow

— AlthoughtheVR/LSU interfaceis 128 bits, the L1/L 2/L 3 businterface allowsup
to 256 hits.

— TheL1 datacacheisfully pipelined to provide 128 bits/cycle to or fromtheVRs

— L2 cacheisfully pipelined to provide 256 bits per processor clock cycle to the
L1 cache.

— Asmany as eight outstanding, out-of-order cache misses are allowed between
the L1 data cache and L2/L 3 bus.

— Asmany as 16 out-of-order transactions can be present on the MPX bus

— Store merging for multiple store misses to the same line. Only coherency action
taken (address-only) for store misses merged to all 32 bytes of acache block (no
data tenure needed).

— Three-entry finished store queue and five-entry completed store queue between
the LSU and the L1 data cache

MOTOROLA Chapter 1. Overview 1-11

MPC7451 Microprocessor Features

— Separate additional queues for efficient buffering of outbound data (such as
castouts and write-through stores) from the L1 data cache and L2 cache

« Multiprocessing support features include the following:
— Hardware-enforced, MESI cache coherency protocols for data cache

— Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

» Power and thermal management
— Thefollowing three power-saving modes are avail able to the system:
— Nap—Instruction fetching is halted. Only those clocks for the time base,
decrementer, and JTAG logic remain running. The part goes into the doze
state to snoop memory operations on the bus and then back to nap using a
QREQ/QACK processor-system handshake protocol.
— Sleep—Power consumption is further reduced by disabling bus snooping,

leaving only the PLL in alocked and running state. All internal functional
units are disabled.

— Deep sleep—When the part isin the deep state, the system can disable the
PLL. The system can then disable the SY SCLK source for greater system
power savings. Power-on reset procedures for restarting and relocking the
PLL must be followed upon exiting the deep sleep state.

— Instruction cache throttling provides control of instruction fetching to limit
device temperature.

» Performance monitor can be used to help debug system designs and improve
software efficiency.

¢ In-system testability and debugging features through JTAG boundary-scan
capability

» Réliability and serviceability
— Parity checking on system bus and L 3 cache bus
— Parity checkingon L1, L2, and L3 cache arrays

1.2.2 Instruction Flow

As shown in Figure 1-1, the MPC7451 instruction unit provides centralized control of
instruction flow to the execution units. The instruction unit contains a sequential fetcher,
12-entry instruction queue (1Q), dispatch unit, and branch processing unit (BPU). It
determines the address of the next instruction to be fetched based on information from the
sequential fetcher and from the BPU.

See Chapter 6, “Instruction Timing,” for a detailed discussion of instruction timing.

1-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

The sequential fetcher loads instructions from the instruction cache into the instruction
gqueue. The BPU extracts branch instructions from the sequentia fetcher. Branch
instructions that cannot be resolved immediately are predicted using either the
MPC7451-specific dynamic branch prediction or the architecture-defined static branch
prediction.

Branchinstructionsthat do not affect the LR or CTR are often removed from the instruction
stream. Section 6.4.1.1, “Branch Folding and Removal of Fall-Through Branch
Instructions,” describes when a branch can be removed from the instruction stream.

Instructions dispatched beyond a predicted branch do not complete execution until the
branch is resolved, preserving the programming model of sequential execution. If branch
prediction is incorrect, the instruction unit flushes all predicted path instructions, and
instructions are fetched from the correct path.

1.2.2.1 Instruction Queue and Dispatch Unit

Theinstruction queue (1Q), shown in Figure 1-1, holdsas many as 12 instructions and loads
as many as 4 instructions from the instruction cache during a single processor clock cycle.

The fetcher attemptsto initiate a new fetch every cycle. The two fetch stages are pipelined,
S0 as many as four instructions can arrive to the 1Q every cycle. All instructions except
branch (bx), Return from Exception (rfi), System Call (sc), Instruction Synchronize
(isync), and no-op instructions are dispatched to their respective issue queues from the
bottom three positions in the instruction queue (IQ0-Q2) at a maximum rate of three
instructions per clock cycle. Reservation stations are provided for thethree lU1s, |U2, FPU,
LSU, VPU, VIU2, VIU1, and VFPU. The dispatch unit checks for source and destination
register dependencies, determines whether a position is available in the CQ, and inhibits
subsequent instruction dispatching as required.

Branch instruction can be detected, decoded, and predicted from entries 1Q0-1Q7. See
Section 6.3.3, “Dispatch, Issue, and Completion Considerations.”

1.2.2.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the |Q and executes them early in the pipeline,
achieving the effect of a zero-cycle branch in some cases.

Branches with no outstanding dependencies (CR, LR, or CTR unresolved) can be
processed and resolved immediately. For branchesinwhich only the direction is unresolved
due to a CR or CTR dependency, the branch path is predicted using either
architecture-defined static branch prediction or MPC7451-specific dynamic branch
prediction. Dynamic branch prediction is enabled if HIDO[BHT] is set. For bclr branches
where the target address is unresolved due to a LR dependency, the branch target can be
predicted using the hardware link stack. Link stack prediction is enabled if HIDO[LRSTK]
isset.

MOTOROLA Chapter 1. Overview 1-13

MPC7451 Microprocessor Features

When a prediction is made, instruction fetching, dispatching, and execution continue from
the predicted path, but instructions cannot complete and write back results to architected
registers until the prediction is determined to be correct (resolved). When a prediction is
incorrect, the instructions from the incorrect path are flushed from the processor and
processing begins from the correct path.

Dynamic prediction isimplemented using a2048-entry branch history table (BHT), acache
that provides two bits per entry that together indicate four levels of prediction for a branch
instruction—not-taken, strongly not-taken, taken, strongly taken. When dynamic branch
prediction isdisabled, the BPU usesabit in theinstruction encoding to predict the direction
of the conditional branch. Therefore, when an unresolved conditional branch instructionis
encountered, the MPC7451 executesinstructions from the predicted target stream although
the results are not committed to architected registers until the conditional branch is
resolved. Unresolved branches are held in a three-entry branch queue. When the branch
queueisfull, no further conditional branches can be processed until one of the conditions
in the branch queue is resolved.

When abranch is taken or predicted as taken, instructions from the untaken path must be
flushed and the target instruction stream must be fetched into the 1Q. The BTIC is a
128-entry, four-way set associative cache that contains the most recently used branch target
instructions (up to four instructions per entry) for b and bc branches. When a taken branch
instruction of this type hitsin the BTIC, the instructions arrive in the IQ two clock cycles
later, a clock cycle sooner than they would arrive from the instruction cache. Additional
instructions arrive from the instruction cachein the next clock cycle. The BTIC reducesthe
number of missed opportunitiesto dispatch instructions and gives the processor aone-cycle
head start on processing the target stream.

The BPU contains an adder to compute branch target addresses and three user-accessible
registers—the link register (LR), the count register (CTR), and the condition register (CR).
The BPU calculates the return pointer for subroutine calls and savesit inthe LR for certain
types of branch instructions. The LR also contains the branch target address for Branch
Conditional to Link Register (bclrx) instructions. The CTR contains the branch target
address for Branch Conditional to Count Register (bcctrx) instructions. Because the LR
and CTR are SPRs, their contents can be copied to or from any GPR. Also, because the
BPU uses dedicated registers rather than GPRs or FPRs, execution of branch instructions
islargely independent from execution of integer and floating-point instructions.

1.2.2.3 Completion Unit

The completion unit operates closely with the instruction unit. Instructions are fetched and
dispatched in program order. At the point of dispatch, the program order is maintained by
assigning each dispatched instruction a successive entry in the 16-entry CQ. The
completion unit tracks instructions from dispatch through execution and retires them in
program order from the three bottom CQ entries (CQ0-CQ?2).

1-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

Instructions cannot be dispatched to an execution unit unless thereis a CQ vacancy.

Branch instructions that do not update the CTR or LR are often removed from the
instruction stream. Those that are removed do not take a CQ entry. Branches that are not
removed from the instruction stream follow the same dispatch and compl etion procedures
as non-branch instructions but are not dispatched to an issue queue.

Completing an instruction commits execution results to architected registers (GPRs, FPRs,
VRs, LR, and CTR). In-order completion ensures the correct architectural state when the
MPC7451 must recover from a mispredicted branch or any exception. An instruction is
retired asit is removed from the CQ.

For a more detailed discussion of instruction completion, see Section 6.3.3, “Dispatch,
Issue, and Completion Considerations.”

1.2.2.4 Independent Execution Units

In addition to the BPU, the MPC7451 provides the ten execution units described in the
following sections.

1.2.2.4.1 AltiVec Vector Permute Unit (VPU)
TheVPU execute permutation instructions such as pack, unpack, merge, splat, and permute

on vector operands.

1.2.2.4.2 AltiVec Vector Integer Unit 1 (VIU1)

The VIU1 executes simple vector integer computational instructions, such as addition,
subtraction, maximum and minimum comparisons, averaging, rotation, shifting,
comparisons, and Boolean operations.

1.2.2.4.3 AltiVec Vector Integer Unit 2 (VIU2)

The VIU2 executes longer-latency vector integer instructions, such as multiplication,
multiplication/addition, and sum-across with saturation.

1.2.2.4.4 AltiVec Vector Floating-point Unit (VFPU)

The VFPU executes al vector floating-point instructions.

A maximum of two AltiVec instructions can be issued in order to any combination of
AltiVec execution units per clock cycle. Moreover, the VIU2, VFPU, and VPU are
pipelined, so they can operate on multiple instructions.

MOTOROLA Chapter 1. Overview 1-15

MPC7451 Microprocessor Features

1.2.2.45 Integer Units (IUs)

The integer units (three IU1s and 1U2) are shown in Figure 1-1. The |U1s execute shorter
latency integer instructions, that is, all integer instructions except multiply, divide, and
move to/from special-purpose register instructions. U2 executes integer instructions with
latencies of 3 cycles or more.

1U2 has a 32-hit integer multiplier/divider and a unit for executing CR logical operations
and move to/from SPR instructions. The multiplier supports early exit for operations that
do not require full 32 + 32-bit multiplication.

1.2.2.4.6 Floating-Point Unit (FPU)

The FPU, shown in Figure 1-1, is designed such that double-precision operations require
only asingle pass, with alatency of five cycles. Asinstructions are dispatched to the FPUs
reservation station, source operand data can be accessed from the FPRs or from the FPR
rename buffers. Resultsin turn are written to the rename buffers and are made available to
subsequent instructions. Instructions start execution from the bottom reservation station
only and execute in program order.

The FPU contains a single-precision multiply-add array and the floating-point status and
control register (FPSCR). The multiply-add array alows the MPC7451 to efficiently
implement multiply and multiply-add operations. The FPU is pipelined so that one single-
or double-precision instruction can be issued per clock cycle.

Note that an execution bubble occurs after four consecutive, independent floating-point
arithmetic instructions execute to allow for a normalization special case. Thirty-two 64-bit
floating-point registers are provided to support floating-point operations. Stalls due to
contention for FPRs are minimized by automatic allocation of the 16 floating-point rename
registers. The MPC7451 writes the contents of the rename registersto the appropriate FPR
when floating-point instructions are retired by the completion unit.

The MPC7451 supports al | EEE 754 floating-point data types (normalized, denormalized,
NaN, zero, and infinity) in hardware, eliminating the latency incurred by software
exception routines.

1.2.2.4.7 Load/Store Unit (LSU)

The LSU executes al load and store instructions as well as the AltiVec LRU and transient
instructions and provides the data transfer interface between the GPRs, FPRs, VRS, and the
cache/memory subsystem. The LSU also calculates effective addresses and aligns data.

Load and store instructions are issued and translated in program order; however, some
memory accesses can occur out of order. Synchronizing instructions can be used to enforce
strict ordering. When there are no data dependencies and the guarded bit for the page or
block is cleared, a maximum of one out-of-order cacheable |oad operation can execute per

1-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

clock cycle from the perspective of the LSU. Loads to FPRs require a four-cycle total
latency. Datareturned from the cacheis held in arename register until the completion logic
commits the value to a GPR, FPR, or VR. Stores cannot be executed out of order and are
held in the store queue until the completion logic signals that the store operation is to be
completed to memory. The MPC7451 executes store instructions with a maximum
throughput of one per clock cycle and athree-cycletotal latency to the datacache. Thetime
required to perform theload or store operation depends on the processor:bus clock ratio and
whether the operation involves the on-chip caches, the L3 cache, system memory, or an 1/0
device.

1.2.3 Memory Management Units (MMUS)

The MPC7451's MMUs support up to 4 Petabytes (252) of virtual memory and
64 Gigabytes (236) of physical memory for instructions and data. The MM Us control access
privileges for these spaces on block and page granularities. Referenced and changed status
is maintained by the processor for each page to support demand-paged virtual memory
systems. The memory management units are contained within the load/store unit.

The LSU calculates effective addresses for data loads and stores; the instruction unit
calculates effective addresses for instruction fetching. The MMU trand ates the effective
address to determine the correct physical address for the memory access.

The MPC7451 supports the following types of memory translation:

* Real addressing mode—In this mode, trangdlation is disabled by clearing bitsin the
machine state register (MSR): MSR[IR] for instruction fetching or MSR[DR] for
dataaccesses. When addresstranglation is disabled, the physical addressisidentical
to the effective address. When extended addressing is disabled (HIDO[XAEN] = 0)
a 32-hit physical addressis used, PA[4-35]. For more details see Section 5.1.3,
“Address Trand ation Mechanisms.”

» Page address trand ation—trangl ates the page frame address for a4-Kbyte page size

» Block addresstrand ation—trans atesthe base addressfor blocks (128 K bytesto 256
Mbytes) (MPC7441, MPC7451) or 4 GBytes (MPC7445, MPC7447, MPC7455,
MPC7457).

If trandlation is enabled, the appropriate MMU translates the higher-order bits of the
effective address into physical address bits. Lower-order address bits are untranslated and
so are the same for both logical and physical addresses. These bits are directed to the
on-chip cacheswherethey form theindex into the eight-way set-associative tag array. After
trangl ating the address, the MMU passes the higher-order physical address bitsto the cache
and the cache lookup completes. For caching-inhibited accesses or accessesthat missin the
cache, the untrandated lower-order address bits are concatenated with the translated
higher-order address bits; the resulting 32- or 36-bit physica address is used by the
memory subsystem and the bus interface unit, which accesses external memory.

MOTOROLA Chapter 1. Overview 1-17

MPC7451 Microprocessor Features

The TLBs store page address translations for recent memory accesses. For each access, an
effective addressis presented for page and block trand ation simultaneousdly. If atranslation
isfound in both the TLB and the BAT array, the block address translation in the BAT array
isused. Usudly the trandationisin a TLB and the physical addressis readily available to
the on-chip cache. When a page address trandation is not in a TLB, hardware or system
software searches for one in the page table following the model defined by the PowerPC
architecture.

Instruction and data TLBs provide address tranglation in parallel with the on-chip cache
access, incurring no additional time penalty in the event of a TLB hit. The MPC7451
instruction and data TLBs are 128-entry, two-way set-associative caches that contain
address trandations. The MPC7451 can initiate a hardware or system software search of
the page tablesin memory on aTLB miss.

1.2.4 On-Chip L1 Instruction and Data Caches

The MPC7451 implements separate L1 instruction and data caches. Each cache is
32-Kbyte eight-way set-associative. As defined by the PowerPC architecture, they are
physically indexed. Each cache block contains eight contiguous words from memory that
are loaded from an eight-word boundary (that is, bits EA[27-31] are zeros); thus, a cache
block never crosses a page boundary. An entire cache block can be updated by a four-beat
burst load across a 64-bit system bus. Misaligned accesses across a page boundary can
incur a performance penalty. The data cache is a nonblocking, write-back cache with
hardware support for reloading on cache misses. The critical double word istransferred on
thefirst beat and is forwarded to the requesting unit, minimizing stalls due to load delays.
For vector loads, the critical quad word is handled similarly but istransferred on the second
beat. The cache being loaded is not blocked to internal accesses while the load completes.

The MPC7451 L1 cache organization is shown in Figure 1-2.

1-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

esers | * T
. °
[I [I ‘

Block 0 Address Tag 0 | | T~ status | | | Words‘ [0-7] | | | L]
| | | | | | |

Block 1 Address Tag 1 | | 1 status | | | Words‘ [0-7] | | | L]
| | | | | | |

Block 2 Address Tag 2 | | status ‘ ‘ ‘ Word; [0-7] | | | L
| | | | | | |

Block3| AddressTag3 | [|—Status | | | wOrd;, [0-7] | | | L]
L L L L L L L

Block 4| AddressTag4 | | |—Status | ‘ ‘ Word.’l, [0-7] | | | L]
Il Il Il Il Il Il Il

Block 5 AddressTag5 | | |— Status | | | Words‘ [0-7] | | | L]
| | | | | | |

Block 6 AddressTag6 || | Status : : : WOde: [0-7] : : : L]

Block 7 Address Tag 7 L Status | | | Words‘ [0-7] | | | L

L L L
‘4— 8 Words/BIock4>{

Figure 1-2. L1 Cache Organization

The instruction cache provides up to four instructions per clock cycle to the instruction
gueue. The instruction cache can be invalidated entirely or on a cache-block basis. It is
invalidated and disabled by setting HIDO[ICFI] and then clearing HIDO[ICE]. The
instruction cache can be locked by setting HIDO[ILOCK]. The instruction cache supports
only the valid/invalid states.

The data cache provides four words per clock cycleto the LSU. Like theinstruction cache,
the data cache can be invalidated al at once or on a per-cache-block basis. The data cache
can beinvalidated and disabled by setting HIDO[DCFI] and then clearing HIDO[DCE]. The
data cache can be locked by setting HIDO[DLOCK]. The data cache tags are dual-ported,
so aload or store can occur simultaneously with a snoop.

The MPC7451 a so implements a128-entry (32-set, four-way set-associative) branch target
instruction cache (BTIC). The BTIC is a cache of branch instructions that have been
encountered in branch/loop code sequences. If the target instruction is in the BTIC, it is
fetched into the instruction queue a cycle sooner than it can be made available from the
instruction cache. Typically, the BTIC contains the first four instructions in the target
stream.

The BTIC can be disabled and invalidated through software. As with other aspects of
MPC7451 instruction timing, BTIC operation is optimized for cache-line alignment. If the
first target instruction is one of thefirst five instructions in the cache block, the BTIC entry
holds four instructions. If the first target instruction is the last instruction before the cache
block boundary, it is the only instruction in the corresponding BTIC entry. If the

MOTOROLA Chapter 1. Overview 1-19

MPC7451 Microprocessor Features

next-to-last instruction in a cache block is the target, the BTIC entry holds two valid target
instructions, as shown in Figure 1-3.

Branch Target
Instruction CacheBlock [To [70 | T2 [73 [T4 [158 [76 [T7 |
BTICEny [T2 | 13 [T4 [T5 |
Branch Target
Instruction CacheBlock [T0 [71 | T2 [™3 [14 [158 [76 [T7 |

BMCEMy [T6 | 17 [— [— |

Figure 1-3. Alignment of Target Instructions in the BTIC

BTIC ways are updated using a FIFO algorithm.

For moreinformation and timing exampl es showing cache hit and cache misslatencies, see
Section 6.3.2, “Instruction Fetch Timing.”

1.2.5 L2 Cache Implementation

The L2 cacheisaunified cache that receives memory requests from both the L 1 instruction
and data caches independently. The integrated L2 cache on the MPC7451 is a unified
(containing both instructions and data) 256 K byte on-chip cache. For the MPC7447 and the
MPC7457, the L2 cache has been increased to 512-Kbyte on-chip cache. It is eight-way
set-associative and organized with 32-byte blocks and two blocks/line.

Each line consists of 64 bytes of data organized as two blocks (also called sectors).
Although all 16 wordsin a cache line share the same address tag, each block maintainsthe
three separate status bits for the 8 words of the cache block, the unit of memory at which
coherency is maintained. Thus, each cache line can contain 16 contiguous words from
memory that are read or written as 8-word operations.

The MPC7451 integrated L 2 cache organization is shown in Figure 1-4.

1-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

o

512 Sets b ®
Ld Ld
/ .)
1
| | T T T 1 1 T T T T 1 [
Line 0 Address Tag 0 | | [| Status Words [0-7] Status Words [8-15] I
Il 1 Il Il Il Il Il Il 1 Il Il Il
L N R B R |
Line 1 Address Tag 1 | | Status Words [0-7] Status Words [8-15 -
|] | | | | | |] | | |
L L |
Line 2 Address Tag 2 | | Status Words [0-7] Status Words [8-15 ||
|] | | | | | |] | | |
L L [
Line 3 Address Tag 3 | [Status Words [0-7] Status Words [8-15] |
L 1 L L L L L L 1 L L L
T 1 T 1 L |
Line 4 Address Tag 4 | | 1 status Words [0-7] Status Words [8-15] ||
Il 1 Il Il Il Il Il Il 1 Il Il Il
L L [
Line 5 Address Tag 5 | | | Status Words [0-7] Status Words [8-15] ||
|] | | | | | |] | | |
T T T T T T T T T T T T
Line 6 Address Tag 6 L] Status Words [0-7] Status Words [8-15] ||
|] | | | | | |] | | |
L L
Line 7 Address Tag 7 L Status Words [0-7] Status Words [8-15 L
L 1 L L L L 1 L L L

Block 0

Figure 1-4. L2 Cache Organization for MPC7451

Block 1

A

1024 Sets ® °
L J L J
/ . .
'
| | T T T 1 1 T T T T 1 |
Line 0 Address Tag 0 || [Status Words [0-7] Status Words [8-15] I
|] | | | | | |] | | |
L L |
Line 1 Address Tag 1 | | Status Words [0-7] Status Words [8-15] .
|] | | | | | |] | | |
T T T T T T T T T T T T [
Line 2 Address Tag 2 | | [Status Words [0-7] Status Words [8-15] ||
|] | | | | | |] | | |
L L
Line 3 Address Tag 3 | [Status Words [0-7] Status Words [8-15 |
L 1 L L L L L L 1 L L L
— 1 T 1 1 — 1 T T 1 T 1 [
Line 4 Address Tag 4 | | Status Words [0-7] Status Words [8-15] ||
|] | | | | | |] | | |
L L |
Line 5 Address Tag 5 | | Status Words [0-7] Status Words [8-15] ||
|] | | | | | |] | | |
L L
Line 6 Address Tag 6 L] Status Words [0-7] Status Words [8-15] ||
|] | | | | | |] | | |
L L
Line 7 AddressTag7 | [Status Words [0-7] Status Words [8-15] L
| 1 | | | | 1 | | |
Block 0

Figure 1-5. L2 Cache Organization for the MPC7447 and MPC7457

The L2 cache controller contains the L2 cache control register (L2CR), which:

* includes bits for enabling parity checking onthe L2

MOTOROLA

Chapter 1. Overview

Block 1

1-21

MPC7451 Microprocessor Features

» providesfor instruction-only and data-only modes
» provides hardware flushing for the L2
» selects between two available replacement algorithms for the L2 cache.

The L2 implements the MESI cache coherency protocol using three status bits per sector.

Requests from the L1 cache generally result from instruction misses, data load or store
misses, write-through operations, or cache management instructions. Requestsfrom the L1
cache are compared against the L 2 tags and serviced by the L2 cacheif they hit; if they miss
in the L2 cache, they are forwarded to the L3 cache.

The L2 cachetagsarefully pipelined and non-blocking for efficient operation. Thusthe L2
cache can be accessed internally while aload for a miss is pending (allowing hits under
misses). A reload for a cache missis treated as a normal access and blocks other accesses
for only one cycle.

For more information, see Chapter 3, “L1, L2, and L3 Cache Operation.”

1.2.6 L3 Cache Implementation

Theunified L3 cache receives memory requestsfrom L1 and L 2 instruction and data caches
independently. The L3 cache interface is implemented with an on-chip, two-way set
associative tag memory with 2,048 (2K) tags per way and a dedicated interface with
support for up to 2 Mbyte of external synchronous SRAMs. Note that the L3 cache is not
supported on the MPC7441 and the MPC7445.

Tags are sectored to support either two or four cache blocks per tag entry, depending on the
L2 cache size. Each sector (32-byte cache block) in the L3 cache has three status bits that
are used to implement the MESI cache coherency protocol. Accesses to the L3 cache can
be designated as write-back or write-through and the L3 maintains cache coherency
through snooping.

The L3 interface can be configured to use 1 or 2 Mbytes of the SRAM area as a private
memory space. The MPC7457 can support 1,2, or 4 Mbytes of private memory. Accesses
to private memory does not propagate to the system bus. The MPC7451 can also be
configured to use 1 Mbyte of SRAM as L3 cache and a second Mbyte as private memory.
Also, in this case, private memory accesses do not propagate to the L3 cache or to the
external system bus.

The private memory space provides alow-latency, high-bandwidth areafor critical data or
instructions. Accesses to the private memory space do not propagate to the L3 cache nor
are they visible to the external system bus. The private memory space is also not snooped,
so the coherency of its contents must be maintained by software or not at all. For more
information, see Chapter 3, “L 1, L2, and L3 Cache Operation.”

1-22 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

The L3 cache control register (L3CR) provides control of L3 cache configuration and
interface timing. The L3 private memory control register (L3PM) configures the private
memory feature.

The L3 cache interface provides two clock outputs that allow the clock inputs of the
SRAMSsto be driven at select frequency divisions of the processor core frequency. For the
MPC7457, the L3 cache interface provides two sets of two differentia clock outputs.

Requests from the L3 cache generally result from instruction misses, data load or store
misses, write-through operations, or cache management instructions. Requests from the L1
and L2 cache are compared against the L3 tags and serviced by the L3 cacheiif they hit; if
they missin the L3 cache, they are forwarded to the bus interface.

1.2.7 System Interface

The MPC7451 supports two interface protocols—MPX bus protocol and a subset of the
60x bus protocol. Note that athough this protocol is implemented by the MPC603e,
MPC604e, MPC740, and MPC750 processors, it isreferred to asthe 60x businterface. The
MPX bus protocol is derived from the 60x bus protocol. The MPX bus interface includes
several additional features that provide higher memory bandwidth than the 60x bus and
more efficient use of the system bus in a multiprocessing environment. Because the
MPC7451's performance is optimized for the MPX bus, its use is recommended over the
60x bus.

The MPC7451 bus interface includes a 64-bit data bus with 8 bits of data parity, a 36-bit
address bus with 5 bits of address parity, and additional control signalsto allow for unique
system level optimizations.

The bus interface protocol is configured using the BMODEQO configuration signal at reset.
If BMODEDQO is asserted at the negation of HRESET, the MPC7451 uses the MPX bus
protocol; if BMODERO is negated during the negation of HRESET, the MPC7451 uses a
limited subset of the 60x bus protocol. Note that the inverse state of BMODE[0:1] at the
negation of HRESET is saved in MSSCRO[BMODE].

1.2.8 MPC7451 Bus Operation Features

The MPC7451 has a separate address and data bus, each with its own set of arbitration and
control signals. This allows for decoupling the data tenure from the address tenure of a
transaction and provides for awide range of system-bus implementations including:

¢ Nonpipelined bus operation
» Pipelined bus operation
« Split transaction operation

MOTOROLA Chapter 1. Overview 1-23

MPC7451 Microprocessor Features

The MPC7451 supports only the norma memory-mapped address segments defined in the
PowerPC architecture. Access to direct store segments resultsin aDS| exception.

1.2.8.1 MPX Bus Features
The MPX bus has the following features:

1-24

Extended 36-bit address bus plus 5 bits of odd parity (41 bits total)

64-bit data bus plus 8 bits of odd parity (72 bitstotal); a 32-bit data bus mode is not
supported

Support for afour-state (MESI) cache coherence protocol

On-chip snooping to maintain L1 data cache, L2, and L3 cache coherency for
multiprocessing applications and DMA environments

Support for address-only transfers (useful for avariety of broadcast operationsin
multiprocessor applications)

Address pipelining

Support for up to 16 out-of-order transactions using 4 data transaction index
(DTI[0:3]) signals

Full data streaming

Support for dataintervention in multiprocessor systems

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

1.2.8.2 60x Bus Features

The following list summarizes the 60x businterface features:

» Extended 36-bit address bus plus 5 bits of odd parity (41 bits total)

e 64-hit data bus plus 8 bits of odd parity (72 bitstotal); a 32-hit data bus modeis not
supported

» Support for afour-state (MESI) cache coherence protocol

¢ On-chip snooping to maintain L1 data cache, L2, and L3 cache coherency for
multiprocessing applications and DMA environments

» Support for address-only transfers (useful for avariety of broadcast operationsin
multiprocessor applications)

e Address pipelining
e Support for up to 16 outstanding transactions. No reordering is supported.

1.2.9 Overview of System Interface Accesses

The system interface includes address register queues, prioritization logic, and a bus
control unit. The system interface latches snoop addresses for snooping inthe L1 data, L2,
and L3 caches, the memory hierarchy address register queues, and the reservation
controlled by the Load Word and Reserve Indexed (lwarx) and Store Word Conditional
Indexed (stwcx.) instructions. Accesses are prioritized with load operations preceding store
operations. Note that the L3 cache interface is not supported on the MPC7441 and the
MPC7445.

Instructions are automatically fetched from the memory system into the instruction unit
where they are issued to the execution units at a peak rate of three instructions per clock
cycle. Conversely, load and store instructions explicitly specify the movement of operands
to and from the integer, floating-point, and AltiVec register files and the memory system.

When the MPC7451 encounters an instruction or data access, it calculates the effective
address and uses the lower-order address bits to check for ahit in the on-chip, 32-Kbyte L1
instruction and data caches. During L1 cache lookup, the instruction and data memory
management units (MMUS) use the higher-order address bits to calculate the virtua
address, from which they calculate the physical (real) address. The physical addressbitsare
then compared with the corresponding cache tag bits to determine if a cache hit occurred
in the L1 instruction or data cache. If the access misses in the corresponding cache, the
transaction is sent to L1 load miss queue or the L1 store miss queue. L1 load miss queue
transactions are sent to the internal 256-Kbyte L2 cache (512-Kbyte for MPC7447 and
MPC7457) and L3 cache controller simultaneously. Store miss queue transactions are
queued up in the L2 cache controller and sent to the L3 cache if necessary. If no matchis
found in the L2 or L3 cache tags, the physical addressis used to access system memory.

MOTOROLA Chapter 1. Overview 1-25

MPC7451 Microprocessor Features

In addition to loads, stores, and instruction fetches, the MPC7451 performs hardware table
search operations following TLB misses; L1, L2, and L3 cache castout operations; and
cache-line snoop push operations when a modified cache line detects a snoop hit from
another bus master.

1.2.9.1 System Interface Operation

The primary activity of the MPC7451 system interfaceis transferring data and instructions
between the processor and system memory. There are three types of transfer accesses:

e Single-beat transfers—These memory accesses allow transfer sizesof 1, 2, 3, 4, or
8 bytesin one bus clock cycle. Single-beat transactions are caused by uncacheable
read and write operations that access memory directly (that is, when caching is
disabled), cache-inhibited accesses, and stores in write-through mode.

¢ Two-beat burst (16-byte) datatransfers—Generated to support caching-inhibited or
write-through AltiVec loads and stores (only generated in MPX bus mode) and for
caching-inhibited instruction fetchesin MPX mode.

» Four-beat burst (32-byte) data transfers—Initiated when an entire cache block is
transferred into or out of theinternal caches. Because the first-level caches on the
MPC7451 are write-back caches, burst-read memory operations are the most
common memory accesses, followed by burst-write memory operations, and
single-beat (caching-inhibited or write-through) memory read and write operations.

Memory accesses can occur in single-beat (1, 2, 3, 4, and 8 bytes), double-beat (16 bytes),
and four-beat (32 bytes) burst data transfers. For memory accesses, the address and data
buses are independent to support pipelining and split transactions. The bus interface can
pipeline as many as 16 transactions and, in MPX bus mode, supports full out-of-order
split-bus transactions. The MPC7451 bursts out of reset in MPX bus mode, fetching eight
instructions on the MPX bus at atime.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the MPC7451 to be integrated into systems that implement various fairness and
bus-parking procedures to avoid arbitration overhead.

Typicaly, memory accesses are weakly ordered to maximize the efficiency of the bus
without sacrificing coherency of the data. The MPC7451 allows |oad operations to bypass
store operations (except when a dependency exists). Because the processor can
dynamically optimize run-time ordering of load/store traffic, overall performance is
improved.

Note that the synchronize (sync) and enforce in-order execution of 1/0O (eieio) instructions
can be used to enforce strong ordering.

The system interface is synchronous. All MPC7451 inputs are sampled and all outputs are
driven on the rising edge of the bus clock cycle. The MPC7451 RISC Microprocessor

1-26 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

Hardware Specifications givestiming information. The system interface is specific for each
microprocessor that implements the PowerPC architecture.

1.2.9.2 Signal Groupings

Signals are provided for implementing the bus protocol, clocking, and control of the L3
caches, as well as separate L3 address and data buses. Test and control signals provide
diagnostics for selected internal circuits.

The MPC7451 MPX and 60x bus interface protocol signals are grouped as follows:

* Address arbitration—The MPC7451 uses these signals to arbitrate for address bus
mastership.

e Addresstransfer start—These signals indicate that a bus master has begun a
transaction on the address bus.

¢ Addresstransfer—These signal sinclude the address bus and address parity signals.
They are used to transfer the address and to ensure the integrity of the transfer.

» Transfer attribute—These signals provide information about the type of transfer,
such asthe transfer size and whether the transaction is bursted, write-through, or
cache-inhibited.

» Addresstransfer termination—These signal s are used to acknowledge the end of the
address phase of the transaction. They also indicate whether a condition exists that
requires the address phase to be repeated.

¢ Dataarbitration—The MPC7451 uses these signals to arbitrate for data bus
mastership.

« Datatransfer—These signals, which consist of the data bus and data parity signals,
are used to transfer the data and to ensure the integrity of the transfer.

« Datatransfer termination—Data termination signals are required after each data
beat in a datatransfer. In asingle-beat transaction, data termination signals also
indicate the end of the tenure. In burst accesses, data termination signals apply to
individual beats and indicate the end of the tenure only after the final databeat. Data
termination signals also indicate whether a condition exists that requires the data
phase to be repeated.

Many other MPC7451 signals control and affect other aspects of the device, aside from the
bus protocol. They are asfollows:

¢ L3 cache address/data—The MPC7451 has separate address and data buses for
accessing the L3 cache. Note that the L3 cache interface is not supported by the
MPC7441 and the MPC7445.

» L3 cache clock/control—These signals provide clocking and control for the L3
cache. Note that the L3 cache interface is not supported by the MPC7441 and the
MPC7445.

MOTOROLA Chapter 1. Overview 1-27

MPC7451 Microprocessor Features

* Interrupts/resets—These signals include the external interrupt signal, checkstop
signals, and both soft reset and hard reset signals. They are used to interrupt and,
under various conditions, to reset the processor.

» Processor status and control—These signals enabl e the time-base facility and are
used to select the bus mode and control sleep mode.

¢ Clock control—These signals determine the system clock frequency. They are dso
used to synchronize multiprocessor systems.

o Testinterface—The JTAG (IEEE 1149.1a-1993) interface and the common on-chip
processor (COP) unit provide a serial interface to the system for performing
board-level boundary-scan interconnect tests.

« Voltage selection—These signal control the electrical characteristics of the I/0
circuitry of the device as appropriate to support various signalling levels.

NOTE

Active-low signas are shown with overbars. For example,
ARTRY (address retry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low
and negated when they are high. Signalsthat are not active low,
such as AP[0:4] (address bus parity signals) and TT[0:4]
(transfer type signals) are referred to as asserted when they are
high and negated when they are low.

1.2.9.3 MPX Bus Mode Functional Groupings

Figure 1-6 illustrates the MPC7451's signa configurationin MPX bus mode, showing how
the signals are grouped. A pinout diagram and tables showing pin numbers are included in
the MPC7451 RISC Microprocessor Hardware Specifications. Note that the | eft side of the
figure depicts the signals that implement the MPX bus protocol and the right side of the
figure shows the remaining signals on the MPC7451 (not part of the bus protocol).

1-28 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Address
Arbitration

Address
Transfer

Address
Transfer
Attributes

Address
Transfer
Termination

Data
Arbitration

Data
Transfer

Data
Transfer
Termination

_

I wena

-

18
64

-

A4
=

36

N AN BP®

A A

A A

PR R WR R

MPC7451

(MPX)

PN P R

B R N PR R R PR R R R B R R

IN

D[0:63]
DP[0:7]

N
[S S N

Yy

Vbp
OVpp

GVDD

B
T

A A

MPC7451 Microprocessor Features

1
L3_ADDR[17:0]
L3_DATA[0:63]
L3_DP[0:7]

L3_VSEL

L3_CLK[0:1]

L3_ECHO_CLKJ[0:3]
4“— >

[3_CNTL[O:1]

INT

A A

)

A

MCP

SRESET

HRESET

CKSTP_IN

A A

CKSTP_OUT

A

\i

TBEN

QREQ

QACK

A A

BVSEL

BMODE[0:1]

A A

PMON_IN

PMON_OUT

SYSCLK

A A

PLL_CFGJ0:3] 2

PLL_EXT

A A

EXT_QUAL

CLK_OUT

TCK

A A

TDI

TDO

T™MS

TRST

-

1 For the MPC7457, there are 19 L3_ADDR signals, (L3_ADDR[0:18])

2 For the MPC7447 and MPC7457, there are 5 PLL_CFG signals, (PLL_CFG[0:4])

MOTOROLA

AVpp
GND

Figure 1-6. MPX Bus Signal Groups

Chapter 1. Overview

L

L3 Cache
Address/

Data
Note: L3 cache
interface is not
supported in the
MPC7441, MPC7445,
or the MPC7447)

L3 Cache

Clock/
Control

Interrupts/
Resets

Processor
Status/
Control

Clock
Control

Test
Interface
JTAG)

1-29

MPC7451 Microprocessor Features

Signal functionality is described in detail in Chapter 8, “Signal Descriptions,” and
Chapter 9, “ System Interface Operation.”

1.2.9.3.1 Clocking

For functional operation, the MPC7451 uses a single clock input signal, SYSCLK, from
which clocking is derived for the processor core, the L3 interface, and the MPX bus
interface. Additionally, internal clock information is made available at the pins to support
debug and development.

The MPC7451’s clocking structure supports awide range of processor-to-bus clock ratios.
Theinternal processor core clock is synchronized to SY SCLK with the aid of aV CO-based
PLL. The PLL_CFGJ[0:3] signals (for the MPC7447 and MPC7457, PLL_CFG[0:4]) are
used to program the internal clock rate to a multiple of SYSCLK as defined in the
MPC7451 RISC Microprocessor Hardware Specifications. The bus clock is maintained at
the same frequency as SY SCLK. SY SCLK does not need to be a 50% duty-cycle signal.

The MPC7451 generates the clock for the external L3 synchronous data RAMSs. The clock
frequency for the RAMs is divided down from (and phase-locked to) the MPC7451 core
clock frequency using a divisor selected through L3CR[L3CLK].

1.2.10 Power Management

The MPC7451 is designed for low-power operation. It provides both automatic and
program-controlled power reduction modes. If an MPC7451 functional unit is idle, it
automatically goes into a low-power mode. This mode does not affect operational
performance. Dynamic power management automatically supplies or withholds power to
execution units individually, based upon the contents of the instruction stream. The
operation of dynamic power management is transparent to software or any external
hardware.

The following three programmabl e power modes are available to the system:

* Nap—Instruction fetching is halted. Only those clocks for time base, decrementer,
and JTAG logic remain running. The MPC7451 goes into the doze state to snoop
memory operations on the bus and then back to nap using a QREQ/QACK
processor-system handshake protocal.

» Sleep—Power consumption is further reduced by disabling bus snooping, leaving
only thePLL inalocked and running state. All internal functional unitsare disabled.

* Deep deegp—Whenthe MPC7451 isin sleep mode, the system can disablethe PLL.
The system can then disable the SY SCLK source for greater system power savings.
Power-on reset procedures for restarting and relocking the PLL must be followed

upon exiting deep sleep.

1-30 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

Chapter 10, “Power and Therma Management,” describes power saving modes for the
MPC7451.

1.2.11 Thermal Management

The MPC7451 provides an instruction cache throttling mechanism to effectively reduce the
instruction execution rate without the complexity and overhead of dynamic clock control.
When used with the dynamic power management, instruction cache throttling provides the
system designer with a flexible way to control device temperature while allowing the
processor to continue operating. For thermal management, the MPC7451 provides a
supervisor-level instruction cache throttling control register (ICTC). Chapter 10, “Power
and Thermal Management,” providesinformation about how to configurethe I CTC register
for the MPC7451.

1.2.12 Performance Monitor

The MPC7451 incorporates a performance monitor facility that system designers can use
to help bring up, debug, and optimize software performance. The performance monitor
counts events during execution of instructions related to dispatch, execution, completion,
and memory accesses.

The performance monitor incorporates several registers that can be read and written to by
supervisor-level software. User-level versions of these registers provide read-only access
for user-level applications. These registers are described in Section 1.3.1, “PowerPC
Registers and Programming Model.” Performance monitor control registers, MMCRO,
MMCRL1, and MMCR2 can be used to specify which events are to be counted and the
conditions for which a performance monitoring exception is taken. Additionaly, the
sampled instruction address register, SIAR (USIAR), holds the address of the first
instruction to compl ete after the counter overflowed.

Attempting to write to a user-level read-only performance monitor register causes a
program exception, regardless of the MSR[PR] setting.

When a performance monitor exception occurs, program execution continues from vector
offset Ox00FQO.

Chapter 11, “Performance Monitor,” describes the operation of the performance monitor
diagnostic tool incorporated in the MPC7451.

MOTOROLA Chapter 1. Overview 1-31

MPC7451 Microprocessor: Architectural Implementation

1.3 MPC7451 Microprocessor: Architectural
Implementation

The PowerPC architecture consists of three layers. Adherence to the PowerPC architecture
can be described in terms of which of the following levels of the architecture is
implemented:

e PowerPC user instruction set architecture (Ul SA)—Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

» PowerPC virtual environment architecture (V EA)—Describes the memory model
for amultiprocessor environment, defines cache control instructions, and describes
other aspects of virtual environments. Implementations that conform to the VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

» PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the OEA aso adhere to the
UISA and the VEA.

The MPC7451 implementation supports the three levels of the architecture described
above. For more information about the PowerPC architecture, see PowerPC
Microprocessor Family: The Programming Environments. Specific MPC7451 features are
listed in Section 1.2, “MPC7451 Microprocessor Features.”

This section describes the PowerPC architecture in general, and specific details about the
implementation of the MPC7451 as a low-power, 32-bit device that implements this
architecture. The structure of this section follows the user's manual organization; each
subsection provides an overview of that chapter.

» Registers and programming model—Section 1.3.1, “PowerPC Registers and
Programming Model,” describes the registers for the operating environment
architecture common among processors of this family and describes the
programming model. It also describestheregistersthat are uniqueto the MPC7451.

Instruction set and addressing modes—Section 1.3.2, “Instruction Set,” describes
the PowerPC instruction set and addressing modes for the PowerPC operating
environment architecture, and defines and describes the PowerPC instructions
implemented in the MPC7451. The information in this section is described more
fully in Chapter 2, “Programming Model.”

» Cache implementation—Section 1.3.3, “On-Chip Cache Implementation,”
describes the cache model that is defined generally by the virtual environment
architecture. It also provides specific details about the MPC7451 cache
implementation. The information in this section is described more fully in
Chapter 3, “L1, L2, and L3 Cache Operation.”

1-32 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

» Exception model—Section 1.3.4, “Exception Model,” describes the exception
model of the PowerPC operating environment architecture and the differencesin the
MPC7451 exception model. Theinformation in this section is described more fully
in Chapter 4, “Exceptions.”

« Memory management—Section 1.3.5, “Memory Management,” describesgenerally
the conventions for memory management. This section also describes the
MPC7451’'s implementation of the 32-bit PowerPC memory management
specification. The information in this section is described more fully in Chapter 5,
“Memory Management.”

e Instruction timing—Section 1.3.6, “Instruction Timing,” provides a general
description of the instruction timing provided by the superscalar, parallel execution
supported by the PowerPC architecture and the MPC7451. The information in this
section is described more fully in Chapter 6, “Instruction Timing.”

« AltiVec implementation—Section 1.3.7, “AltiVec Implementation,” points out that
the MPC7451 implements AltiVec registers, instructions, and exceptions as
described in the AltiViec Technology Programming Environments Manual.

Chapter 7, “AltiVec Technology Implementation,” provides complete details.

1.3.1 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format alows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

The PowerPC architecture also defines two levels of privilege—supervisor mode of
operation (typically used by the operating system) and user mode of operation (used by the
application software). The programming modelsincorporate 32 GPRs, 32 FPRs, SPRs, and
several miscellaneous registers. The AltiVec extensions to the PowerPC architecture
augment the programming model with 32V Rs, one status and control register, and one save
and restore register. Each processor that implements the PowerPC architecture also has a
unique set of implementation-specific registers to support functionality that may not be
defined by the PowerPC architecture.

Having accessto privileged instructions, registers, and other resources allows the operating
system to control the application environment (providing virtual memory and protecting
operating-system and critical machine resources). Instructions that control the state of the
processor, the address translation mechanism, and supervisor registers can be executed
only when the processor is operating in supervisor mode.

Figure 1-7 shows al the MPC7451 registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the

MOTOROLA Chapter 1. Overview 1-33

MPC7451 Microprocessor: Architectural Implementation

instruction operands to access the register. For more information, see Chapter 2,
“Programming Model.”

1-34 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

The OEA defines numerous SPRs that serve a variety of functions, such as providing
controls, indicating status, configuring the processor, and performing special operations.
During normal execution, a program can access the registers shown in Figure 1-7,
depending on the program’s access privilege (supervisor or user, determined by the
privilege-level bit, MSR[PR]). GPRs, FPRs, and VRs are accessed through operands that
are part of the instructions. Access to registers can be explicit (that is, through the use of
specific instructions for that purpose such as Move to Special-Purpose Register (mtspr)
and Move from Specia-Purpose Register (mfspr) instructions) or implicit, as the part of
the execution of an instruction.

Figure 1-7 shows the MPC7441 and MPC7451 register set.

MOTOROLA Chapter 1. Overview 1-35

MPC7451 Microprocessor: Architectural Implementation

-
-

~

USER MODEL—VEA

Time Base Facility (For Reading)
| TBR268 [TBU | TBR269

~

General-Purpose

[TBL

Count Register
SPR9

USER MODEL—UISA

SUPERVISOR MODEL—OEA

Configuration Registers

Hardware Processor Version
Implementation Register

Registers ! SPR 287
SPR 1008

SPR 1009

Memory Management Registers

~

Machine State Register
MSR

Processor ID Register 2
SPR 1023

Registers ;
GPR Instruction BAT Data BAT Segment Registers
XER 0 Registers Regist
GPR1 J egisters SRO
SPR1 - IBATOU |SPR528 | DBATOU |SPR536 SR
Link Register : IBATOL |SPR529 DBATOL |SPR537 .
* SPRE GPR3T IBATIU |SPR530 | DBATLU |SPR538 :
Performance IBATIL |SPR531 DBATIL |SPR539 SR15
Monitor Reqgisters o IBAT2U | SPR 532 DBAT2U |SPR540 PTE High/Low
9 e ente IBAT2L |SPR533 | DBAT2L |SPR541 Registers |
Performance Counters' FPRO IBAT3U | SPR534 DBAT3U | SPR 542 PTEHI SPR 981
UPMC1 | SPR937 PR IBAT3L |SPR535 DBAT3L |SPR543 PTELO SPR 982
UPMC2 | SPR938 . . 1
UPMC3 | SPR 941 H SDR1 TLB Miss Register
° SDR1 SPR 25 TLBMISS | SPR 980
UPMC4 | SPR 942 FPR31
Eimgg ggg ggg Condition Exception Handling Registers
. Register
Sampled Instruction SPRGs Data Address Save and Restore
AddIPeSS1 SPRGO |SPR272 Register Registers
USIAR | SPR939 Floating-Point SPRG1 | SPR273 DAR SPR19 SRRO SPR 26
Monitor Control' Status and SPRG2 |SPR274 DSISR SRR1 SPR 27
UMMCRO | SPR 936 Control Register SPRG3 |SPR275 | DSISR | SPR18
UMMCRL1 | SPR 940 [FPSCR]
UMMCR?2 | SPR 928 Cache / Memory Subsystem Registers 1
AltiVec Registers Load/Store ; Instruction Cache/) In.n3 PrivateR torS
Vector Save/Restore Vector Registers 3 Control Register Interrupt Control Register emory Register
Register VR% LDSTCR _|SPR1016 | |CTRL |SPR 1011 L3PM__ |SPR 983
VRSAVE _ | SPR 256 VR1 “sﬂteft"Ofg Siibslysfe("' . L3 Cache Control Register J
Vector Status and . atus Control Registers © L2 Cache
Control Register 3 : MSSCRO | SPR1014 Control Register ! [LR JsPriois
VSCR VR31 | MSSSRO | SPR1015 | L2CR | SPR1017 L3 Cache InputTiming
kk // Control Registers &
L3ITCRO | SPR 984
Thermal Management Register Performance Monitor Registers
Instruction 930h91 Throttling Performance Counters2 Monitor Control Breakpoint Address
Control Register PMC1 | SPR953 Registers Mask Register !
1cTC SPR 1019 PMC2 SPR 954 [MMCRO2 |SPR 952 BAMR SPR 951
o PMC3 | SPR 957 MMCR1 2 |SPR956 Sampled Instruction
1 MPCZ]441/ MPC7451P-15pt.aC|I|;: reglstehr mPay no::%e sugported ﬁmgg ggg :ig MMCR2 T |SPR944 Address Register 4
on other processors that implement the PowerPC architecture.
2 Register defined as optional in the PowerPC architecture. PMC6 | SPR946 SIAR | SPR 955
3 Register defined by the AltiVec technology.))
4.2CR2 is not implemented on the MPC7451. Miscellaneous Registers Data Add
5 MPC7451-specific only register, not supported on the Time Base Instruction Address B:e:kpoir:ﬁlse gister 2
MPC7441 (For Writing) Breakpoint Register!
6 MPC7451-specific only register \ TBL | SPR 284 [1ABR] SPR1010 DABR SPR1013
| TBU |SPR285 Decrementer Ext.erngll Access
sPRoz flegister
\ [sRa /
1-36 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

Figure 1-7. Programming Model—MPC7441/MPC7451 Microprocessor Registers

Figure 1-8 shows the MPC7445, MPC7455, MPC7447, and MPC7457 register set.

MOTOROLA Chapter 1. Overview 1-37

MPC7451 Microprocessor: Architectural Implementation

/ SUPERVISOR MODEL—OEA N\
Configuration Registers
/ USER MODEL—UISA \ Hardware Processor Version Machine State Register
Time Base Facility (For Reading) :;npl_e;nentlaltlon Register [MSR]
[7BL |TBR268[TBU |TBR 269 SPR 1008 SPR 287 processor ID Register 2
e USER MODEL—UISA ™\ HIDL | SPR 1009 SPR 1023
Count Register General-Purpose . Memory Management Registers i
SPR 9 Registers Instr_uctlon BAT Date_1 BAT Segment Registers
XER GPRO Registers Registers SRO
SPR 1 GPR1 IBATOU |SPR 528 DBATOU | SPR 536 SR1
- - . IBATOL |SPR 529 DBATOL |SPR 537 -
rSPR . : IBATIU |SPR530 | DBATIU |SPR 538 :
LR . GPR3L IBATIL |SPR531 | DBATIL |SPR 539 SR15
Performance Monitor
Registers Floating-Point IBAT2U | SPR 532 DBAT2U |SPR540 PTE High/Low
erformance Counters? Rgg}s'?gr's oin IBAT2L | SPR 533 DBAT2L |SPR541 Registers !
UPMC1 | SPR 937 FPRO IBAT3U | SPR 534 DBAT3U | SPR 542 PTEHI SPR 981
UPMC2 | SPR 938 IBAT3L |SPR 535 DBAT3L |SPR 543 PTELO |SPR 982
UPMC3 | SPR 941 FPR1 [BATAUT |SPR560 | DBATAUT |SPR568 oo\ "o o g
UPMCa | SPR 942 : IBATALT |SPR561 | DBATALL | SPR 569 155 Register
UPMC5 | SPR 929 oral IBATSU! |SPR562 | DBATSUL |spr570 | TLBMISS |SPR 980
UPMCE | SPR 930 IBATEL® |SPR563 | DBATSLL |SPR571 SDR1
. Condition IBAT6U I | SPR 564 DBAT6U ! | SPR 572 SDR1 SPR 25
Fampled, instruction Register IBAT6L L |SPR565 | DBATGL! | SPR 573
USIAR | SPR 939 [crR] IBAT7UT |SPR566 | DBAT7U L | SR 574 Cache/Memory
T T Subsystem Registers
Monitor Controlt Floating-Point IBAT7L ° |SPR567 | DBAT7L |SPR 575
Status and Exception Handling Registers Memory Subsystem
UMMCRO | SPR 936 | Regi Status Control Registers 1
UMMCR1 | SPR 940 Control Register SPRGs Data Address
Regist MSSCRO | SPR 1014
UMMCR2 | SPR 928 [FPSCR_| SPRGO |SPR272 Register VSSSRO | SPR 1015
SPRGL |SPR 273 SPR19 | eore
AltiVec Redisters SPRG2 |SPR 274 DSISR Control Register *
i i
9 SPRG3_|SPR 275 DSISR_|SPR18 [pSTCR |SPR 1016
Vector Save/Restore Vector Registers 3 SPRG4 - |SPR276 SaveandRestore | . . "
Register VR SPRG51 |SPR 277 Registers _ 1
9 0 . Interrupt Control Register
VRSAVE | SPR 256 VR1 SPRG6 ! |SPR 278 SRRO _[SPR 26 ICTRL]SPR 1011
Vector Status an : SPRG7! |SPR 279 SRR1 _|SPR27 = o
Control Register : Performance Monitor Registers Control Register?
VSCR VR31 Performance Counters 2 Breakpoint Address L2CR SPR 1017
PMC1 |SPR953 Mask Registert L3 Private Memory
kk // PMC2 |SPR 954 BAMR] SPR 951Address Register *
PMC3 |SPR 957 Monitor Control L3PM |SPR 983
Thermal Management Register PMC4 |SPR 958 Registers L3 Cache
Instruction Cache Throttling PMC5 _|SPR945 [MMCR02 | SPR952 Control Register 4
Control Register ! PMC6 |SPR946 | MMCR12 | SPR 956 L3CR |SPR 1018
cTc | SPR 1019 Sampled Instruction MMCR2! | SPR 944 L3 Cache Input Timing
Address Reg|ster 2 Control Registers
1 MPC7445-, MPC7447-, MPC7455-, and MPC7457-specific [SIAR | SPR 955 L3 Cache output Hold 1
register may not be supported on other processors that Control Register ° L3ITCRO 5 SPR 984
implement the PowerPC architecture. [L30HCR | SPR 1000 L3ITCR1° | SPR 1001
2 Register defined as optional in the PowerPC architecture. L3ITCR2® | SPR 1002
3 Register defined by the AltiVec technology. Miscellaneous Registers L3ITCR3® | SPR 1003
4 " .
MPC7455- and MPC7457-specific register, not supported on Time Base Instruction Address Data Address
S‘he MPC7445 and MPC7447 (For Writing) Breakpoint Register 1 Breakpoint Register 2
> MPC7457-specific register, not supported on the MPC7441, - SPR 284 IABR SPR 1010 DABR SPR 1013
MPC7445, MPC7447, MPC7451, and MPC7455 SPR 285 Decrementer External Access Register 2

_

[DEC |sPr22 [EAR JSsPR282

Figure 1-8. Programming Model—MPC7445, MPC7447, MPC7455, and MPC7457

1-38

Microprocessor Registers

MPC7450 RISC Microprocessor Family User’s Manual

MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

Some registers can be accessed both explicitly and implicitly. In the MPC7451, al SPRs
are 32 hitswide. Table 1-1 describes registers implemented by the MPC7451.

Table 1-1. Register Summary for MPC7451

Name SPR Description Refere'nce !
Section
UISA Registers
CR — Condition register. The 32-bit CR consists of eight 4-bit fields, PEM
CRO-CRY7, that reflect results of certain arithmetic operations and
provide a mechanism for testing and branching.
CTR 9 Count register. Holds a loop count that can be decremented PEM
during execution of appropriately coded branch instructions. The
CTR can also provide the branch target address for the Branch
Conditional to Count Register (bcctrx) instruction.
FPRO- — Floating-point registers (FPRn). The 32 FPRs serve as the data PEM
FPR31 source or destination for all floating-point instructions.

FPSCR — Floating-point status and control register. Contains floating-point PEM
exception signal bits, exception summary bits, exception enable
bits, and rounding control bits for compliance with the IEEE 754
standard.

GPRO- — General-purpose registers (GPRn). The thirty-two GPRs serve as PEM

GPR31 data source or destination registers for integer instructions and
provide data for generating addresses.

LR 8 Link register. Provides the branch target address for the Branch PEM
Conditional to Link Register (bclrx) instruction, and can be used
to hold the logical address of the instruction that follows a branch
and link instruction, typically used for linking to subroutines.
UMMCRO? 936, User monitor mode control registers (UMMCRnN). Used to enable 2159&
UMMCR1 1 940, various performance monitor exception functions. UMMCRSs 11.3.2.1,
UMMCR2 1 928 provide user-level read access to MMCR registers. 21594 &
11.3.3.1,
21596 &
11.3.4.1
UPMC1- 937,938 | User performance monitor counter registers (UPMCn). Used to 2.1.5.9.9,
UPMC6 1 941,942 |record the number of times a certain event has occurred. UPMCs 11.36.1
929, 930 |provide user-level read access to PMC registers.

USIAR ! 939 User sampled instruction address register. Contains the effective 2.1.5.9.11,
address of an instruction executing at or around the time that the 11.3.7.1
processor signals the performance monitor exception condition.

USIAR provides user-level read access to the SIAR.

VRO-VR31 2 — Vector registers (VRn). Data source and destination registers for 7.11.4
all AltiVec instructions.

VRSAVE 2 256 Vector save/restore register. Defined by the AltiVec technology to 7.1.15

assist application and operating system software in saving and
restoring the architectural state across process context-switched
events. The register is maintained only by software to track live or
dead information on each AltiVec register.

MOTOROLA Chapter 1. Overview 1-39

MPC7451 Microprocessor: Architectural Implementation

Table 1-1. Register Summary for MPC7451 (continued)

Name

SPR

Description

Reference /
Section

VSCR 2

Vector status and control register. A 32-bit vector register that is
read and written in a manner similar to the FPSCR.

7.1.1.4

XER

Indicates overflows and carries for integer operations.
Implementation Note—To emulate the POWER architecture
Iscbx instruction, XER[16-23] are be read with mfspr[XER] and
written with mtspr[XER].

PEM

VEA

TBL,
TBU
(For Reading)

TBR 268,
TBR 269

Time base facility. Consists of two 32-bit registers, time base
lower and upper registers (TBL/TBU). TBL (TBR 268) and TBU
(TBR 269) can only be read from and not written to.TBU and TBL
can be read with the move from time base register (mftb)
instruction.

Implementation Note—Reading from SPR 284 or 285 using the
mftb instruction causes an illegal instruction exception.

PEM
2141
2351

OEA

BAMR 1. 3

951

Breakpoint address mask register. Used in conjunction with the
events that monitor IABR hits.

21597,
11.35

DABR 4 °

1013

Data address breakpoint register. Optional register implemented
in the MPC7451 and is used to cause a breakpoint exception if a
specified data address is encountered.

PEM

DAR

19

Data address register. After a DSI or alignment exception, DAR is
set to the effective address (EA) generated by the faulting
instruction.

PEM

DEC

22

Decrementer register. A 32-bit decrementer counter used with
the decrementer exception.

Implementation Note—In the MPC7451, DEC is decremented
and the time base increments at 1/4 of the system bus clock
frequency.

PEM

DSISR

18

DSl source register. Defines the cause of DSI and alignment
exceptions.

PEM

EARG 7

282

External access register. Used with eciwx and ecowx. Note that
the EAR and the eciwx and ecowx instructions are optional in the
PowerPC architecture.

PEM

HIDO L. 7
HID1 L 8

1008, 1009

Hardware implementation-dependent registers. Control various
functions, such as the power management features, and locking,
enabling, and invalidating the instruction and data caches. The
HID1 includes bits that reflects the state of PLL_CFGJ0:3] (for the
MPC7447 and MPC7457, PLL_CFGJ[0:4]) clock signals and
control other bus-related functions.

2151,
2152

IABR L. 9

1010

Instruction address breakpoint register. Used to cause a
breakpoint exception if a specified instruction address is
encountered.

2156

1-40

MPC7450 RISC Microprocessor Family User’s Manual

MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

Table 1-1. Register Summary for MPC7451 (continued)

Name SPR Description Refere_nce !
Section
IBATOU/L 10 528,529 |Block-address translation (BAT) registers. The PowerPC OEA PEM,
IBAT1U/L 10 530, 531 |includes an array of block address translation registers that can 5.1.3
IBAT2U/L 10 532,533 | be used to specify four blocks of instruction space and four blocks
IBAT3U/L 10 534, 535 | of data space. The BAT registers are implemented in pairs: four

IBAT4U/L 10.11 | 560,561 | pairs of instruction BATs (IBATOU-IBAT3U and IBATOL—IBAT3L)

IBAT5U/L 10.11 | 562 563 |and four pairs of data BATs (DBATOU-DBAT3U and

IBAT6U/L 10.11 | 564, 565 |DBATOL-DBAT3L).

IBAT7U/L 10.11 | 566,567 | Sixteen additional BAT registers have been added for the

MPC7455. These registers are enabled by setting

DBATOU/L 12 536, 537 | HIDO[HIGH_BAT_EN]. When HIDO[HIGH_BAT_EN] = 1, the 16

DBAT1U/L 12 538, 539 |additional BAT registers, organized as four pairs of instruction

DBAT2U/L 12 540,541 |BAT registers(IBAT4U-IBAT7U paired with IBATAL—IBAT7L) and

DBAT3U/L 12 542,543 |four pairs of data BAT registers (DBAT4U-DBAT7U paired with

DBAT4U/L 11.12 | 568,569, | DBAT4L-DBAT7L) are available. Thus, the MPC7455 can define
DBAT5U/L 11.12 | 570,571 |atotal of 16 blocks implemented as 32 BAT registers.
DBAT6U/L 11.12 | 572 573 |Because BAT upper and lower words are loaded separately,
DBAT7U/L 1112 | 574 575 |software must ensure that BAT translations are correct during the
time that both BAT entries are being loaded.
The MPC7451 implements IBAT[G]; however, attempting to
execute code from an IBAT area with G = 1 causes an ISI|
exception.

IcTC ! 1019 Instruction cache throttling control register. Has bits for enabling 2.1.5.38,
instruction cache throttling and for controlling the interval at which 10.3
instructions are fetched. This controls overall junction
temperature.

ICTRL L7 1011 Instruction cache and interrupt control register. Used in 2.155.8
configuring interrupts and error reporting for the instruction and
data caches.

L2CR 1 1017 L2 cache control register. Includes bits for enabling parity 21551
checking, setting the L2 cache size, and flushing and invalidating
the L2 cache.

L3CR 13 1018 | L3 cache control register. Includes bits for enabling parity 21552
checking, setting the L3-to-processor clock ratio, and identifying
the type of RAM used for the L3 cache implementation.

L3ITCRO 13 984 L3 cache input timing control register. Includes bits for controlling 21554
L3ITCR1 14 1001 the input AC timing of the L3 cache interface. 21555
L3ITCR2 14 1002 21556
L3ITCR3 1003 21557
L30HCR 14 1000 L3 cache output hold control register. Includes bits for controlling 2.1553
the output AC timing of the L3 cache interface of the MPC7457.
L3PM 13. 15 983 The L3 private memory register. Configures the base address of 2.1.5.5.10
the range of addresses that the L3 uses as private memory (not
cache).

LDSTCR 1. 16 1016 Load/store control register. Controls data L1 cache way-locking. 2.1.55.9
MMCRO 4, 952, Monitor mode control registers (MMCRn). Enable various 2.1.5.9.1,11.3.2
MMCR1 4, 956, performance monitor exception functions. UMMCRO-UMMCR2 | 2.1.5.9.3, 11.3.3
MMCR2 1 944 provide user-level read access to these registers. 2.1595,11.34

MOTOROLA Chapter 1. Overview 1-41

MPC7451 Microprocessor: Architectural Implementation

Table 1-1. Register Summary for MPC7451 (continued)

Name SPR Description Refere_nce !
Section
MSR 7 — Machine state register. Defines the processor state. The MSR PEM,
can be modified by the mtmsr, sc, and rfi instructions. It can be 2.1.3.3,
read by the mfmsr instruction. When an exception is taken, MSR 4.3
contents are saved to SRR1. See Section 4.2, “MPC7451
Exception Recognition and Priorities.” The following bits are
optional in the PowerPC architecture.
Note that setting MSR[EE] masks decrementer and external
interrupt exceptions and MPC7451-specific system
management, and performance monitor exceptions.
Bit | Name | Description
6 |VEC |[AltiVec available. MPC7451 and AltiVec
technology specific; optional to the PowerPC
architecture.
0 AltiVec technology is disabled.
1 AltiVec technology is enabled.
Note: When a non-stream AltiVec instruction
accesses VRs or the VSCR when VEC = 0 an
AltiVec unavailable exception is generated. This
does not occur for data streaming instructions
(dst(t), dstst(t), and dss); the VRs and the
VSCR are available to data streaming
instructions even if VEC = 0. VRSAVE can be
accessed even if VEC =0.
13 |POW | Power management enable. MPC7451-specific
and optional to the PowerPC architecture.
0 Power management is disabled.
1 Power management is enabled. The
processor can enter a power-saving mode
determined by HIDO[NAP,SLEEP] when
additional conditions are met. See Table 2-6.
29 |PMM | Performance monitor marked mode.
MPC7451-specific and optional to the PowerPC
architecture. See Chapter 11, “Performance
Monitor.”
0 Process is not a marked process.
1 Process is a marked process.
MSSCRO 1 17 1014 Memory subsystem control register. Used to configure and 2.1.5.3
operate many aspects of the memory subsystem.
MSSSRO 1 1015 Memory subsystem status register. Used to configure and 2154
operate the parity functions in the L2 and L3 caches for the
MPC7451.
PIR 1023 Processor identification register. Provided for system use. PEM
MPC7451 does not change PIR contents.
PMC1- 953, 954 | Performance monitor counter registers (PMCn). Used to record 2.1.5.9.8,
PMC6 4 957,958 | the number of times a certain event has occurred. UPMCs 11.3.6
945, 946 | provide user-level read access to these registers.
1-42 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

Table 1-1. Register Summary for MPC7451 (continued)

Name

SPR

Description

Reference /
Section

PTEHI,
PTELO

981,
982

The PTEHI and PTELO registers are used by the tibld and tlbli
instructions to create a TLB entry. When software table searching
is enabled (HIDO[STEN] = 1), and a TLB miss exception occurs,
the bits of the page table entry (PTE) for this access are located
by software and saved in the PTE registers.

2.15.7.2,
55.5.1.2

PVR

287

Processor version register. Read-only register that identifies the
version (model) and revision level of the processor.

PEM,
2141

SDAR,
USDAR

Sampled data address register. The MPC7451 does not
implement the optional registers (SDAR or the user-level,
read-only USDAR register) defined by the PowerPC architecture.
Note that in previous processors the SDA and USDA registers
could be written to by boot code without causing an exception,
this is not the case in the MPC7451. A mtspr or mfspr SDAR or
USDAR instruction causes a program exception.

2.15.9.12

SDR1 18

25

Sample data register. Specifies the base address of the page
table entry group (PTEG) address used in virtual-to-physical
address translation.

Implementation Note—The SDR1 register has been modified
(with the SDR1[HTABEXT] and SDR1[HTMEXT] fields) for the
MPC7451 to support the extended 36-bit physical address (when
HIDO[XAEN] = 1]).

PEM,
2.1.3.5,
551

SIAR 4

955

Sampled instruction address register. Contains the effective
address of an instruction executing at or around the time that the
processor signals the performance monitor exception condition.
USIAR provides user-level read access to the SIAR.

2.159.11
11.3.7

SPRGO—
SPRG3
SPRG4—
SPRG7 11

272-275

276-279

SPRGn. Provided for operating system use.

The SPRG4-7 provide additional registers to be used by system
software for software table searching.

PEM,

555.1.3

SRO-

SR1519

Segment registers (SRn). Note that the MPC7451 implements
separate instruction and data MMUSs. It associates
architecture-defined SRs with the data MMU. It reflects SRs
values in separate, shadow SRs in the instruction MMU.

PEM

SRRO,
SRR1

26,
27

Machine status save/restore registers (SRRn). Used to save the
address of the instruction at which execution continues when rfi
executes at the end of an exception handler routine. SRR1 is
used to save machine status on exceptions and to restore
machine status when rfi executes.

Implementation Note—When a machine check exception
occurs, the MPC7451 sets one or more error bits in SRR1. Refer
to the individual exceptions for individual SRR1 bit settings.

PEM,
2134
4.3

MOTOROLA

Chapter 1. Overview

1-43

MPC7451 Microprocessor: Architectural Implementation

Table 1-1. Register Summary for MPC7451 (continued)

Name SPR Description Refere_nce !
Section

TBL, 284, Time base. A 64-bit structure (two 32-bit registers) that maintains PEM

TBU 285 the time of day and operating interval timers. The TB consists of 2141

(For Writing) two registers—time base upper (TBU) and time base lower (TBL). 2347
The time base registers can be written to only by supervisor-level
software.

TBL (SPR 284) and TBU (SPR 285) can only be written to and not
read from. TBL and TBU can be written to, with the move to
special purpose register (mtspr) instruction.

Implementation Note—Reading from SPR 284 or 285 causes
an illegal instruction exception.

TLBMISS ! 980 The TLBMISS register is automatically loaded when software 21571
searching is enabled (HIDO[STEN] = 1) and a TLB miss exception 5551.1
occurs. Its contents are used by the TLB miss exception handlers
(the software table search routines) to start the search process.

1 MPC7441-, MPC7445-, MPC7451-, MPC7455-specific register may not be supported on other processors that
implement the PowerPC architecture.

2 Register is defined by the AltiVec technology.

3 A context synchronizing instruction must follow the mtspr.

4 Defined as optional register in the PowerPC architecture.

5 Adssall and sync must precede the mtspr and then a sync and a context synchronizing instruction must follow. Note
that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the register.

6 A dssall and sync must precede the mtspr and then a sync and a context synchronizing instruction must follow. Note
that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
register.

7 For specific synchronization requirements on the register see Table 2-32.

8 A sync and context synchronizing instruction must follow a mtspr.

9 A context synchronizing instruction must follow a mtspr.

10 A context synchronizing instruction must follow a mtspr.

11 MPC7445- and MPC7455-specific register.

12 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow.Note that
if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
register.

13 MPC7451- and MPC7455-specific, not supported on the MPC7441 and MPC7445

14 MPC7457-specific, not supported on the MPC7441, MPC7445, MPC7447, MPC7451, and MPC7455

15 A sync must precede a mtspr instruction and then a sync and context synchronizing instruction must follow. Note
that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the register.

16 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow.Note that
if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
register.

17 A dssall and sync must precede a mtspr instruction and then a sync and context synchronizing instruction must
follow. Note that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to
accessing the register.

18 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow. Note that
if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
register.

1-44 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

19 A dssall and sync must precede a mtsr or mtsrin instruction and then a sync and context synchronizing instruction
must follow. Note that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary
prior to accessing the register.

1.3.2 Instruction Set

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly
simplifies instruction pipelining.

For more information, see Chapter 2, “Programming Model.”

1.3.2.1 PowerPC Instruction Set

The PowerPC instructions are divided into the following categories:
* Integer instructions—These include computational and logical instructions.
— Integer arithmetic instructions
— Integer compare instructions
— Integer logical instructions
— Integer rotate and shift instructions

* Foating-point instructions—These include floating-point computational
instructions, as well asinstructions that affect the FPSCR.

— Floating-point arithmetic instructions

— Floating-point multiply/add instructions

— Floating-point rounding and conversion instructions
— Floating-point compare instructions

— Floating-point status and control instructions

» Loadand storeinstructions—Theseincludeinteger and floating-point load and store
instructions.

— Integer load and store instructions
— Integer load and store multiple instructions
— Floating-point load and store

— Primitives used to construct atomic memory operations (Iwar x and stwcx.
instructions)

¢ Flow control instructions—T hese include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions

MOTOROLA Chapter 1. Overview 1-45

MPC7451 Microprocessor: Architectural Implementation

— Condition register logical instructions

» Processor control instructions—These instructions are used for synchronizing
memory accesses and management of caches, TLBs, and the segment registers.

— Moveto/from SPR instructions
— Moveto/from MSR

— Synchronize

— Instruction synchronize

— Order loads and stores

« Memory control instructions—These instructions provide control of caches, TLBs,
and SRs.

— Supervisor-level cache management instructions

— User-level cache instructions

— Segment register manipulation instructions

— Trand ation lookaside buffer management instructions

This grouping does not indicate the execution unit that executes a particular instruction or
group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and
stores between memory and a set of 32 GPRs. It also provides for word and double-word
operand loads and stores between memory and a set of 32 floating-point registers (FPRs).

Computationa instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
distinct instructions.

Processors that implement the PowerPC architecture follow the program flow when they
are in the normal execution state. However, the flow of instructions can be interrupted
directly by the execution of an instruction or by an asynchronous event. Either kind of
exception may cause one of several components of the system software to be invoked.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O isignored in 32-bit implementations.

1.3.2.2 AltiVec Instruction Set

TheAltiVec instructions are divided into the following categories:

1-46 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

Vector integer arithmetic instructions—These include arithmetic, logical, compare,
rotate, and shift instructions.

Vector floating-point arithmetic instructions—These include floating-point
arithmetic instructions, as well as a discussion on floating-point modes.

Vector load and store instructions—These include load and store instructions for
vector registers. TheAltiVec technology defines LRU and transient typeinstructions
that can be used to optimize memory accesses.

— LRU instructions. The AltiVec architecture specifies that the Ivxl and stvxI
instructions differ from other AltiVec load and store instructions in that they
leave cache entriesin aleast-recently-used (LRU) state instead of a
most-recently-used state.

— Transient instructions. The AltiVec architecture describes a difference between
static and transient memory accesses. A static memory access should have some
reasonable degree of locality and be referenced several times or reused over
some reasonably long period of time. A transient memory reference has poor
locality and islikely to bereferenced avery few timesor over avery short period
of time.

The following instructions are interpreted to be transient:
— dstt and dststt (transient forms of the two data stream touch instructions)
— lvxl and stvxl

Vector permutation and formatting instructions—These include pack, unpack,
merge, splat, permute, select, and shift instructions, described in Section 2.5.5,
“Vector Permutation and Formatting Instructions.”

Processor control instructions—These instructions are used to read and write from
the AltiVec Status and Control Register., described in Section 2.3.4.6, “Processor
Control Instructions—UISA"

Memory control instructions—These instructions are used for managing of caches
(user level and supervisor level), described in Section 2.3.5.3, “Memory Control
Instructions—VEA.”

1.3.2.3 MPC7451 Microprocessor Instruction Set
The MPC7451 instruction set is defined as follows:

The MPC7451 provides hardware support for al 32-bit PowerPC instructions.

The MPC7451 implements the following instructions optional to the PowerPC
architecture:

— External Control In Word Indexed (eciwx)
— Externa Control Out Word Indexed (ecowx)
— Data Cache Block Allocate (dcba)

MOTOROLA Chapter 1. Overview 1-47

MPC7451 Microprocessor: Architectural Implementation

— Floating Select (fsel)

— Floating Reciprocal Estimate Single-Precision (fres)
— Floating Reciprocal Square Root Estimate (frsgrte)
— Store Floating-Point as Integer Word (stfiwx)

— Load Data TLB Entry (tlbld)

— Load Instruction TLB Entry (tlbli)

1.3.3 On-Chip Cache Implementation

The following subsections describe the PowerPC architecture’s treatment of cache in
general, and the MPC7451-specific implementation, respectively. A detailed description of
the MPC7451 cache implementation is provided in Chapter 3, “L1, L2, and L3 Cache
Operation.”

1.3.3.1 PowerPC Cache Model

The PowerPC architecture does not define hardware aspects of cache implementations. For
example, processors that implement the PowerPC architecture can have unified caches,
separate L1 instruction and data caches (Harvard architecture), or no cache at all. These
microprocessors control the following memory access modes on a page or block basis:

¢ Write-back/write-through mode
» Caching-inhibited/caching-allowed mode
« Memory coherency required/memory coherency not required mode

The caches are physically addressed, and the data cache can operate in either write-back or
write-through mode as specified by the PowerPC architecture.

The PowerPC architecture defines the term ‘ cache block’ as the cacheable unit. The VEA
and OEA define cache management instructions a programmer can use to affect cache
contents.

1.3.3.2 MPC7451 Microprocessor Cache Implementation

The MPC7451 cache implementation is described in Section 1.2.4, “On-Chip L1
Instruction and Data Caches” Section1.2.5, “L2 Cache Implementation,” and
Section 1.2.6, “L 3 Cache Implementation.” The BPU also contains a 128-entry BTIC that
provides immediate access to cached target instructions. For more information, see
Section 1.2.2.2, “Branch Processing Unit (BPU).”

1-48 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

1.3.4 Exception Model

The following sections describe the PowerPC exception model and the MPC7451
implementation. A detailed description of the MPC7451 exception model is provided in
Chapter 4, “ Exceptions.”

1.3.4.1 PowerPC Exception Model

The OEA portion of the PowerPC architecture defines the mechanism by which processors
that implement the PowerPC architecture invoke exceptions. Exception conditions may be
defined at other levels of the architecture. For example, the UISA defines conditions that
may cause floating-point exceptions; the OEA defines the mechanism by which the
exception istaken.

The PowerPC exception mechanism allows the processor to change to supervisor state asa
result of unusual conditions arising in the execution of instructions and from externa
signals, bus errors, or various internal conditions. When exceptions occur, information
about the state of the processor is saved to certain registers and the processor begins
execution at an address (exception vector) predetermined for each exception. Processing of
exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often amore
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Also, software can explicitly enable or disable some exception conditions.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an
instruction-caused exception is recognized, any unexecuted instructions that appear earlier
in the instruction stream, including any that have not yet entered the execute state, are
required to complete before the exception is taken. In addition, if a single instruction
encounters multiple exception conditions, those exceptions are taken and handled
sequentially. Likewise, exceptions that are asynchronous and precise are recognized when
they occur, but are not handled until al instructions currently in the execute stage
successfully complete execution and report their resuilts.

To prevent loss of state information, exception handlers must save the information stored
in the machine status savelrestore registers, SRRO and SRR1, soon after the exception is
taken to prevent this information from being lost due to another exception event. Because
exceptions can occur while an exception handler routine is executing, multiple exceptions
can become nested. It is the exception handler’s responsibility to save the necessary state
information if control isto return to the excepting program.

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the

MOTOROLA Chapter 1. Overview 1-49

MPC7451 Microprocessor: Architectural Implementation

next exception condition is encountered. Recognizing and handling exception conditions
sequentially guarantees that the machine state is recoverable and processing can resume
without losing instruction results.

The following terms are used to describe the stages of exception processing: recognition,
taken, and handling.

» Recognition—Exception recognition occurs when the condition that can cause an
exception isidentified by the processor.

e Taken—An exception is said to be taken when control of instruction execution is
passed to the exception handler; that is, the context is saved and theinstruction at the
appropriate vector offset is fetched and the exception handler routine begins
executing in supervisor mode.

» Handling—Exception handling is performed by the software at the appropriate
vector offset. Exception handling is begun in supervisor mode.

The term ‘interrupt’ is used to describe the external interrupt, the system management
interrupt, and sometimes the asynchronous exceptions. Note that the PowerPC architecture
uses the word ‘ exception’ to refer to | EEE-defined floating-point exception conditions that
may cause a program exception to be taken; see Section 4.6.7, “Program Exception
(0x00700).” The occurrence of these |EEE exceptions may or may not cause an exception
to be taken. |EEE-defined exceptions are referred to as | EEE floating-point exceptions or
floating-point exceptions.

1.3.4.2 MPC7451 Microprocessor Exceptions

As specified by the PowerPC architecture, exceptions can be either precise or impreciseand
either synchronous or asynchronous. Asynchronous exceptions are caused by events
external to the processor’s execution; synchronous exceptions are caused by instructions.

The types of exceptions are shown in Table 1-2. Note that all exceptions except for the
performance monitor, AltiVec unavailable, instruction address breakpoint, system
management, AltiVec assist, and the three software table search exceptions are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual .

Table 1-2. MPC7451 Microprocessor Exception Classifications

Synchronous/Asynchronous | Precise/lmprecise Exception Types
Asynchronous, nonmaskable Imprecise System reset, machine check
Asynchronous, maskable Precise External interrupt, system management interrupt,

decrementer exception, performance monitor exception

Synchronous Precise Instruction-caused exceptions

The exception classifications are discussed in greater detail in Section 4.2, “MPC7451
Exception Recognition and Priorities” For a better understanding of how the MPC7451

1-50 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

implements precise exceptions, see Chapter 6, “Instruction Timing.” Table 1-3 lists the
exceptions implemented in the MPC7451, and conditions that cause them. Table 1-3 aso
notes the M PC7451-specific exceptions.

The three software table search exceptions support software page table searching and are
enabled by setting HIDO[STEN]. See Section 4.6.15, “TLB Miss Exceptions,” and

Chapter 5, “Memory Management.”

Table 1-3. Exceptions and Conditions

Exception Type | Vector Offset Causing Conditions
Reserved 0x00000 —
System reset 0x00100 Assertion of either HRESET or SRESET or at power-on reset
Machine check 0x00200 Assertion of TEA during a data bus transaction, assertion of MCP, an address
bus parity error on MPX bus, a data bus parity error on MPXbus, an L1
instruction cache error, and L1 data cache error, a memory subsystem detected
error including the following:
* L2 data parity error
¢ L2 cache tag parity error
* L3 SRAM error
* L3 tag parity errors.
MSR[ME] must be set.
DSl 0x00300 As specified in the PowerPC architecture. Also includes the following:
« A hardware table search due to a TLB miss on load, store, or cache
operations results in a page fault.
« Any load or store to a direct-store segment (SR[T] = 1).
« Alwarx or stwcx. instruction to memory with cache-inhibited or
write-through memory/cache access attributes.
ISI 0x00400 As specified in the PowerPC architecture
External 0x00500 MSRI[EE] = 1 and INT is asserted
interrupt
Alignment 0x00600 « A floating-point load/store, stmw, stwcx., Imw, lwarx, eciwx, or ecowx
instruction operand is not word-aligned.
« A multiple/string load/store operation is attempted in little-endian mode
« An operand of a dcbz instruction is on a page that is write-through or
cache-inhibited for a virtual mode access.
« An attempt to execute a dcbz instruction occurs when the cache is disabled
or locked.
Program 0x00700 As specified in the PowerPC architecture
Floating-point 0x00800 As specified in the PowerPC architecture
unavailable
Decrementer 0x00900 As defined by the PowerPC architecture, when the msb of the DEC register
changes from 0 to 1 and MSR[EE] = 1.
Reserved 0xO00A00-00BFF | —
System call 0x00C00 Execution of the System Call (sc) instruction
Trace 0x00D00 MSR[SE] =1 or a branch instruction is completing and MSR[BE] =1. The
MPC7451 operates as specified in the OEA by taking this exception on an
isync.
MOTOROLA Chapter 1. Overview 1-51

MPC7451 Microprocessor: Architectural Implementation

Table 1-3.

Exceptions and Conditions (continued)

Exception Type

Vector Offset

Causing Conditions

Reserved 0x00EO0 The MPC7451 does not generate an exception to this vector. Other processors
that implement the PowerPC architecture may use this vector for floating-point
assist exceptions.

Reserved 0xO0E10-00EFF | —

Performance 0x00F00 The limit specified in PMCn is met and MMCRO[ENINT] = 1
monitor (MPC7451-specific)

AltiVec 0x00F20 Occurs due to an attempt to execute any non-streaming AltiVec instruction
unavailable when MSR[VEC] = 0. This exception is not taken for data streaming instructions
(dstx, dss, or dssall). (MPC7451-specific)

ITLB miss 0x01000 An instruction translation miss exception is caused when HIDO[STEN] = 1 and
the effective address for an instruction fetch cannot be translated by the ITLB
(MPC7451-specific).

DTLB 0x01100 A data load translation miss exception is caused when HIDO[STEN] = 1 and the
miss-on-load effective address for a data load operation cannot be translated by the DTLB
(MPC7451-specific).
DTLB 0x01200 A data store translation miss exception is caused when HIDO[STEN] = 1 and
miss-on-store the effective address for a data store operation cannot be translated by the
DTLB, or when a DTLB hit occurs, and the changed bit in the PTE must be set
due to a data store operation (MPC7451-specific).

Instruction 0x01300 IABR[0-29] matches EA[0-29] of the next instruction to complete and

address IABR[BE] = 1 (MPC7451-specific).

breakpoint

System 0x01400 MSR[EE] = 1 and SMI is asserted (MPC7451-specific).
management

interrupt

Reserved 0x01500-015FF | —

AltiVec assist

0x01600

This MPC7451-specific exception supports denormalization detection in Java
mode as specified in the AltiVec Technology Programming Environments
Manual.

Reserved

0x01700-02FFF

1.3.5 Memory Management

The following subsections describe the memory management features of the PowerPC
architecture, and the MPC7451 implementation, respectively.

1.3.5.1 PowerPC Memory Management Model

The primary function of the MMU in aprocessor that implement the PowerPC architecture
is the trandation of logical (effective) addresses to physical addresses (referred to as red
addresses in the architecture specification) for memory accesses and /O accesses (1/0
accesses are assumed to be memory-mapped). In addition, the MMU provides access

1-52

MPC7450 RISC Microprocessor Family User’s Manual

MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

protection on a segment, block, or page basis. Note that the MPC7451 does not implement
the optional direct-store facility.

Two general types of memory accesses generated by processors that implement the
PowerPC architecture require address transl ation—instruction accesses and data accesses
generated by load and store instructions. In addition, the addresses specified by cache
instructions and the optional external control instructions also require trandation.
Generally, the address translation mechanism is defined in terms of the segment descriptors
and page tables that the processors use to locate the effective-to-physical address mapping
for memory accesses. The segment information translates the effective address to an
interim virtual address, and the page table information translates the virtual address to a
physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as
on-chip segment registers on 32-bit implementations (such as the MPC7451). In addition,
two trandation lookaside buffers (TLBs) are implemented on the MPC7451 to keep
recently used page address transl ations on-chip. Although the PowerPC OEA describes one
MMU (conceptually), the MPC7451 hardware maintains separate TLBs and table search
resources for instruction and data accesses that can be performed independently (and
simultaneously). Therefore, the MPC7451 is described as having two MMUSs, one for
instruction accesses (IMMU) and one for data accesses (DMMU).

The block address trandation (BAT) mechanism is a software-controlled array that stores
the available block address trandlations on-chip. BAT array entries are implemented as
pairs of BAT registers that are accessible as supervisor specia-purpose registers (SPRs).
There are separate instruction and data BAT mechanisms. In the MPC7451, they residein
the instruction and data MMUS, respectively.

The MMUSs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Section 4.3, “Exception Processing,”
describes how the M SR controls critical MMU functionality.

1.3.5.2 MPC7451 Microprocessor Memory Management
Implementation

The MPC7451 implements separate MM Us for instructions and data. It maintains a copy
of the segment registers in the instruction MMU; however, read and write accesses to the
segment registers (mfsr and mtsr) are handled through the segment registers in the data
MMU. The MPC7451 MMU is described in Section 1.2.3, “Memory Management Units
(MMUs).”

The MPC7451 implements the memory management specification of the PowerPC OEA
for 32-bit implementations but adds capability for supporting 36-bit physical addressing.
Thus, it provides 4 Gbytes of physical address space accessible to supervisor and user

MOTOROLA Chapter 1. Overview 1-53

MPC7451 Microprocessor: Architectural Implementation

programs, with a 4-Kbyte page size and 256-Mbyte segment size. In addition, the
MPC7451 MMUs use an interim virtual address (52 bits) and hashed page tables in the
generation of 32- or 36-bit physical addresses (depending on the setting of HIDO[X AEN]).
Processors that implement the PowerPC architecture also have a BAT mechanism for
mapping large blocks of memory. Block range from 128 Kbytes to 256 Mbytes and are
software programmabl e.

The MPC7451 provides table search operations performed in hardware. The 52-bit virtual
address is formed and the MMU attempts to fetch the PTE that contains the physical
address from the appropriate TLB on-chip. If the trandation is not found in either the BAT
array or in a TLB (that is, a TLB miss occurs), the hardware performs a table search
operation (using a hashing function) to search for the PTE. Hardware table searching isthe
default mode for the MPC7451; however, if HIDO[STEN] = 1, a software table search is
performed.

The MPC7451 also provides support for table search operations performed in software (if
HIDO[STEN] is set). In this case, the TLBMISS register saves the effective address of the
access that requires a software table search. The PTEHI and PTEL O registers and the tlbli
and tlbld instructions are used in reloading the TLBs during a software table search
operation. The following exceptions support software table searching if HIDO[STEN] isset
and aTLB miss occurs:

e For aninstruction fetch, an ITLB miss exception.
« For adataload, an DTLB miss-on-load exception.
* For adatastore, an DTLB miss-on-store exception.

The MPC7451 implements the optional TLB invalidate entry (tlbie) and TLB synchronize
(tlbsync) instructions that can be used to invalidate TLB entries. For more information on
the tlbie and tIbsync instructions, see Section 5.4.4.2, “TLB Invalidation.”

1.3.6 Instruction Timing

This section describes how the MPC7451 microprocessor performs operations defined by
instructions and how it reports the results of instruction execution. The MPC7451 design
minimizes average instruction execution latency, which is the number of clock cycles it
takesto fetch, decode, dispatch, issue, and execute instructions and make results available
for subsequent instructions. Some instructions, such as loads and stores, access memory
and require additional clock cycles between the execute phase and the write-back phase.
L atencies depend on whether an access is to cacheable or noncacheable memory, whether
it hitsintheL1, L2, or L3 cache, whether a cache access generates awrite back to memory,
whether the access causes a snoop hit from another devicethat generates additional activity,
and other conditions that affect memory accesses.

1-54 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

To improve throughput, the MPC7451 implements pipelining, superscalar instruction
issue, branch folding, removal of fall-through branches, three-level speculative branch
handling, and multiple execution units that operate independently and in parall€l.

Asan instruction passes from stage to stage, the subsequent instruction can follow through
the stages as the preceding instruction vacates them, allowing several instructions to be
processed simultaneously. Although it may take several cycles for an instruction to pass
through all the stages, when the pipeline is full, one instruction can complete its work on
every clock cycle. Figure 1-9 represents a generic four-stage pipelined execution unit,
which when filled has a throughput of one instruction per clock cycle.

I I I

‘ E0 ; E1 ‘ E2 ‘ E3 ‘

Clock 0 ‘| Instruction A | ‘ | — | ‘ | — |‘ | — | ‘

\ /ﬁ\ \ \ \

Clock 1 ‘| Instruction B | | | Instruction A | | | — |‘ | - |‘

\ \ \ \ \

| AR /1 | |

Clock 2 \| Instruction C | \ | Instruction B | \ | Instruction A |\ | — | \

| P P |

Clock 3 ! Instruction D |‘ | Instruction C | ! | Instruction B |‘ | Instruction A |‘
Full pipeline | \ \ \ \
\ P IR 1N /1N \

Clock4 | Instruction E |\ | Instruction D | \| Instruction C | | | Instruction B |\
Full pipeline | | | | |

Figure 1-9. Pipelined Execution Unit

Figure 1-10 shows the entire path that instructions take through the fetchl, fetch2,
decode/dispatch, execute, issue, complete, and write-back stages, which is considered the
MPC7451's master pipeline. The FPU, LSU, 1U2, VIU2, VFPU, and VPU are
multiple-stage pipelines.
The MPC7451 contains the following execution units:

» Branch processing unit (BPU)

¢ Threeinteger unit 1s (IUla, IU1b, and IUlc)—execute all integer instructions

except multiply, divide, and move to/from SPR instructions.

* Integer unit 2 (IU2)—executes miscellaneous instructions including the CR logical
operations, integer multiplication and division instructions, and move to/from
special-purpose register instructions

e 64-hit floating-point unit (FPU)
e Load/store unit (LSU)

¢ TheAltiVec unit contains the following four independent execution unitsfor vector
computations; the latencies are shown in Table 7-12

MOTOROLA Chapter 1. Overview 1-55

MPC7451 Microprocessor: Architectural Implementation

A} — AltiVec permute unit (VPU)
— AltiVecinteger unit 1 (VIU1)
— Vector integer unit 2 (VIU2)
— Vector floating-point unit (VFPU)

A maximum of two AltiVec instructions can be issued in order to any combination
of AltiVec execution units per clock cycle. Moreover, theVIU2, VFPU, andVPU are
pipelined, so they can operate on multiple instructions.

The MPC7451 can complete as many as three instructions on each clock cycle. In general,
the MPC7451 processes instructions in seven stages—fetchl, fetch2, decode/dispatch,
issue, execute, complete, and writeback as shown in Figure 1-10. Note that the pipeline
examplein Figure 6-1 is similar to the four-stage VFPU pipelinein Figure 1-10.

1-56 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

Fetch2 per clock cycle

Decode/Dispatch per clock cycle

Fetchl Maximum four-instruction fetch

Maximum three-instruction dispatch

per clock cycle
| Complete |

!

| Write-Back |

Figure 1-10. Superscalar/Pipeline Diagram

The instruction pipeline stages are described as follows:

« Instruction fetch—Includes the clock cycles necessary to request an instruction and
the time the memory system takes to respond to the request. Instructions retrieved
are latched into the instruction queue (IQ) for subsequent consideration by the
dispatcher.

Instruction fetch timing depends on many variables, such as whether an instruction
isin the branch target instruction cache (BTIC), the on-chip instruction cache, or the
L2 or L3 cache. Those factors increase when it is necessary to fetch instructions
from system memory and include the processor-to-bus clock ratio, the amount of
bus traffic, and whether any cache coherency operations are required.

MOTOROLA

Chapter 1. Overview

VR Issue FPR Issue GPR Issue
Queue Queue Queue
VIQ) (FIQ) (GIQ)

A e Execute Stage { |
I

e F] F - |

i AltiVec Units ‘ |

X \ v ‘ FPU-EO !

y VIU2-EO0 VFPU-EQ | |FPU-E1 |

I

' viuz-el| MFPU-EY | |FPU-E2 IU2-E0 | |LSU-EO|,

| I

| : VPU-EO VIU2-E2 VFPU-EZ : FPU-E3 ! IU2-E1 LSU-E1 !

I

|| VPU-EL | ViUl | VIU2-E3 VFPU-E3 | |FPU-E4 | 1 IU2-E2 LSU-E2 |

Jb—_ - = — — _— — 4+ - - — L |

| * :

| Finish Finish Finish |

| I
I

: y /

| I

| I

Maximum three-instruction completion

1-57

MPC7451 Microprocessor: Architectural Implementation

1-58

The decode/dispatch stage fully decodes each instruction; most instructions are
dispatched to the issue queues (branch, isync, rfi, and sc instructions do not go to
iSsue queues).

The threeissue queues, FIQ, VIQ, and GIQ, can accept as many as one, two, and
three instructions, respectively, in acycle. Instruction dispatch requires the
following:

— Instructions are dispatched only from the threelowest 1 Q entries—I QO, 1Q1, and
1Q2.

— A maximum of threeinstructions can be dispatched to theissue queues per clock
cycle.

— Space must be available in the CQ for an instruction to dispatch (this includes
instructions that are assigned a space in the CQ but not an issue queue).

The issue stage reads source operands from rename registers and register files and
determineswhen instructionsarelatched into the execution unit reservation stations.
The GIQ, FIQ, and VIQ (AltiVec) issue queues have the following similarities:

— Operand lookup in the GPRs, FPRs, and VRs, and their rename registers.
— Issue queues issue instructions to the proper execution units.

— Each issue queue holds twice as many instructions as can be dispatched to it
in one cycle; the GIQ has six entries, the VIQ has four, and the FIQ has two.

The three issue queues are described as follows:

— The GIQ accepts as many as threeinstructions from the dispatch unit each cycle.
1U1, 1U2, and al LSU instructions (including floating-point and AltiVec loads
and stores) are dispatched to the GIQ.

— Instructions can be issued out-of-order from the bottom three GIQ entries
(GIQ2-GIQO0). Aninstruction in GIQ1 destined for an IU1 does not have to wait
for aninstruction in GIQO that is stalled behind along-latency integer divide
instruction in the lU2.

— TheVIQ accepts as many as two instructions from the dispatch unit each cycle.
All AltiVec instructions (other than load, store, and vector touch instructions) are
dispatched to the VIQ. As many as two instructions can be issued to the four
AltiVec execution units, but unlike the GIQ, instructions in the VIQ cannot be
issued out of order.

— The FIQ can accept one instruction from the dispatch unit per clock cycle. It
looks at the first instruction in its queue and determines if the instruction can be
issued to the FPU in thiscycle.

The execute stage accepts instructions from its issue queue when the appropriate
reservation stationsare not busy. In this stage, the operands assigned to the execution
stage from the issue stage are latched.

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

The execution unit executes the instruction (perhaps over multiple cycles), writes
results on its result bus, and notifies the CQ when the instruction finishes. The
execution unit reports any exceptionsto the completion stage. I nstruction-generated
exceptions are not taken until the excepting instruction is next to retire.

Most integer instructions have a 1-cycle latency, so results of these instructions are
available 1 clock cycle after an instruction entersthe execution unit. The FPU, LSU,
1U2, VIU2, VFPU, and VPU units are pipelined, as shown in Figure 7-3.

Note that AltiVec computational instructions are executed in the four independent,

pipelined AltiVec execution units. TheVPU has atwo-stage pipeline, theVIU1 has
aone-stage pipeline, and theV1U2 and VFPU havefour-stage pipelines. Asmany as
10 AltiVec instructions can be executing concurrently.

» Thecomplete and write-back stages maintain the correct architectural machine state
and commit results to the architected registers in the proper order. If completion
logic detects an instruction containing an exception status, all following instructions
are cancelled, their execution resultsin rename buffers are discarded, and the correct
instruction stream is fetched.

The complete stage ends when the instruction is retired. Three instructions can be
retired per clock cycle. If no dependencies exist, as many as three instructions are
retired in program order. Section 6.7.4, “ Completion Unit Resource Requirements,”
describes completion dependencies.

The write-back stage occursin the clock cycle after the instruction is retired.

1.3.7 AltiVec Implementation

The MPC7451 implements the AltiVec registers and instruction set as they are described
by the Altivec Technology Programming Environments Manual. Two additional
implementation specific exceptions have been added; they are asfollows:

« TheAltiVec assist exception which is used in handling denormalized numbersin
Java mode.

* Analignment exception for cache-inhibited AltiVec loads and stores and
write-through stores that execute when in 60x bus mode

Both exceptions are described fully in Chapter 4, “ Exceptions.” Also, the default setting for
VSCR[NJ] bit has changed from being non-Java compliant (VSCR[NJ] = 1) in the
MPC7400/7410 to having a default setting of Java—compliant (VSCR[NJ] = 0) in the
MPC7451. The AltiVec implementation is described fully in Chapter 7, “AltiVec
Technology |mplementation.”

MOTOROLA Chapter 1. Overview 1-59

Differences between MPC7451 and MPC7400/ MPC7410

1.4 Differences between MPC7451 and MPC7400/

MPC7410

Table 1-4 comparesthe key features of the M PC7451 with the earlier MPC7400/M PC7410.
To achieve a higher frequency, the number of logic levels per clock cycle is reduced. In
addition, the pipeline of the MPC7451 is extended (compared to the MPC7400), while
maintaining the same level of performance (in terms of number of instructions executed per

clock cycle. Table 1-4 shows these differences.

Table 1-4. MPC7451 and MPC7400/MPC7410 Feature Comparison

Microarchitectural Feature MPC7451 MPC7400/MPC7410
Basic Pipeline Functions
Logic inversions per cycle 18 28
Pipeline stages up to execute 5 3
Total pipeline stages (minimum) 7 4
Pipeline maximum instruction throughput 3 + branch 2 + branch
Pipeline Resources
Instruction queue size 12 6
Completion queue size 16 8
Renames (GPR, FPR, VR) 16, 16, 16 6,6,6
Maximum Execution Throughput
Short-latency integer units (1U1s) 3 2

Vector units

2 (any 2 of 4 units)

2 (permute/integer)

Floating-point unit

1

1

Out-of-Order Window Size

in Execution Queues

Short-latency integer units

1 entry * 3 queues

1 entry * 2 queues

Vector units

In order, 4 queues

In order, 2 queues

Floating-point unit

In order

In order

1-60

MPC7450 RISC Microprocessor Family User’s Manual

MOTOROLA

Differences between MPC7451 and MPC7400/ MPC7410

Table 1-4. MPC7451 and MPC7400/MPC7410 Feature Comparison (continued)

Microarchitectural Feature MPC7451 MPC7400/MPC7410
Branch Processing Resources
Prediction structures BTIC, BHT, link stack BTIC, BHT

BTIC size, associativity

128-entry, 4-way

64-entry, 4-way

BHT size 2K-entry 512-entry
Link stack depth 8 none
Unresolved branches supported 3 2
Branch taken penalty (BTIC hit) 1 0
Minimum misprediction penalty 6 4
Execution Unit Timings (Latency-Throughput)
Aligned load (integer, float, vector) 3-1,4-1,3-1 2-1,2-1,2-1
Misaligned load (integer, float, vector) 4-2,5-2,4-2 3-2,3-2,3-2
L1 miss, L2 hit latency 9—data access gt
13—instruction access
IU1s (adds, subs, shifts, rotates, compares, logicals) 1-1 1-1
Integer multiply (32 * 8, 32 * 16, 32 * 32) 3-1, 3-1,4-2 2-1,3-2,5-4
Scalar floating-point 5-1 3-1
VIU1 (vector integer unit 1—shorter latency vector integer) |1-1 1-1
VIU2 (vector integer unit 2—longer latency vector integer) |4-1 3-1
VFPU (vector floating-point) 4-1 4-1
VPU (vector permute) 2-1 1-1
MMUs

MMUs (instruction and data)

128-entry, 2-way

128-entry, 2-way

Table search mechanism Hardware and software Hardware
L1 Instruction Cache/Date Cache Features
Size 32K/32K 32K/32K
Associativity 8-way 8-way
Locking granularity/style 4-Kbyte/way Full cache
Parity on instruction cache Word None
Parity on data cache Byte None
Number of data cache misses (load/store) 5/1 8 (any combination)
Data stream touch engines 4 streams 4 streams

MOTOROLA

Chapter 1. Overview

1-61

Differences between MPC7451 and MPC7400/ MPC7410

Table 1-4. MPC7451 and MPC7400/MPC7410 Feature Comparison (continued)

Microarchitectural Feature

MPC7451

MPC7400/MPC7410

On-Chip L2 Cach

e Features

Cache level

L2

Size/associativity

256-Kbytes/8-way

Tags and controller only
(see off-chip cache
support below)

Access width 256 bits
Number of 32-byte sectors/line 2
Parity Byte
Off-Chip Cache Support
Cache level L3 L2

On-chip tag logical size

1 Mbyte, 2 Mbytes

512 Kbytes, 1 Mbyte, 2
Mbytes

Associativity 8-way 2-way
Number of 32-byte sectors/line 2,4 1,2,4
Off-chip data SRAM support MSUG2 DDR, LW, PB2 LW, PB2, PB3
Data path width 64 64

Private memory SRAM sizes

1 Mbyte, 2 Mbytes

512 Kbyte, 1 Mbyte, 2
Mbytes

Parity

Byte

Byte

1 Numbers in parentheses are for 2:1 SRAM.

1-62

MPC7450 RISC Microprocessor Family User’s Manual

MOTOROLA

Differences Between MPC7441/MPC7451 and MPC7445/MPC7455

1.5 Differences Between MPC7441/MPC7451 and
MPC7445/MPC7455

Table 1-4 compares the key differences between the MPC7451 and the MPC7455. The

table provides the section nhumber where the details of the differences are discussed.

Differences between the two processors are defined through-out the manual. Table 1-4
provides a high-level overview to the differences. Table 1-4 shows these differences.

Table 1-5. MPC7451 and MPC7455 Differences

Microarchitectural

MPC7441/MPC7451 MPC7445/MPC7455 Section
Feature

MMU

Block address 16 BAT registers 32 BATs 1.1.3
translation (BAT) —=8 additional instruction and 5.3.1
registers 8 data BAT registers
—Maps regions of IBAT4U
memory IBATAL
IBATS5U
IBAT5L
IBAT6U
IBAT6L
IBAT7U
IBAT7L
DBAT4U
DBAT4L
DBAT5U
DBAT5L
DBAT6U
DBAT6L
DBAT7U
DBAT7L

SPRGs 4 SPRs 8 SPRs 5.5.5.1.3
—Used by system —4 additional SPRs registers
software for SPRG4-SPRG7
software table
searches

Additional HIDO bits HIDO[HIGH_BAT_EN] =1, 5.3.1
enables additional BATs

Block size range = HIDO[XBSEN] =1, 53.21
128 Kbytes to 256 Mbytes increases block size,
Block size range =
128 Kbytes to 4 Gbytes

MOTOROLA Chapter 1. Overview 1-63

Differences Between MPC7441/MPC7451 and MPC7447/MPC7457

1.6 Differences Between MPC7441/MPC7451 and

MPC7447/MPC7457
Table 1-4 compares the key differences between the MPC7451 and the MPC7455. The
table provides the section nhumber where the details of the differences are discussed.

Differences between the two processors are defined through-out the manual. Table 1-4
provides a high-level overview of the differences. Table 1-4 shows these differences.

Table 1-6. MPC7451 and MPC7457 Differences

Microarchitectural MPC7441/MPC7451 MPC7447/MPC7457 Section
Feature
L2 Cache
Cache level L2 L2 3.6
Size/associativity 256-Kbyte/8-way 512-Kbyte/8-way 3.6.1
Access width 256 bits 256 bits 3.6
Number of 32-byte 2 2 3.6
sectors/ line
Parity Byte Byte 3.6.3.1.2
Off-Chip Cache Support 1
Cache level L3 L3 3.7
On-chip tag logical size | 1 Mbyte, 2 Mbytes 1 Mbyte, 2 Mbytes, 4Mbytes 3.7.3.2
Associativity 8-way 8-way 3.7
Number of 32 byte 2 2 3.7
sectors/line
Off-chip data SRAM MSUG2 DDR, LW, PB2 MSUG2 DDR, LW, PB2 3.7.3.9
support
Data path width 64 bits 64 bits
Private memory SRAM | 1 Mbyte, 2 Mbyte 1 Mbyte, 2 Mbyte, 4 Mbyte 3.7.32
sizes
Parity Byte Byte 3.7.35
L3 Bus Ratios 2:1,2.5:1,3:1,3.5:1,4:1,5:1, |2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 2.1.55.2
6:1 6:1,6.5:1,7:1,7.5:1,8:1
Signals
L3 Address Signals L3_ADDR[0:17] L3_ADDR[0:18] 8.4.1.1
PLL Configuration PLL_CFGJ0:3] PLL_CFGJ[0:4] 2152
Signals
1-64 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

User’s Manual Revision History

Table 1-6. MPC7451 and MPC7457 Differences

Microarchitectural MPC7441/MPC7451 MPC7447/MPC7457
Feature

Section
System Interface
System Bus Multipliers | 2, 2.5, 3, 3.5, 4, 4.5,5,5.5,6, |2,5,5.5,6,6.5,7, 7.5, 8, 8.5, 2152
6.5,7,75,8 9,95, 10, 10.5, 11, 11.5, 12,

125, 13, 13.5, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25,
28, 32

1 L3 cache interface is not supported on the MPC7441 and MPC7447

1.7 User’'s Manual Revision History

A list of the major differences between revisions of the MPC7450 RISC Microprocessor
Family User’s Manual, is provided in Appendix D, “User’'s Manual Revision History.”

MOTOROLA Chapter 1. Overview 1-65

User’s Manual Revision History

1-66 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Chapter 2
Programming Model

This chapter describes the MPC7451 programming model, emphasizing those features
specific to the MPC7451 processor and summarizing those that are common to processors
that implement the PowerPC architecture. It consists of three maor sections, which
describe the following:

* Registersimplemented in the MPC7451
e Operand conventions
¢ The MPC7451 instruction set

For detailed information about architecture-defined features, see the Programming
Environments Manual and the AltiViec Technology Programming Environments Manual.

AltiVec Technology and the Programming M odel

AltiVec programming mode! features are described as follows: Q)

e Thirty-four additional registers—32 VRs, VRSAVE, and VSCR. See Section 7.1,
“AltiVec Technology and the Programming Model.”

2.1 MPC7451 Processor Register Set

This section describes the registersimplemented in the MPC7451. It includes an overview

of registers defined by the PowerPC architecture and the AltiVec technology, highlighting &)
differences in how these registers are implemented in the MPC7451, and a detailed
description of MPC7451-specific registers. Full descriptions of the architecture-defined
register set are provided in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual and Chapter 2, “AltiVec Register Set,” in the AltiViec Technology
Programming Environments Manual (PEM).

Registers are defined at all three levels of the PowerPC architecture—user instruction set
architecture (UISA), virtual environment architecture (VEA), and operating environment
architecture (OEA). The PowerPC architecture defines register-to-register operations for
all computational instructions. Source data for these instructions is accessed from the
on-chip registers or is provided as immediate values embedded in the opcode. The
three-register instruction format allows specification of a target register distinct from the
two source registers, thus preserving the original data for use by other instructions and

MOTOROLA Chapter 2. Programming Model 2-1

MPC7451 Processor Register Set

reducing the number of instructions required for certain operations. Data is transferred
between memory and registers with explicit load and store instructions only.

2.1.1 Register Set Overview
Figure 2-1 shows the MPC7441 and MPC7451 register set.

2-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

-

SUPERVISOR MODEL—OEA

-

USER MODEL—VEA

Time Base Facility (For Reading)

[TBL |TBR268 |

TBU

| TBR 269

Count Register
soRo

USER MODEL—UISA

~

General-Purpose

~

~

Configuration Registers

Hardware Processor Version Machine State Register
Impl : ion Register VISR
Registers
: HIDO SPR 1008 [_PvR_ JspRog Processor ID Register 2
HID1 SPR 1009 SPR 1023

Memory Management Registers

Registers .
XER GPRO g‘s;:g‘r‘;n BAT Data BAT Segment Registers
egisters SRO
GPR1
SPR - IBATOU |SPR528 | DBATOU | SPR536 SR1
: IBATOL |SPR520 | DBATOL |SPR537 -
SPR8 GPRaT IBATIU |SPR530 | DBATIU |SPR538 :
Performance IBAT1L |SPR531 DBATI1L |SPR539 SR15
Monitor Registers ing-Poi IBAT2U |SPR532 | DBAT2U |SPR540 PTE High/Low
9 Floating-Point IBATZL |SPR533 | DBATZL |SPR541 Registers |
Performance Counters' s IBAT3U |SPR534 DBAT3U | SPR 542 PTEHI SPR 981
UPMCL | SPR 937 EES? IBATSL |SPR535 | DBAT3L |SPR543 PTELO | SPR 982
UPMC2 | SPR938 ; o
UPMC3 | SPR 941 . SDR1 TLB Miss Register
UPMC4 | SPR 942 EPRGT SDR1 SPR 25 TLBMISS | SPR 980
Bzmg: §E§ g;g Condition Exception Handling Registers
Sampled Instruction Register SPRGs Data Address Sav_e and Restore
Address' SPRGO | SPR272 Register Registers
USIAR | SPR 939 Floating-Point SPRG1 | SPR273 SPR19 SRRO | SPR26
Monitor Control! Status and SPRG2 |SPR274 DSISR SRR1 SPR 27
UMMCRO | SPR 936 Control Register SPRG3 |SPR275 [DSISR | SPR18
UMMCRL1 | SPR 940 FPSCR
UMMCR?2 | SPR 928 Cache / Memory Subsystem Registers 1
AltiVec Registers Load/Store ‘ Instruction Cache/ Ih-lla P”“‘% istor 8
" Control Register Interrupt Control Register! ~Memory Register
Vector Save/Restore Vector Registers 3 9 P 9
Register ® VRO LDSTCR _ |SPR 1016 ICTRL |SPR1011 L3PM |SPR983
[VRSAVE] SPR 256 VR1 glltertnoré Sl;bslygler_nt ; L3 Cache Control Register 3
Vector Status and o atus Control Registers = L2 Cache L3CR PR 101
Control Register 3 : MSSCRO | SPR1014 Control Register ! SPR 1018
VSCR VR31 | MSSSRo | SPR1015 L2CR _ |SPR1017 L3 Cache InputTiming
kk j/ Control Registers

\

Thermal Management Register

Instruction Cache Throttling Performance Counters 2 Monitor Control Breakpoint Address
Control Register PMC1 | SPR953 Registers Mask Register !
ICTC__] SPR1019 PMC2 | SPR%4 [“WmCRoZ |sprosp | BAMR__ISPRSI
o PMC3 SPR 957 MMCR1? |SPR956 Sampled Instruction
1 MPC?]441/ MPC7451}-15pe0|f||c reg|stehr m:y no:plée sugported Emgg zgg 34512 MMCR2T |SPR944 Address Register 4
on other processors that implement the PowerPC architecture.
2 Register defined as optional in the PowerPC architecture. PMC6 | SPR 946 SIAR SPR 955
3 Register defined by the AltiVec technology.))
4L2CR2 is not implemented on the MPC7451. Miscellaneous Registers Data Add
5 MPC7451-specific only register, not supported on the Time Base Instruction Address1 Bfegkpoir:::is;gisler P)
MPC7441 (For Writing) Breakpoint Register
6 MPC7451-specific only register | TBL_|SPR284 [IABR _|SPR1010 DABR SPR 1013
TBU SPR285 Decrementer E;(t'l:tre??l Access
[DEC |sPR22 gl
[DEC] SPR 282)

SPR 984

Performance Monitor Registers

Figure 2-1. Programming Model— MPC7441/MPC7451 Microprocessor Registers

MOTOROLA

Chapter 2. Programming Model

2-3

MPC7451 Processor Register Set

Figure 2-6 shows the MPC7445, MPC7447, MPC7455, and MPC7457 register set.

-

SUPERVISOR MODEL—OEA

~

_

Configuration Registers
/ USER MODEL—UISA \ Hardware Processor Version Machine State Register
Time Base Facility (For Reading) :;’rml_ertnentlatlon Register MSR
egisters
[7BL | TBR268[TBU |TBR 269 e — SPR 1008 SPR 287 processor ID Register 2
e USER MODEL—UISA ™\ HIDL | SPR 1009 SPR 1023
Count Register General-Purpose _Memory Management Registers _
SPR 9 Registers Instr_ucuon BAT Date_l BAT Segment Registers
XER GPRO Registers Registers SRO
SPR 1 GPR1 IBATOU | SPR 528 DBATOU | SPR 536 SR1
Link Reoi . IBATOL SPR 529 DBATOL |SPR 537 -
in LReg'S‘efSPR o : IBATIU |SPR530 | DBATIU |SPR 538 :
: GPR31 IBATIL |SPR 531 DBATIL |SPR 539 SR15
Performance Monitor
(i) IBAT2U | SPR 532 DBAT2U |SPR540 PTE High/L
Re%lsters Floating-Point ighrow
Performance Counters?® Registers IBAT2L |SPR 533 DBAT2L |SPR541 Registers®
UPMC1 | SPR 937 FPRO IBAT3U |SPR534 | DBAT3U |SPR 542 PTEHI | SPR 981
UPMC2 | SPR 938 FPRI IBAT3L |SPR 535 DBAT3L |SPR 543 PTELO |SPR 982
UPMC3 | SPR 941 IBAT4UT |SPR560 | DBAT4U I | SPR 568 TLB Miss Registerl
UPMCa | SPR 942 : IBATALL |SPR561 | DBATALL | SPR 569 1SS Register
UPMCE | SPR 929 T IBAT5U T |SPR562 | DBAT5U! |SPR570 L TLBMISS |SPR 980
UPMC6 | SPR 930 IBAT5L I | SPR 563 DBAT5LI |SPR571 SDR1
) Condition IBAT6U T |SPR564 | DBAT6U! | SPR 572 SDR1 |SPR 25
Sampled Instruction i
el Register IBAT6L T |SPR565 | DBAT6L! |SPR 573
USIAR | SPR 939 [crR] IBAT7UT |SPR566 | DBAT7U L | SpR 574 Cache/Memory
T T Subsystem Registers
- 1 . . IBAT7L SPR 567 DBAT7L SPR 575
Monitor Control Floating-Point - . . Memory Subsystem
UMMCRO | SPR 936 . Slt??tus'and Exception Handling Registers Status Control Registers
UMMCRL | SPR 940 ontrol Register| | sprgs DataAddress
Register MSSCRO | SPR 1014
UMMCR2 | SPR 928 ‘ FPSCR ‘ SPRGO |SPR 272 g MSSSRO | SPR 1015
SPRGL |SPR 273 SPR19 | e
.) SPRG2 |SPR 274 DSISR ntrol Register *
AltiVec Registers DSISR | SPR 18 control Registe
SPRG31 SPR 275 LDSTCR |SPR 1016
Vector Save/Restore Vector Registers 3 SPRG4 . SPR 276 gavo_e andRestore - ction Cache/
Register VRO SPRGS - SPR 277 egisters Interrupt Control Register
VRSAVE | SPR 256 VRL SPRG6 ! |SPR 278 SRRO__ | SPR 26 ICTRL _|SPR 1011
Vector Status an : SPRG7 ! |SPR 279 SRR1 SPR 27 L2 Cache
Control Register ° Performance Monitor Registers Control Registert
VSCR VR31 Performance Counters 2 Breakpoint Address L2CR SPR 1017
PMC1 |SPR953 Mask Register! L3 Private Memory
kk j/ PMC2 |SPR 954 BAMR _|SPR 951Address Register™
PMC3 |SPR 957 Monitor Control L3PM SPR 983
Thermal Management Register PMC4 |SPR 958 Registers L3 Cache
Instruction Cache Throttling PMC5 |SPR945 | MMCRO2 | SPR952 Control Register 4
Control Register ! PMC6 |SPR946 | MMCR12 2'22 gij L3CR |SPR 1018
. 1
ICTC__ | SPR 1019 Sampled Inst_ructu%n MMCR?2 L3 Cache Input Timing
Address Register Control Registers
1 MPC7445-, MPC7447-, MPC7455-, and MPC7457-specific SIAR SPR 955 L3 Cache Output Hold 7
register may not be supported on other processors that Control Register ® L3ITCRO 5 SPR 984
implement the PowerPC architecture. _LSOHCR SPR 1000 L3ITCR1 SPR 1001
2 Register defined as optional in the PowerPC architecture. L3ITCR25 | SPR 1002
3 Register defined by the AltiVec technology. Miscellaneous Registers L3ITCR3® | SPR 1003
4 MPC7455- and MPC7457-specific register, not supported on Time Base Instruction Address Data Address
5the MPC7445 and MPC7447 (For Writing) Breakpoint Register 1 Breakpoint Register 2
? MPC7457-specific register SPR284 [IABR_|SPR1010 | DABR | SPR 1013
SPR 285 Decrementer External Access Register 2

[DEC |spr22 [EAR SPR 282

Figure 2-2. Programming Model—MPC7445, MPC7447, MPC7455, and MPC7457
Microprocessor Registers

2-4

MPC7450 RISC Microprocessor Family User’s Manual

MOTOROLA

MPC7451 Processor Register Set

The number to the right of the special-purpose registers (SPRs) is the number used in the
syntax of the instruction operands to access the register (for example, the number used to
accessthe XER register is SPR 1). These registers can be accessed using mtspr and mfspr.
Note that not all registersin Figure 2-1 are SPRs, for example VSCR and VRs are AltiVec
registers and do not have an SPR number.

2.1.2 MPC7451 Register Set

Table 2-1 summarizes the registersimplemented in the MPC7451.
Table 2-1. Register Summary for the MPC7451

Name SPR Description Refere_nce !
Section
UISA Registers
CR — Condition register. The 32-bit CR consists of eight 4-bit fields, PEM
CRO-CRY7, that reflect results of certain arithmetic operations and
provide a mechanism for testing and branching.
CTR 9 Count register. Holds a loop count that can be decremented PEM
during execution of appropriately coded branch instructions. The
CTR can also provide the branch target address for the Branch
Conditional to Count Register (bcctrx) instruction.
FPRO- — Floating-point registers (FPRn). The 32 FPRs serve as the data PEM
FPR31 source or destination for all floating-point instructions.

FPSCR — Floating-point status and control register. Contains floating-point PEM
exception signal bits, exception summary bits, exception enable
bits, and rounding control bits for compliance with the IEEE 754
standard.

GPRO- — General-purpose registers (GPRn). The thirty-two GPRs serve as PEM

GPR31 data source or destination registers for integer instructions and
provide data for generating addresses.

LR 8 Link register. Provides the branch target address for the Branch PEM
Conditional to Link Register (bclrx) instruction, and can be used
to hold the logical address of the instruction that follows a branch
and link instruction, typically used for linking to subroutines.
UMMCRO ! 936 User monitor mode control registers (UMMCRnN). Used to enable 2159&
UMMCR1 1 940 various performance monitor exception functions. UMMCRs 11.3.2.1,
UMMCR2 1 928 provide user-level read access to MMCR registers. 21594&
11.3.3.1,
2.159.6 &
11.3.4.1
UPMC1- 937,938 | User performance monitor counter registers (UPMCn). Used to 2.1.5.9.9,
uPMC6 t 941, 942 | record the number of times a certain event has occurred. UPMCs 11.3.6.1
929, 930 | provide user-level read access to PMC registers.

USIAR® 939 User sampled instruction address register. Contains the effective 2.1.5.9.11,
address of an instruction executing at or around the time that the 11.3.7.1
processor signals the performance monitor exception condition.

USIAR provides user-level read access to the SIAR.

MOTOROLA Chapter 2. Programming Model 2-5

MPC7451 Processor Register Set

Table 2-1. Register Summary for the MPC7451 (continued)

Name

SPR

Description

Reference /
Section

@ VRO-VR31 2

Vector registers (VRn). Data source and destination registers for
all AltiVec instructions.

7.1.1.4

@ VRSAVE 2

256

Vector save/restore register. Defined by the AltiVec technology to
assist application and operating system software in saving and
restoring the architectural state across process context-switched
events. The register is maintained only by software to track live or
dead information on each AltiVec register.

7.1.15

VSCR 2

Vector status and control register. A 32-bit vector register that is
read and written in a manner similar to the FPSCR.

7.1.14

XER

Indicates overflows and carries for integer operations.
Implementation Note—To emulate the POWER architecture
Iscbx instruction, XER[16—-23] are be read with mfspr[XER] and
written with mtspr[XER].

PEM

VEA

TBL,
TBU
(For Reading)

TBR 268
TBR 269

Time base facility. Consists of two 32-bit registers, time base
lower and upper registers (TBL/TBU). TBL (TBR 268) and TBU
(TBR 269) can only be read from and not written to.TBU and TBL
can be read with the move from time base register (mftb)
instruction.

Implementation Note—Reading from SPR 284 or 285 using the
mftb instruction causes an illegal instruction exception.

PEM
2141
2351

OEA

BAMR 1. 3

951

Breakpoint address mask register. Used in conjunction with the
events that monitor IABR hits.

21597,
11.3.5

DABR 4 5

1013

Data address breakpoint register. Optional register implemented
in the MPC7451 and is used to cause a breakpoint exception if a
specified data address is encountered.

PEM

DAR

19

Data address register. After a DSI or alignment exception, DAR is
set to the effective address (EA) generated by the faulting
instruction.

PEM

DEC

22

Decrementer register. A 32-bit decrementer counter used with the
decrementer exception.

Implementation Note—In the MPC7451, DEC is decremented
and the time base increments at 1/4 of the system bus clock
frequency.

PEM

DSISR

18

DSl source register. Defines the cause of DSI and alignment
exceptions.

PEM

EAR 6 7

282

External access register. Used with eciwx and ecowx. Note that
the EAR and the eciwx and ecowx instructions are optional in the
PowerPC architecture.

PEM

HIDO 1. 7
HID1 1 8

1008, 1009

Hardware implementation-dependent registers. Control various
functions, such as the power management features, and locking,
enabling, and invalidating the instruction and data caches. The
HID1 includes bits that reflects the state of PLL_CFG[0:4] clock
signals and control other bus-related functions.

2151,
2.15.2

2-6

MPC7450 RISC Microprocessor Family User’s Manual

MOTOROLA

MPC7451 Processor Register Set

Table 2-1. Register Summary for the MPC7451 (continued)
Name SPR Description Refere_nce !
Section
IABR 1. 9 1010 Instruction address breakpoint register. Used to cause a 2.156
breakpoint exception if a specified instruction address is
encountered.
IBATOU/L 10 528,529 | Block-address translation (BAT) registers. The PowerPC OEA PEM,
IBAT1U/L 10 530, 531 |includes an array of block address translation registers that can 5.1.3
IBAT2U/L 10 532,533 | be used to specify four blocks of instruction space and four blocks
IBAT3U/L 10 534, 535 | of data space. The BAT registers are implemented in pairs: four
IBAT4U/L 10.11 | 560, 561 | pairs of instruction BATs (IBATOU-IBAT3U and IBATOL—IBAT3L)
IBAT5U/L 10.11 | 562 563 |and four pairs of data BATs (DBATOU-DBAT3U and
IBAT6U/L 10.11 | 564,565 |DBATOL-DBAT3L).
IBAT7U/L10.11 | 566,567 |Sixteen additional BAT registers have been added for the
MPC7455. These registers are enabled by setting
DBATOU/L 12 536, 537 | HIDO[HIGH_BAT_EN]. When HIDO[HIGH_BAT_EN] = 1, the 16
DBAT1U/L 12 538, 539 |additional BAT registers, organized as four pairs of instruction
DBAT2U/L 12 540,541 |BAT registers(IBAT4U-IBAT7U paired with IBATAL—IBAT7L) and
DBAT3U/L 12 542,543 |four pairs of data BAT registers (DBAT4U-DBAT7U paired with
DBAT4U/L 11,12 | 568,569 | DBAT4L-DBAT7L) are available. Thus, the MPC7455 can define
DBAT5U/L 1112 | 570,571 |a total of 16 blocks implemented as 32 BAT registers.
DBAT6U/L 1112 | 572,573 |Because BAT upper and lower words are loaded separately,
DBAT7U/L 1112 | 574 575 |software must ensure that BAT translations are correct during the
time that both BAT entries are being loaded.
The MPC7451 implements IBAT[G]; however, attempting to
execute code from an IBAT area with G = 1 causes an ISI|
exception.

IcTC! 1019 Instruction cache throttling control register. Has bits for enabling 2.1.5.38,
instruction cache throttling and for controlling the interval at which 10.3
instructions are fetched. This controls overall junction
temperature.

ICTRL L7 1011 Instruction cache and interrupt control register. Used in 2.15538
configuring interrupts and error reporting for the instruction and
data caches.

L2CR 1 1017 L2 cache control register. Includes bits for enabling parity 21551
checking, setting the L2 cache size, and flushing and invalidating
the L2 cache.

L3CR 18 1018 | L3 cache control register. Includes bits for enabling parity 21552
checking, setting the L3-to-processor clock ratio, and identifying
the type of RAM used for the L3 cache implementation.
L3ITCRO 13 984 L3 cache input timing control register. Includes bits for controlling 21554
L3ITCR1 14 1001 the input AC timing of the L3 cache interface. 21555
L3ITCR2 14 1002 21556
L3ITCR3 14 1003 21557
L30OHCR 14 1000 L3 cache output hold control register. Includes bits for controlling 21553
the output AC timing of the L3 cache interface of the MPC7457.
L3PM 13, 15 983 The L3 private memory register. Configures the base address of 2.1.5.5.10
the range of addresses that the L3 uses as private memory (not
cache).
LDSTCR 1. 16 1016 Load/store control register. Controls data L1 cache way-locking. 2.1.55.9
MOTOROLA Chapter 2. Programming Model 2-7

MPC7451 Processor Register Set

Table 2-1. Register Summary for the MPC7451 (continued)

Name SPR Description Refere_nce !
Section
MMCRO 4 952 Monitor mode control registers (MMCRn). Enable various 2.1.59.1,11.3.2
MMCR1 4 956 performance monitor exception functions. UMMCRO-UMMCR2 | 2.1.5.9.3,11.3.3
MMCR2 1 944 provide user-level read access to these registers. 2.1595,11.34
MSR 7 — Machine state register. Defines the processor state. The MSR PEM,
can be modified by the mtmsr, sc, and rfi instructions. It can be 2.1.3.3,
read by the mfmsr instruction. When an exception is taken, MSR 4.3
contents are saved to SRR1. See Section 4.3, “Exception
Processing.” The following bits are optional in the PowerPC
architecture.
Note that setting MSR[EE] masks decrementer and external
interrupt exceptions and MPC7451-specific system
management, and performance monitor exceptions.
Bit | Name | Description
6 |VEC |[AltiVec available. MPC7451 and AltiVec
technology specific; optional to the PowerPC
architecture.
0 AltiVec technology is disabled.
1 AltiVec technology is enabled.
Note: When a non-stream AltiVec instruction
accesses VRs or the VSCR when VEC = 0 an
AltiVec unavailable exception is generated. This
does not occur for data streaming instructions
(dst(t), dstst(t), and dss); the VRs and the
VSCR are available to data streaming
instructions even if VEC = 0. VRSAVE can be
accessed even if VEC =0.
13 |POW | Power management enable. MPC7451-specific
and optional to the PowerPC architecture.
0 Power management is disabled.
1 Power management is enabled. The processor
can enter a power-saving mode determined by
HIDO[NAP,SLEEP] when additional conditions
are met. See Table 2-6.
29 |PMM | Performance monitor marked mode.
MPC7451-specific and optional to the PowerPC
architecture. See Chapter 11, “Performance
Monitor.”
0 Process is not a marked process.
1 Process is a marked process.
MSSCRO 1 17 1014 Memory subsystem control register. Used to configure and 2.1.5.3
operate many aspects of the memory subsystem.
MSSSRO 1 1015 Memory subsystem status register. Used to configure and 2154
operate the parity functions in the L2 and L3 caches for the
MPC7451.
PIR 1023 Processor identification register. Provided for system use. All 32 PEM
bits of the PIR can be written to with the mtspr instruction. 2132
2-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Table 2-1

MPC7451 Processor Register Set

. Register Summary for the MPC7451 (continued)

Name

SPR

Description

Reference /
Section

PMC1—
PMC6 4

953, 954
957, 958
945, 946

Performance monitor counter registers (PMCn). Used to record
the number of times a certain event has occurred. UPMCs
provide user-level read access to these registers.

2.1.5.9.8,
11.3.6

PTEHI,
PTELO

981,
982

The PTEHI and PTELO registers are used by the tlbld and tlbli
instructions to create a TLB entry. When software table searching
is enabled (HIDO[STEN] = 1), and a TLB miss exception occurs,
the bits of the page table entry (PTE) for this access are located
by software and saved in the PTE registers.

215.7.2,
555.1.2

PVR

287

Processor version register. Read-only register that identifies the
version (model) and revision level of the processor.

PEM,
2131

SDAR,
USDAR

Sampled data address register. The MPC7451 does not
implement the optional registers (SDAR or the user-level,
read-only USDAR register) defined by the PowerPC architecture.
Note that in previous processors the SDA and USDA registers
could be written to by boot code without causing an exception,
this is not the case in the MPC7451. A mtspr or mfspr SDAR or
USDAR instruction causes a program exception.

2.15.9.12

SDR118

25

Sample data register. Specifies the base address of the page
table entry group (PTEG) address used in virtual-to-physical
address translation. Implementation Note—The SDR1 register
has been modified (with the SDR1[HTABEXT] and
SDR1[HTMEXT] fields) for the MPC7451 to support the extended
36-bit physical address (when HIDO[XAEN] = 1]).

PEM,
2.1.3.5,
551

SIAR 4

955

Sampled instruction address register. Contains the effective
address of an instruction executing at or around the time that the
processor signals the performance monitor exception condition.
USIAR provides user-level read access to the SIAR.

2.159.11
11.3.7

SPRGO-
SPRG3
SPRG4—
SPRG7 11

272-275

276-279

SPRGn. Provided for operating system use.

The SPRG4-7 provide additional registers to be used by system
software for software table searching.

PEM,

5.5.5.1.3

SRO-

SR1519

Segment registers (SRn). Note that the MPC7451 implements
separate instruction and data MMUSs. It associates
architecture-defined SRs with the data MMU. It reflects SRs
values in separate, shadow SRs in the instruction MMU.

PEM

SRRO
SRR1

26
27

Machine status save/restore registers (SRRn). Used to save the
address of the instruction at which execution continues when rfi
executes at the end of an exception handler routine. SRR1 is
used to save machine status on exceptions and to restore
machine status when rfi executes.

Implementation Note—When a machine check exception
occurs, the MPC7451 sets one or more error bits in SRR1. Refer
to the individual exceptions for individual SRR1 bit settings.

PEM,
2.1.3.4,
4.3

MOTOROLA

Chapter 2. Programming Model

2-9

MPC7451 Processor Register Set

Table 2-1. Register Summary for the MPC7451 (continued)

Name SPR Description Refere_nce !
Section
TBL 284 Time base. A 64-bit structure (two 32-bit registers) that maintains PEM
TBU 285 the time of day and operating interval timers. The TB consists of 2141

(For Writing) two registers—time base upper (TBU) and time base lower (TBL). 2351
The time base registers can be written to only by supervisor-level
software.

TBL (SPR 284) and TBU (SPR 285) can only be written to and not
read from. TBL and TBU can be written to, with the move to
special purpose register (mtspr) instruction.

Implementation Note—Reading from SPR 284 or 285 causes
an illegal instruction exception.

TLBMISS 1 980 The TLBMISS register is automatically loaded when software 21571
searching is enabled (HIDO[STEN] = 1) and a TLB miss exception 5.55.1.1
occurs. Its contents are used by the TLB miss exception handlers
(the software table search routines) to start the search process.

1 MPC7441-, MPC7445-, MPC7447- MPC7451-, MPC7455-MPC7457-specific register may not be supported on
other processors that implement the PowerPC architecture.

Register is defined by the AltiVec technology.

A context synchronizing instruction must follow the mtspr.

Defined as optional register in the PowerPC architecture.

A dssall and sync must precede the mtspr and then a sync and a context synchronizing instruction must follow. Note

that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing

the register.

6 A dssall and sync must precede the mtspr and then a sync and a context synchronizing instruction must follow. Note
that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
register.

7 For specific synchronization requirements on the register see Table 2-32.

8 A sync and context synchronizing instruction must follow a mtspr.

9 A context synchronizing instruction must follow a mtspr.

10 A context synchronizing instruction must follow a mtspr.

11 MPC7445-, MPC7447-, MPC7455-, and MPC7457-specific register.

12 A dssall and sync must precede the mtspr and then a sync and a context synchronizing instruction must follow. Note
that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the register.

13 MPC7451-, MPC7455-, MPC7457-specific, not supported on the MPC7441, MPC7445, and MPC7447

14 MPC7457-specific, not supported on the MPC7441, MPC7445, MPC7447, MPC7451, and MPC7455

15 A sync must precede a mtspr instruction and then a sync and context synchronizing instruction must follow. Note
that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the register.

16 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow.Note that
if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
register.

17 A dssall and sync must precede a mtspr instruction and then a sync and context synchronizing instruction must
follow. Note that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to
accessing the register.

18 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow. Note that

if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the

register.

g A W N

2-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

19 A dssall and sync must precede a mtsr or mtsrin instruction and then a sync and context synchronizing instruction
must follow. Note that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary
prior to accessing the register.

The PowerPC UISA registers are user-level. Genera-purpose registers (GPRS),
floating-point registers (FPRs) and vector registers (VRs) are accessed through instruction
operands. Access to registers can be explicit (by using instructions for that purpose such as
Move to Specia-Purpose Register (mtspr) and Move from Specia-Purpose Register
(mfspr) instructions) or implicit as part of the execution of an instruction. Some registers
are accessed both explicitly and implicitly.

— Implementation Note—The MPC7451 fully decodes the SPR field of the
instruction. If the SPR specified is undefined, an illegal instruction program
exception occurs.

2.1.3 PowerPC Supervisor-Level Registers (OEA)

The OEA defines the registers an operating system uses for memory management,
configuration, exception handling, and other operating system functions and they are
summarized in Table 2-1. The following supervisor-level register defined by the PowerPC
architecture contains additional implementation-specific information for the MPC7451.

2.1.3.1 Processor Version Register (PVR)

For more information, see “Processor Version Register (PVR),” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual.

Implementation Note—The processor version number is 0x8000,0x8001,
0x8002, for the MPC7451, MPC7455, and MPC7457 respectively. The
processor revision level starts at 0x0200 for the MPC7451 and 0x0100 for the
MPC7455 and MPC7457. Therevision level is updated for each silicon
revision. Table 2-2 describes the MPC7451 PVR bitsthat are not required by
the PowerPC architecture.

Table 2-2. Additional PVR Bits

Bits Name Description

0-15 Type |Processor type

16-19 Tech Processor technology

20-23 Major | Major revision number

24-31 Minor | Minor revision number

2.1.3.2 Processor Identification Register (PIR)

For more information, see “Processor ldentification Register (PIR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

MOTOROLA Chapter 2. Programming Model 2-11

MPC7451 Processor Register Set

Implementation Note—The MPC7451 provideswrite accessto the PIR with
mtspr using SPR 1023.

2.1.3.3 Machine State Register (MSR)

The MSR defines the state of the processor. When an exception occurs, MSR hits, as
described in Table 2-3 are atered as determined by the exceptions. The MSR can aso be
modified by the mtmsr, sc, and rfi instructions. It can be read by the mfmsr instruction.

The MPC7451's M SR is shown in Figure 2-3.

I:‘ Reserved
’OOOO_O ‘VEC‘ 00_0000 ‘ POW ‘ 0‘ILE‘EE‘PR‘FP‘ME‘FEO‘SE‘BE‘FEl‘ 0 ‘IP‘IR‘DR‘ 0 ‘PMM‘RI‘LE‘
0 56 7 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Figure 2-3. Machine State Register (MSR)

The M SR bits are defined in Table 2-3.
Table 2-3. MSR Bit Settings

Bit(s) Name Description

0-5 — Reserved

6 VEC 1 2 | AltiVec vector unit available

0 The processor prevents dispatch of AltiVec instructions (excluding the data streaming
instructions—dst, dstt, dstst, dststt, dss, and dssall). The processor also prevents access
to the vector register file (VRF) and the vector status and control register (VSCR). Any attempt
to execute an AltiVec instruction that accesses the VRF or VSCR, excluding the data
streaming instructions generates the AltiVec unavailable exception. The data streaming
instructions are not affected by this bit; the VRF and VSCR registers are available to the data
streaming instructions even when the MSR[VEC] is cleared.

1 The processor can execute AltiVec instructions and the VRF and VSCR registers are
accessible to all AltiVec instructions.

Note that the VRSAVE register is not protected by MSR[VEC].

7-12 — Reserved

13 | POW 1 3 | Power management enable

0 Power management disabled (normal operation mode).

1 Power management enabled (reduced power mode).

Power management functions are implementation-dependent. See Chapter 10, “Power and
Thermal Management.”

14 — Reserved. Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select
the endian mode for the context established by the exception.

16 EE External interrupt enable
0 The processor delays recognition of external interrupts and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR# |Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

2-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Table 2-3. MSR Bit Settings (continued)

Bit(s)

Name

Description

18

FP 2

Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-point loads,
stores, and moves.

1 The processor can execute floating-point instructions and can take floating-point enabled
program exceptions.

19

ME

Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20

FEO 2

IEEE floating-point exception mode O (see Table 2-4)

21

SE

Single-step trace enable

0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of every
instruction except rfi and sc. Successful execution means that the instruction caused no other
exception.

22

BE

Branch trace enable

0 The processor executes branch instructions normally.

1 The processor generates a branch type trace exception when a branch instruction executes
successfully.

23

FE1 2

IEEE floating-point exception mode 1 (see Table 2-4)

24

Reserved. This bit corresponds to the AL bit of the POWER architecture.

25

Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended
with Fs or Os. In the following description, nnnnn is the offset of the exception.

0 Exceptions are vectored to the physical address 0x000n_nnnn.

1 Exceptions are vectored to the physical address OxFFFn_nnnn.

26

Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information see Chapter 5, “Memory Management.”

27

DR 4

Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information see Chapter 5, “Memory Management.”

28

Reserved

29

PMM 1

Performance monitor marked mode

0 Process is not a marked process.

1 Process is a marked process.

This bit can be set when statistics need to be gathered on a specific (marked) process. The
statistics will only be gathered when the marked process is executing.

MPC7451-specific; defined as optional by the PowerPC architecture. For more information about
the performance monitor marked mode bit, see Section 11.4, “Event Counting.”

30

RI

Indicates whether system reset or machine check exception is recoverable.

0 Exception is not recoverable.

1 Exception is recoverable.

The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRRO is valid), but it does not guarantee that the
interrupted process is recoverable.

MOTOROLA

Chapter 2. Programming Model 2-13

MPC7451 Processor Register Set

Table 2-3. MSR Bit Settings (continued)

Bit(s) Name Description

31 LE ® |Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Optional to the PowerPC architecture

A context synchronizing instruction must follow a mtmsr instruction.

A dssall and sync must precede a mtmsr instruction and then a context synchronizing instruction must follow.

A dssall and sync must precede a mtmsr and then a sync and context synchronizing instruction must follow. Note that
if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
MSR[DR] or MSR[PR] bit.

A context synchronizing instruction must follow a mtmsr. When changing the MSR[IR] bit the context synchronizing
instruction must reside at both the untranslated and the translated address following the mtmsr.

A dssall and sync must precede an rfi to guarantee a solid context boundary. Note that if a user is not using the AltiVec
data streaming instructions, then a dssall is not necessary prior to accessing the MSR[LE] bit.

A W N P

Note that setting MSR[EE] masks not only the architecture-defined external interrupt and
decrementer exceptions but also the MPC7451-specific system management, and
performance monitor exceptions.

The |IEEE floating-point exception mode bits (FEO and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
al. Asshown in Table 2-4, if either FEO or FEL1 are set, the MPC7451 treats exceptions as
precise. MSR bits are guaranteed to be written to SRR1 when the first instruction of the
exception handler is encountered. For further details, see Chapter 2, “PowerPC Register
Set” and Chapter 6, “Exceptions,” of the Programming Environments Manual.

Table 2-4. IEEE Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 0 |Floating-point exceptions disabled
0 1 |Imprecise nonrecoverable. For this setting, the MPC7451 operates in floating-point precise mode.
1 0 |Imprecise recoverable. For this setting, the MPC7451 operates in floating-point precise mode.
1 1 |Floating-point precise mode

2.1.3.4 Machine status save/restore registers (SRRO, SRR1)

When an exception istaken, the processor uses SRRO and SRRL1 to save the contents of the
MSR for the current context and to identify where instruction execution should resume
after the exception is handled.

When an exception occurs, the address saved in SRRO helps determine where instruction
processing should resume when the exception handler returns control to the interrupted
process. Depending on the exception, thismay bethe addressin SRRO or at the next address

2-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

in the program flow. All instructions in the program flow preceding this one will have
completed execution and no subsequent instruction will have begun execution. This may
be the address of the instruction that caused the exception or the next one (asin the case of
asystem call or trace exception). The SRRO register is shown in Figure 2-4.

SRRO (Holds EA for Instruction in Interrupted Program Flow) |

Figure 2-4. Machine Status Save/Restore Register 0 (SRRO)

SRR1 is used to save machine status (selected M SR bits and possibly other status bits) on
exceptions and to restore those values when an rfi instruction is executed. SRR1 is shown
in Figure 2-5.

Exception-Specific Information and MSR Bit Values |

Figure 2-5. Machine Status Save/Restore Register 1 (SRR1)

Typicaly, when an exception occurs, SRR1[0-15] are loaded with exception-specific
information and M SR[16-31] are placed into the corresponding bit positions of SRR1. For
most exceptions, SRR1[0-5] and SRR1[7-15] are cleared, and MSR[6, 16-31] are placed
into the corresponding bit positions of SRR1. Table 2-3 provides a summary of the SRR1
bit settings when a machine check exception occurs. For a specific exception’s SRR1 bit
settings, see Section 4.6, “Exception Definitions.”

2.1.3.5 SDRI1 Register

The SDR1 register specifies the page table entry group (PTEG) address used in
virtual-to-physical address trandation. See “SDR1,” in Chapter 2, “PowerPC Register
Set,” of The Programming Environments Manual for the description with a 32-bit physical
address. The SDR1 register has been modified for the MPC7451 to support the extended
36-bit physical address (when HIDO[XAEN] = 1]). See Section 5.5.1, “SDR1 Register
Definition—Extended Addressing,” for detailson how SDR1 ismodified to support a 36-bit
physical address.
Implementation Note—SDR1[HTABEXT] and SDR1[HTMEXT] fields
have been added to support extended addressing. Section 5.5.1, “SDR1
Register Definition—Extended Addressing” describes in detail the
differences when generating a 36-bit PTEG address. Figure 2-6 shows the
format of the modified SDR1.

MOTOROLA Chapter 2. Programming Model 2-15

MPC7451 Processor Register Set

HTABORG |HTABEXT | HTMEXT | HTABMASK

0 15 16 18 19 22 23 31
Figure 2-6. SDR1 Register Format—Extended Addressing

Bit settings for the SDRL1 register are described in Table 2-5.
Table 2-5. SDR1 Register Bit Settings—Extended Addressing

Bits Name Description

0-15 HTABORG Physical base address of page table
If HIDO[XAEN] = 1, field contains physical address [4-19]
If HIDO[XAEN] = 0, field contains physical address [0-15]

16-18 HTABEXT Extension bits for physical base address of page table
If HIDO[XAEN] = 1, field contains physical address [1-3]
If HIDO[XAEN] = 0, field is reserved

19-22 HTMEXT Hash table mask extension bits
If HIDO[XAEN] = 1, field contains hash table mask [0-3]
If HIDO[XAEN] = 0, field is reserved

23-31 HTABMASK | Mask for page table address
If HIDO[XAEN] = 1, field contains hash table mask
[4-12]

If HIDO[XAEN] = 0, field contains hash table mask [0-7]

SDR1 can be accessed with mtspr and mfspr using SPR 25. For synchronization
requirements on the register see Section 2.3.2.4, “ Synchronization.”

2.1.4 PowerPC User-Level Registers (VEA)

The PowerPC VEA defines the time base facility (TB), which consists of two 32-bit
registers—time base upper (TBU) and time base lower (TBL).

2.1.4.1 Time Base Registers (TBL,TBU)

Thetime base registers can be written only by supervisor-level instructions but can be read
by both user- and supervisor-level software. The time base registers have two different
addresses. TBU and TBL can be read from the TBR 268 and 269 respectively with the
move from time base register (mftb) instruction. TBU and TBL can be writtento TBR 284
and 285 respectively with the move to special purpose register (mtspr) instruction.
Reading from SPR 284 or 285 causes an illegal instruction exception. For more
information, see “PowerPC VEA Register Set—Time Base,” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual .

2-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

2.1.5 MPC7451-Specific Register Descriptions

The PowerPC architecture allows for implementation-specific SPRs. This section describes
registers that are defined for the MPC7451 but are not included in the PowerPC
architecture. Note that inthe MPC7451, theseregistersareall supervisor-level registers. All
the registers described in the AltiVec Technology Programming Environments Manual are
implemented in MPC7451. See Chapter 2, “AltiVec Register Set,” in the AltiVec
Technology Programming Environments Manual for details about these registers.

Note that whileit is not guaranteed that the implementation of MPC7451-specific registers
is consistent among processors that implement the PowerPC architecture, other processors
can implement similar or identical registers.

The registers in the following subsections are presented in the order of the chaptersin this
book. First, the processor control registers are described followed by the cache control
registers. Then the implementation-specific registers for exception processing and memory
management are presented, followed by the thermal management register. Finally the
performance monitor registers are presented.

2.1.5.1 Hardware Implementation-Dependent Register 0 (HIDO)

The hardware implementation-dependent register 0 (HIDO) controls the state of several
functions within the MPC7451. The HIDO register for the MPC7441 and the MPC7451 is
shown in Figure 2-7.

[:] Reserved
NOPTI
NOPDST
STEN SLEEP BHTCLR NHR DCE DLOCK DCFI BTIC FOLD
TBEN NAP | DPM XAEN | ICE |ILOCK | ICFI |SPD SGE LRSTK | BHT

o000 | fo| Jo| [[fof [[[] [[[[]fe] o] []]]]
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-7. Hardware Implementation-Dependent Register 0 (HIDO) for the MPC7441
and the MPC7451

The HIDO register for the MPC7445 and the MPC7455 is shown in Figure 2-8.

MOTOROLA Chapter 2. Programming Model 2-17

MPC7451 Processor Register Set

|:|Reserved
HIGH_BAT_EN XBSEN NOPTI
T NOPDST
STEN SLEEP BHTCLR NHR DCE DLOCK DCFI BTIC FOLD
TBE‘N N,TP DI‘DM XAI‘EN I(‘ZE ILO‘CK IC‘FI SP‘D S(‘SE LRSTK BTT
00 [o[| [[[Jof [[[[ITTI] 1ol []]]]

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-8. Hardware Implementation-Dependent Register 0 (HIDO) for the MPC7445
and the MPC7455

The HIDO bits are described in Table 2-6.
Table 2-6. HIDO Field Descriptions

Bits Name Description
0-4 — Reserved. Defined as HIDO[0]: EMCP, HIDO[2]: EBA, HIDO[3]: EBD, HIDO[4]: BCLK on
some earlier processors. Read as 0b1000_0.
5 TBEN 1 Time base enable. Note that this bit must be set and the TBEN signal must be asserted
to enable the time base and decrementer.
6 — Reserved. Defined as ECLK on some earlier processors.
7 STEN?2 Software table search enable. When a TLB miss occurs, the MPC7451 takes one of

three TLB miss exceptions so that software can search the page tables for the desired
PTE. See Section 4.6.15, “TLB Miss Exceptions,” for details on the MPC7451 facilities
for software table searching.

0 Hardware table search enabled

1 Software tables search enabled

8 — Reserved for the MPC7441 and the MPC7451. Defined as DOZE on some earlier
processors. The MPC7451 does not require a HIDO bit for DOZE mode, but rather is
supported through a QREQ/QACK processor-system handshake protocol. Refer to
Section 10.2, “Programmable Power Mode,” for further details.

HIGH_BAT_EN3 | Additional BATs enabled for the MPC7445, MPC7447, MPC7455, and the MPC7457.
0 Additional 4 IBATs (4-7) and 4 DBATSs (4-7) disabled

1 Additional 4 IBATs (4-7) and 4 DBATs (4—7) enabled

The additional BATs provide for more mapping of memory with the block address
translation method.

9 NAP 1 Nap mode enable. Operates in conjunction with MSR[POW].

0 Nap mode disabled.

1 Nap mode enabled. Nap mode is invoked by setting MSR[POW] while this bit is set.
In nap mode, the PLL and the time base remain active.

Note that if both NAP and SLEEP are set, the MPC7451 ignores the SLEEP bit.

2-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Table 2-6. HIDO Field Descriptions (continued)

Bits

Name

Description

10

SLEEP !

Sleep mode enable. Operates in conjunction with MSR[POW].

0 Sleep mode disabled.

1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is
set. QREQ is asserted to indicate that the processor is ready to enter sleep mode. If
the system logic determines that the processor can enter sleep mode, the quiesce
acknowledge signal, QACK, is asserted back to the processor. When the QACK
signal assertion is detected, the processor enters sleep mode after several processor
clocks. At this point, the system logic can turn off the PLL by first configuring
PLL_CFG[0:3] (for the MPC7447 and MPC7457, PLL_CFG[0:4]) to PLL bypass
mode, and then disabling SYSCLK.

11

DPM 1

Dynamic power management enable

0 Dynamic power management is disabled.

1 Functional units enter a low-power mode automatically if the unit is idle. This does not
affect operational performance and is transparent to software or any external
hardware.

12

Reserved. For test use; software should not set this bit.

13

BHTCLR 4

Clear branch history table

0 The MPC7451 clears this bit one cycle after it is set.

1 Setting BHTCLR bit initializes all entries in BHT to weakly, not taken whether or not
the BHT is enabled by HIDO[BHT]. However, for correct results, the BHT should be
disabled (HIDO[BHT] = 0) before setting BHTCLR. Setting BHTCLR causes the
branch unit to be busy for 64 cycles while the initialization process is completed.

14

XAEN 5

Extended addressing enabled

0 Extended addressing is disabled; the 4 most significant bits of the 36-bit physical
address are cleared and a 32-bit physical address is used.

1 Extended addressing is enabled;, the 32-bit effective address is translated to a 36-bit
physical address.

If HIDO[XAEN] is changed (cleared or set), the BATs and TLBs must be invalidated first.

15

NHR 1

Not hard reset (software-use only). Helps software distinguish a hard reset from a soft

reset.

0 A hard reset occurred if software had previously set this bit.

1 Ahard reset has not occurred. If software sets this bit after a hard reset, when a reset
occurs and this bit remains set, software knows it was a soft reset.

The MPC7451 never writes this bit unless executing an mtspr(HIDO).

16

ICE 6

Instruction cache enable

0 The instruction cache is neither accessed nor updated. All pages are accessed as if
they were marked cache-inhibited (WIM = x1x). Potential cache accesses from the
bus (snoop and cache operations) are ignored. In the disabled state for the L1
caches, the cache tag state bits are ignored and all accesses are propagated to the
L2 cache, L3 cache, or bus as burst transactions. For those transactions, Cl is
asserted regardless of address translation. ICE is zero at power-up.

1 The instruction cache is enabled. Note that HIDO[ICFI] must be set at the same time
that this bit is set.

MOTOROLA

Chapter 2. Programming Model 2-19

MPC7451 Processor Register Set

Table 2-6. HIDO Field Descriptions (continued)

Bits Name Description

17 DCE 2 Data cache enable

0 The data cache is neither accessed nor updated. All pages are accessed as if they
were marked cache-inhibited (WIM = x1x). Potential cache accesses from the bus
(snoop and cache operations) are ignored. In the disabled state for the L1 caches,
the cache tag state bits are ignored and all accesses are propagated to the L2 cache,
L3 cache, or bus as cache-inhibited. For those transactions, Cl is asserted regardless
of address translation.DCE is zero at power-up.

1 The data cache is enabled.Note that HIDO[DCFI] must be set at the same time that
this bit is set.

18 ILOCK 7 Instruction cache lock

0 Normal operation

1 All of the ways of the instruction cache are locked. A locked cache supplies data
normally on a read hit. On a miss, the access is treated the same as if the instruction
cache was disabled.Thus, the bus request is a 32-byte burst read, but the cache is
not loaded with data. The data is reloaded into the L2 and L3, unless the L2CR[L2DO]
and L3CR[L3DQ] bits are set, respectively. Note that setting this bit has the same
effect as setting ICTRL[ICWL] to all ones. However, when this bit is set, ICTRL[ICWL]
is ignored. Chapter 3, “L1, L2, and L3 Cache Operation,” gives further details.

19 DLOCK 2 Data cache lock

0 Normal operation

1 All the ways of the data cache are locked. A locked cache supplies data normally on
aread hit but is treated as a cache-inhibited transaction on a miss. On a miss, a load
transaction still reads a full cache line from the L2, L3, or bus but does not reload that
line into the L1. Any store miss is treated like a write-through store and the transaction
occurs on the bus with the WT signal asserted. A snoop hit to a locked L1 data cache
operates as if the cache were not locked. A cache block invalidated by a snoop
remains invalid until the cache is unlocked. Note that setting this bit has the same
effect as setting LDSTCR[DCWL] to all ones. However, when this bit is set,
LDSTCR[DCWL] is ignored. Refer to Chapter 3, “L1, L2, and L3 Cache Operation,”
for further details.

To prevent locking during a cache access, a sync instruction must precede the setting

of DLOCK and a sync must follow.

20 ICFI 6 Instruction cache flash invalidate

0 The instruction cache is not invalidated. The bit is cleared when the invalidation
operation begins (the next cycle after the write operation to the register). The
instruction cache must be enabled for the invalidation to occur.

1 Aninvalidate operation is issued that marks the state of each instruction cache block
as invalid. Cache access is blocked during this time. Setting ICFI clears all the valid
bits of the blocks and sets the PLRU bits to point to way LO of each set. When the L1
flash invalidate bits are set through an mtspr operation, the hardware automatically
clears these bits in the next cycle (provided that the corresponding cache enable bits
are set in HIDO).

Note, in the MPC603 and MPC603e processors, the proper use of the ICFI and DCFI

bits was to set them and clear them in two consecutive mtspr operations. Software that

already has this sequence of operations does not need to be changed to run on the

MPC7451.

2-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Table 2-6. HIDO Field Descriptions (continued)

Bits

Name

Description

21

DCFI 2

Data cache flash invalidate

0 The data cache is not invalidated. The bit is cleared when the invalidation operation
begins (the next cycle after the write operation to the register).

1 Aninvalidate operation is issued that marks the state of each data cache block as
invalid without writing back modified cache blocks to memory. Cache access is
blocked during this time. Bus accesses to the cache are signaled as a miss during
invalidate-all operations. Setting DCFI clears all the valid bits of the blocks and the
PLRU bits to point to way LO of each set. When the L1 flash invalidate bits are set
through an mtspr operation, the hardware automatically clears these bits in the next
cycle. Note that setting DCFI invalidates the data cache regardless of whether it is
enabled.

Note, in the MPC603e processors, the proper use of the ICFI and DCFI bits was to set

them and clear them in two consecutive mtspr operations. Software that already has

this sequence of operations does not need to be changed to run on the MPC7451.

22

spPD 1

Speculative data cache and instruction cache access disable

0 Speculative bus accesses to nonguarded space (G = 0) from both the instruction and
data caches is enabled.

1 Speculative bus accesses to nonguarded space in both caches is disabled.

Thus, setting this bit prevents L1 data cache misses from going to the memory

subsystem until the instruction that caused the miss is next to complete. The HIDO[SPD]

bit also prevents instruction cache misses from going to the memory subsystem until

there are no unresolved branches. For more information on this bit and its effect on

re-ordering of loads and stores, see Section 3.3.3.5, “Enforcing Store Ordering with

Respect to Loads.”

23

Reserved. Defined as IFTT or IFEM on some earlier processors.

XBSEN

Extended BAT Block Size Enable.

0 Disables IBATnU[XBL] & DBATnU[XBL] bits and clears these bits to zero.

1 Enables IBATnU[XBL] & DBATNU[XBL] bits BATnU[1518] become the 4 MSBs of the
extended 15 bit BL field (BATnU[15-29]). This allows for extended BAT block sizes of
512MB, 1 GB, 2GB, and 4 GB. If HIDO[XBBSEN] is set at startup and then cleared
after startup, the XBL bits will not clear but stay the same as they were set at startup.

HIDO[XBSEN] should be set once at startup and once set should not be cleared.

WhenHIDO[XBSEN] is set at startup, and then HIDO[XBSEN] is cleared, the

IBATnU[XBL] & DBATNU[XBL] bits are not cleared but stay the same as what was set at

startup.

If backwards compatibility with previous processors is a concern, then HIDO[XBSEN]

should stay cleared so that the XBL bits are treated as 0's. This allows the BAT

translation to have a maximum block length of 256 MB.

24

SGE 8

Store gathering enable

0 Store gathering is disabled.

1 Integer store gathering is performed as described in 3.1.2.3, “Store
Gathering/Merging,” and Section 6.4.4.2, “Store Gathering.”

25

Reserved. Defined as DCFA on some earlier processors.

26

BTIC?

Branch target instruction cache enable. Used to enable use of the 128-entry branch

instruction cache.

0 The BTIC contents are invalidated and the BTIC behaves as if it were empty. New
entries cannot be added until the BTIC is enabled.

1 The BTIC is enabled and new entries can be added.

The BTIC is flushed by context synchronization, which is required after a move to HIDO.

Thus if the synchronization rules are followed, modifying this BTIC bit implicitly flushes

the BTIC. See Chapter 6, “Instruction Timing,” for further details.

MOTOROLA

Chapter 2. Programming Model 2-21

MPC7451 Processor Register Set

Table 2-6. HIDO Field Descriptions (continued)

Bits Name Description

27 LRSTK 1 Link register stack enable

0 Link register prediction is disabled.

1 Allows bclr and bclrl instructions to predict the branch target address using the link
register stack which can accelerate returns from subroutines. See Chapter 6,
“Instruction Timing,” for further details.

28 FOLD ! Branch folding enable

0 Branch folding is disabled. All branches are dispatched to the completion buffer.

1 Branch folding is enabled, allowing branches to be folded out of the instruction
prefetch stream before dispatch. The MPC7451 attempts to fold branches that do not
modify the link and or count register.

Note that if a branch is one of the three instruction buffers that are candidates for

dispatch the cycle after it is processed, it cannot be folded it was not taken. See

Chapter 6, “Instruction Timing,” for further details.

29 BHT ! Branch history table enable

0 BHT disabled. The MPC7451 uses static branch prediction as defined by the
PowerPC architecture (UISA) for those branch instructions the BHT would have
otherwise used to predict (that is, those that use the CR or CTR mechanism to
determine direction). For more information on static branch prediction, see
“Conditional Branch Control,” in Chapter 4 of the Programming Environments
Manual.

1 Allows the use of the dynamic prediction 2048-entry branch history table (BHT).

The BHT is disabled at power-on reset. All entries are set to weakly, not-taken.

30 NOPDST 2 No-op dst, dstt, dstst, and dststt instructions

0 The dst, dstt, dstst, and dststt instructions are enabled.

1 The dst, dstt, dstst, and dststt instructions are no-oped globally, and all previously
executed dst streams are cancelled.

31 NOPTI 8 No-op the data cache touch instructions
0 The dcbt and dcbtst instructions are enabled.
1 The dcbt and dcbtst instructions are no-oped globally.

1 A context synchronizing instruction must follow the mtspr.

2 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow. Note
that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the HIDO{DCE] or HIDO[DCFI] bit.

3 MPC7445- and MPC7455-specific bit.

4 A context synchronizing instruction must precede a mtspr and a branch instruction should follow. The branch
instruction may be either conditional or unconditional. It ensures that all subsequent branch instructions see the
newly initialized BHT values. For correct results, the BHT should be disabled (HIDO[BHT] = 0) before setting
BHTCLR.

5 Adssall and sync must precede a mtspr and then a sync and a context-synchronizing instruction must follow.
Alteration of HIDO[XAEN] must be done with caches and translation disabled. The caches and TLBs must be flushed
before they are re-enabled after the XAEN bit is altered. Note that if a user is not using the AltiVec data streaming
instructions, then a dssall is not necessary prior to accessing the HIDO[XAEN] bit.

6 A context synchronizing instruction must immediately follow a mtspr. A mtspr instruction for HIDO should not modify
either of these bits at the same time it modifies another bit that requires additional synchronization.

7 A context synchronizing instruction must precede and follow a mtspr.

8 A mtspr must follow a sync and a context synchronizing instruction.

2-22 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

HIDO can be accessed with mtspr and mfspr using SPR 1008. All mtspr instructions
should be followed by a context synchronization instruction such as isync, for specific

details see Section 2.3.2.4, “ Synchronization.”

2.1.5.2 Hardware Implementation-Dependent Register 1 (HID1)

The hardware implementation-dependent register 1 (HID1) reflects the state of the
PLL_CFG[0:4] signals and controls other functions. The HID1 bits are shown in

Figure 2-9.
|:| Reserved
EBD PAR PCl pC3 SYNCBE
EMCP EBA|BCLK ECLK PCO PC2 PC4 | ABE
0‘ ‘ ‘ ‘0‘ ‘ ‘ 0000_00 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 00_1000_0000 |
01 2 3 4 5 6 7 8 14 15 16 17 18 19 20 21 22 31

Figure 2-9. Hardware Implementation-Dependent Register 1 (HID1)

The HID1 bits are described in Table 2-7.
Table 2-7. HID1 Field Descriptions

Bits 1 Name Description

0 EMCP Machine check signal enable
0 Machine check is disabled.
1 Machine check input signal (MCP) is enabled to cause machine check errors or

checkstops
1 — Reserved
2 EBA Enable/disable 60x/MPX bus address bus parity checking.

0 Address bus parity checking is disabled.

1 Allows an address bus parity error to cause a checkstop if MSR[ME] = 0 or a
machine check exception if MSR[ME] = 1.

Clearing EBA and EBD allows the processor to operate with memory subsystems

that do not generate parity. The MPC7451 always generates parity regardless of

whether checking is enable or disabled.

3 EBD Enable/disable MPX/60x bus data parity checking.

0 Data parity checking is disabled.

1 Allows a data bus parity error to cause a checkstop if MSR[ME] = 0 or a machine
check exception if MSR[ME] = 1.

Clearing EBA and EBD allows the processor to operate with memory subsystems

that do not generate parity. The MPC7451 always generates parity regardless of

whether checking is enable or disabled.

4 BCLK CLK_OUT output enable and clock type selection. Used in conjunction with
HID1[ECLK] and the HRESET signal to configure CLK_OUT. See Table 2-8.

5 — Reserved

6 ECLK CLK_OUT output enable and clock type selection. Used in conjunction with

HID1[BCLK] and the HRESET signal to configure CLK_OUT. See Table 2-8.

MOTOROLA Chapter 2. Programming Model

2-23

MPC7451 Processor Register Set

Table 2-7. HID1 Field Descriptions (continued)

Bits 1 Name Description

7 PAR Disable precharge for ARTRY, SHDO, and SHD1 pins.

0 ARTRY, SHDO, and SHD1 signals are driven high when negated.

1 ARTRY, SHDO, and SHD1 signals are not driven high when negated.
Thus, the system must restore these signals to the high state on negation.

8-14 — Reserved
15 PCO PLL configuration bit O (read-only). Reflects the state of PLL CFGJ0].
16 PC1 PLL configuration bit 1 (read-only). Reflects the state of PLL CFG[1].
17 PC2 PLL configuration bit 2 (read-only). Reflects the state of PLL CFG[2].
18 PC3 PLL configuration bit 3 (read-only). Reflects the state of PLL CFGI[3].
19 PC4 PLL configuration bit 4 (read-only). Reflects the state of PLL CFG[4].

20 SYNCBE | Address broadcast enable for sync, eieio

0 Address broadcasting of sync, and eieio is disabled.

1 Address broadcasting of sync, and eieio is enabled. Note this bit must be set in
MP systems and systems that reorder stores.

21 ABE Address broadcast enable for dcbf, dcbst, dcbi, icbi, tibie, and tlbsync.

0 Address broadcasting of dcbf, dcbst, dcbi, icbi, tlbie, and tlbsync is disabled.
Note that when HID1[ABE] is cleared this does not exclude all cache operations
from the bus, just icbi, tibie, and tibsync.

1 Address broadcasting for cache control operations (dcbf, dcbst, dcbi, icbi) and
TLB control operations (tlbie and tibsync) is enabled. Note that whether the
broadcast occurs depends on the setting of the M bit of WIMG and whether the
access causes a hit to modified memory. See Section 3.8.2, “Bus Operations
Caused by Cache Control Instructions,” for more information on broadcast
operations.

The ABE bit must be set for MP systems.

22-31 — Reserved. Read as 0b00_1000_0000.

1 A sync and context synchronizing instruction must follow a mtspr.

Table 2-8 shows how HID1[BCLK], HID1[ECLK], and HRESET are used to configure
CLK_OUT. See Section 8.4.6.3, “JTAG Test Data Output (TDO)—Output,” for more
information.

Table 2-8. HID1[BCLK] and HID1[ECLK] CLK_OUT Configuration

HRESET | HID1[ECLK] HID1[BCLK] CLK_OuUT
Asserted X X High impedance
Negated 0 0 Zero

Negated 0 1 Bus/2

Negated 1 0 Core

Negated 1 1 Core/2

2-24 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

HID1 can be accessed with mtspr and mfspr using SPR 1009. All mtspr instructions
should be followed by a sync and context synchronization instruction for specific details
see Section 2.3.2.4, “ Synchronization.”

2.1.5.3 Memory Subsystem Control Register (MSSCRO)

The memory subsystem control register (MSSCRO), shown in Figure 2-10, is used to
configure and operate the memory subsystem for the MPC7451. It isaccessed as SPR 1014.
The MSSCRO isinitialized to al Os except for the read-only bits.

Because M SSCRO alters how the MPC7451 responds to snoop requests, it isimportant that
changesto the value of MSSCRO are handled correctly.

L3TCEXT L3TCEN [] Reserved

EIDIS ABD L3TC BMODE 1D L2PFE

oo [oefofJoof [[[[Jof [ovowoo0 [[omw]| |
0 1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 25 26 27 29 30 31

Figure 2-10. Memory Subsystem Control Register (MSSCRO)

Table 2-9 describes MSSCRO fields.

Table 2-9. MSSCRO Field Descriptions

Bits

Name

Function

0-2

Reserved

3-5

DTQ

DTQ size. Determines the maximum number of outstanding data bus transactions that the
MPC7451 can support. See Chapter 9, “System Interface Operation,” for more
information.The DTQ bit values are as follows:

000 8 Entries

001 16 Entries

010 2 Entries

011 3 Entries

100 4 Entries

101 5 Entries

110 6 Entries

111 7 Entries

Reserved

EIDIS

Disable external intervention in MPX bus mode

0 External interventions occur.

1 The MPC7451 performs external pushes instead of external interventions. External
interventions are disabled.

8-9

Reserved

MOTOROLA

Chapter 2. Programming Model 2-25

MPC7451 Processor Register Set

Table 2-9. MSSCRO Field Descriptions (continued)

Bits

Name

Function

10

L3TCEXT

L3 turn around clockcount extension (MPC7457-Specific)

0 Used with MSSCRO[L3TC] to determine the L3 turnaround clock count. See L3CR[L3TC]
field description.

1 Used with MSSCRO[L3TC] to determine the L3 turnaround clock count. See
MSSCRO[L3TC] field description.

Note, that the MSSCRO[10] bit is reserved on the MPC7451 and is used as an L3
turnaround clock count only on the MPC7457.

11

ABD

Address bus driven mode

0 Address bus driven mode disabled

1 Address bus driven mode enabled

The read-only bit reflects the state of the BMODEDO signal after HRSET negation and
indicates whether the processor is address bus driven mode. See Section 9.3.2.1,
“Address Bus Driven Mode,” for more information.

12

L3TCEN

L3 turnaround clock enable

0 L3 turnaround clock disabled.

1 L3turnaround clock is enabled.

See Chapter 3, “L1, L2, and L3 Cache Operation,” for more information.

13-14

L3TC

L3 turnaround clock count. The following bit values determine the number of cycles the L3
waits between read and write transactions if L3TCEN is set.The following values are correct
for the MPC7451. Note that only for the MPC7457, the following values are correct when
MSSCRO[L3TCEXT] = 0:

00 2L3CKn cycles

01 3L3CKncycles

10 4 L3CKn cycles

11 5L3CKn cycles

Also note that only for the MPC7457, the following values are correct when
MSSCRO[L3TCEXT] = 1. These values are not used on the MPC7451.

00 6 L3CKn cycles

01 7 L3CKn cycles

10 8 L3CKn cycles

11 9 L3CKn cycles

15

Reserved.

16-17

BMODE

Bus mode (read-only). Reflects the inverse of the voltage levels on BMODEJ[0:1] while
HRESET is asserted. Indicates whether the system interface uses the 60x or MPX bus
protocol as described in Chapter 9, “System Interface Operation.”
00 60x bus mode
01 Reserved
10 MPX bus mode
11 Reserved
Note that the value on BMODE[0:1] after reset negates determines other values of
MSSCRO as follows:

BMODEQO (post reset) - MSSCRO[ABD]

BMODETL1 (post reset) - MSSCROJ[ID]

18-25

Reserved. Normally cleared, used in debug, writing nonzero values may cause boundedly
undefined results.

2-26

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Table 2-9. MSSCRO Field Descriptions (continued)

Bits Name Function

26 ID Processor identification. Sets the processor ID to either processor 0 or 1. Determined by
the inverse of the voltage levels on BMODEL1 while HRESET is negated.

0 BMODEL1 negated after HRESET negated

1 BMODEL1 asserted after HRESET negated

In a multiprocessor system, one processor can be assigned by the BMODEL1 as processor
0 and all other processor can be assigned as processor 1. Then software can find processor
0 and use it to re-identify the other processors by writing unique values to the PIR of the

other CPUs.
27-29 — Reserved. Read as zeroes.
30-31 L2PFE L2 prefetching enabled. The following values determine the number of L2 prefetch engines

enabled as follows:

00 L2 prefetching disabled, no prefetch engines

010ne prefetch engine enabled

10 Two prefetch engines enabled

11 Three prefetch engines enabled

These bits enable alternate sector prefetching in the 2-sectored L2 cache; up to 3
outstanding prefetch engines may be active.

2.1.5.4 Memory Subsystem Status Register (MSSSRO0)

The memory subsystem status register (MSSSRO0), shown in Figure 2-11, is used to report
parity in the L2 and L3 caches of the MPC7451. It is accessed as SPR 1015. The MSSSR0O
isinitialized to al Os except for the read-only bits.

L2DAT L3DAT DPE |:| Reserved
L2TAG | L3TAG | APE | TEA
0000_ 0000_ 0000_0 ‘ ‘ ‘ ‘ ‘ ‘ 0000_0000_ 0000 ‘
0 12 13 14 15 16 17 18 19 20 31

Figure 2-11. Memory Subsystem Status Register (MSSSRO)

Table 2-10 describes MSSSRO fields.
Table 2-10. MSSSRO Field Descriptions

Bits Name Description

0-12 — Reserved. Normally cleared, used in debug, writing nonzero values may cause boundedly
undefined results.

13 L2TAG L2 tag parity error
0 L2 tag parity error not detected.
1 L2 tag parity error detected.

14 L2DAT L2 data parity error
0 L2 data parity error not detected.
1 L2 data parity error detected.

MOTOROLA Chapter 2. Programming Model 2-27

MPC7451 Processor Register Set

Table 2-10. MSSSRO Field Descriptions (continued)

Bits Name Description

15 L3TAG L3 tag parity error
0 L3 tag parity error not detected.
1 L3 tag parity error detected.

16 L3DAT L3 data parity error
0 L3 data parity error not detected.
1 L3 data parity error detected.

17 APE Address bus parity error
0 Address bus parity error not detected.
1 Address bus parity error detected.

18 DPE Data bus parity error
0 Data bus parity error not detected.
1 Data bus parity error detected.

19 TEA Bus transfer error acknowledge
0 TEA not detected as asserted.
1 TEA detected as asserted.

20-31 — Reserved

2.1.5.5 Instruction and Data Cache Registers

There are severa registers used for configuring and controlling the various L1, L2, and L3
caches. Along with the cache registers (L2CR, L3CR, ICTRL, LDSTCR, and L3PM),
HIDO isused in configuring the caches. Details of how the various cache registers are used
isdiscussed below. Seethe Chapter 3, “L 1, L2, and L3 Cache Operation,” for further details
on configuring the cache.

2.1.5.5.1 L2 Cache Control Register (L2CR)

The L2 cache control register (L2CR), shown in Figure2-12, is a supervisor-level,
implementation-specific SPR used to configure and operate the L2 cache. It iscleared by a
hard reset or power-on reset.

LoPE L30H0 [] Reserved
L2E ‘ L2I0 ‘ L2D0 L2REP

| ‘ ‘ 00_0000_00 ‘LZI‘ ‘ ‘ 00 u 000 ‘ ‘LZHWF‘ 0000_0000_000 |

0o 1 2 3 4 9 10 11 12 14 15 16 18 19 20 21 31

Figure 2-12. L2 Cache Control Register (L2CR)

The L2 cache interface is described in Chapter 3, “L1, L2, and L3 Cache Operation.” The
L2CR bits are described in Table 2-11.

2-28 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Table 2-11. L2CR Field Descriptions

Bits

Name

Description

L2E

L2 cache enable

0 L2 cache operation (including snooping) disabled

1 L2 cache operation (including snooping) enabled

The L2 cache operation is enabled starting with the next transaction the L2 cache unit receives.
Before enabling the L2 cache, all other L2CR bits must be set appropriately. The L2 cache may
need to be invalidated globally.

L2PE

L2 data parity checking enable

0 L2 tag and data parity disabled

1 L2 tag and data parity enabled

Enables or disables the checking of L2 tag and data parity.

2-3

Reserved
Must be set by software during initialization to ob00.

4-9

Reserved

10

L2

L2 global invalidate

0 L2 cache not invalidated globally

1 L2 cache invalidated globally

Invalidates the L2 cache globally by clearing the L2 status bits. This bit must not be set while
the L2 cache is enabled. Note that L2l is automatically cleared when the global invalidate
completes.

11

L210

L2 instruction-only mode

0 Instruction-only operation in the L2 cache disabled

1 Instruction-only operation in the L2 cache enabled

Enables instruction-only operation in the L2 cache. For this operation, only instruction accesses
cause new entries to be allocated in the L2 cache. Data addresses already in the cache still hit
for the L1 data cache. When both L2CR[L2DQO] and L2CRJ[L2IQO] are set, the L2 cache is
effectively locked.

12

L30OHO

L3 output hold 0. These bits configure output hold time for address, data, and control signals
driven by the MPC7455 to the L3 data RAMs. They should generally be set according to the
SRAM'’s input hold time requirements.

See the MPC7455 Hardware Specification for specific output hold times.

13-14

Reserved

15

L2DO

L2 data-only mode

0 Data-only operation in the L2 cache disabled

1 Data-only operation in the L2 cache enabled

Enables data-only operation in the L2 cache. When this bit is set, only data accesses can be
cached in the L2 cache. Instruction accesses are serviced for instruction addresses already in
the L2 cache; however, the L2 cache is not reloaded for L1 instruction cache misses. Note that
setting both L2CR[L2D] and L2CRJ[L2I0] effectively locks the L2 cache.

16-18

Reserved

19

L2REP

L2 replacement algorithm

0 When this bit is cleared, the default replacement algorithm is used

1 When this bit is set, the secondary replacement algorithm is used

See Section 3.6.4.4, “L2 Cache Line Replacement Algorithms,” for more information.

MOTOROLA

Chapter 2. Programming Model 2-29

MPC7451 Processor Register Set

Table 2-11. L2CR Field Descriptions (continued)

Bits Name Description

20 L2HWF | L2 hardware flush.

0 L2 hardware flush disabled

1 L2 hardware flush enabled

When L2CR[L2HWF] is set, the L2 begins a flush by starting with way 0. Each modified block
(sector) is cast out as it is flushed. After the first line in the first way is flushed, the next way
(same index) is flushed. When all ways for a given index have been flushed, the index is
incremented and same process occurs for line 1, etc.

During a hardware flush, the L2 services both read hits and bus snooping.

The hardware flush completes when all blocks in the L2 have a status of invalid. At this time,
the processor automatically clears L2CR[L2HWF]. However, even though the hardware flush is
considered complete, there may still be outstanding castouts queued in the L2SQ that need to
be performed to the L3 and outstanding castouts in the BSQ waiting to be performed to the
system interface.

See Section 3.6.3.1.5, “Flushing of L1, L2, and L3 Caches,” for more information.

21-31 — Reserved

The L2CR register can be accessed with the mtspr and mfspr instructionsusing SPR 1017.

2.1.5.5.2 L3 Cache Control Register (L3CR)

The L3 cache control register (L3CR), shown in Figure 2-20, is a supervisor-level,
implementati on-specific SPR used to configure and operatethe L3 cache. All L3CR bitsare
cleared by ahard reset or power-on reset.

L3CKSPEXT*
L3APE L3CLKEN L3CLKEXT| L3sPo L3HWE L1300 || Reserved
L3PE |L3SIZ L3I0 ‘ L30OH1| L3CKSP L3REP‘ L3l L3NIRCA PMEN PMSIZ
lee [[[Jojuwew] | [[[[Juese| || fuwer] | | oo | | |
0 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23 24 25 26 28 29 30 31

IMPC7457-specific bit
Figure 2-13. L3 Cache Control Register (L3CR) for the MPC7457

The L3 cache interface is described in Chapter 3, “L1, L2, and L3 Cache Operation.” The
L3CR bits are described in Table 2-12.

2-30 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Table 2-12. L3CR Field Descriptions

Bits Name

Description

0 L3E

L3 enable

0 L3 cache operation (including snooping) disabled

1 L3 cache operation (including snooping) enabled

Enables or disables L3 cache operation (including snooping) starting with the next transaction
the L3 cache unit receives. Before enabling the L3 cache, the L3 clock must be configured
through L3CR[L3CLK], and the L3CR[L3CLKEN] (see the MPC7451 Hardware Specifications
for further details). Also, all other L3CR bits must be set appropriately. The L3 cache may need
to be invalidated globally before the L3 cache is enabled.

1 L3PE

L3 data parity checking enable

0 L3 odd data parity checking disabled

1 L3 odd data parity checking enabled

Enables odd parity checking for the L3 data RAM interface and on-chip tags. When L3PE is set,
it allows a data parity error on the L3 interface or a parity error in the on-chip L3 tags to cause
a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1. The MPC7451
always generates L3 data parity.

2 L3APE

L3 address parity checking enable

0 L3 address parity checking disabled

1 L3 address parity checking enabled

If L3BCR[L3PE] = 1. enables odd parity checking for the L3 address bus interface and on-chip
tags. The address parity is merged with the data parity on the L3 data parity interface pins. An
address parity error on the L3 address bus will cause a checkstop if MSR[ME] = 0 or a machine
check exception if MSR[ME] = 1. The MPC7451 only generates L3 address parity if
L3CRI[L3APE] = 1 and L3CR[L3PE] = 1.

3 L3Sz

L3 size

Should be set according to the size of the L3 cache as follows:
0 1 Mbyte

1 2 Mbyte

4 L3CLKEN

Enables the L3_CLK]0:1] signals

0 L3 clocks disabled

1 L3 clocks enabled

A minimum of 100 MPC7451 clock cycles must transpire between the clearing and setting of
this bit.

Reserved. Must be set by software during initialization (see Section 3.7.3.1, “Enabling the L3
Cache and L3 Initialization,” for details on when to set this bit).

MOTOROLA

Chapter 2. Programming Model 2-31

MPC7451 Processor Register Set

Table 2-12. L3CR Field Descriptions (continued)

Bits Name Description

6-8 L3CLK L3 clock ratio (core-to-L3 frequency divider). Specifies the ratio between the core clock
frequency and the frequency at which the L3 SRAM interface operates. See the MPC7451
Hardware Specifications for further details. The resulting L3 clock frequency cannot be slower
than the clock frequency of the 60x/MPX bus interface.
The following ratios are correct for the MPC7451:
Note that for the MPC7457, the following ratios are correct when L3CR[L3CLKEXT] = 0:
000 +6
001 Reserved
010 =2
011 +25
100 +3
101 +3.5
110 +4
111 +5
Also note that for the MPC7457, the following ratios are correct when L3CR[L3CLKEXT] = 1.
These ratios are not used on the MPC7451.
000 +7
001 +8
010 +45
011 +5.5
100 +6.5
101 +7.5
110 Reserved
111 Reserved
Note these bits should only be changed after at least 100 MPC7451 clock cycles have
transpired after LBCLKEN has been cleared.

9 L3I0 L3 instruction-only mode

0 Instruction-only operation in the L3 cache disabled
1 Instruction-only operation in the L3 cache enabled
Enables instruction-only operation in the L3 cache. When this bit is set, only instruction
accesses can be cached in the L3 cache. Data addresses already in the cache will still hit for
the L3 data cache. When both L3CR[L3DO] and L3CR[L3I0] are set, the L3 cache is effectively
locked.

10 L3CLKEXT |L3 Clock Ratio Extension (MPC7457-Specific)
0 Used with L3CR[L3CLK] to determine the clock ratio encodings. See L3CR[L3CLK] field
description.
1 Used with L3CR[L3CLK] to determine the other clock ratio encodings. See L3CR[L3CLK]
field description.
Note, that the L3CR[10] bit is reserved on the MPC7451 and is used as an L3 clock ratio
extension only on the MPC7457.

11 L3CKSPEXT | L3 Clock Sample Point Extension (MPC7457-Specific)
0 Used with L3CR[L3CKSP] to determine the clock ratio encodings. See L3CR[L3CKSP] field
description.
1 Used with L3CR[L3CKSP] to determine the other clock ratio encodings. See L3CR[L3CKSP]
field description.
Note, that the L3CR[11] bit is reserved on the MPC7451 and is used as an L3 clock sample point
extension only on the MPC7457.

12 — Reserved

2-32 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Table 2-12. L3CR Field Descriptions (continued)

Bits

Name

Description

12

L30OH1

MPC7455: L3 output hold 1. These bits configure output hold time for address, data, and control
signals driven by the MPC7455 to the L3 data RAMs. They should generally be set according
to the SRAM’s input hold time requirements.

See the MPC7455 Hardware Specification for specific output hold times.

All others: Reserved

13

L3SPO

L3 sample point override

0 L3 sample point override disabled

1 L3 sample point override enabled

Adds one L3 clock of latency to a read operation, and may be required for future generation
SRAMS.

14-15

L3CKSP

L3 clock sample point. Specifies in which L3 clock cycle the L3 accumulator samples data from
the receive latches. See Section 3.7.3.8, “L3 Cache Clock and Timing Controls,” and the
MPC7451 Hardware Specifications for further clarification.

The following values are correct for the MPC7451. Note that only for the MPC7457, the following
values are correct when L3CR[L3CKSPEXT] = 0:

00 2clocks

01 3clocks

10 4 clocks

11 5clocks

Also note that only for the MPC7457, the following values are correct when L3CR[L3CKSPEXT]
= 1. These values are not used on the MPC7451.

00 6 clocks

01 7 clocks

10 8clocks

11 9clocks

16-18

L3PSP

L3 P-clock sample point. Specify the processor clock cycle in which the L3 accumulator
samples data from the receive latches. See Section 3.7.3.8, “L3 Cache Clock and Timing
Controls,” and the MPC7451 Hardware Specifications for further clarification.

000 O clocks

001 1 clock

010 2 clocks

011 3clocks

100 4 clocks

101 5 clocks

110 Reserved on the MPC7451. For the MPC7457, it is 6 clocks.

111 Reserved on the MPC7451. For the MPC7457, it is 7 clocks.

19

L3REP

L3 replacement algorithm

0 When this bit is cleared, the default replacement algorithm is used

1 When this bitis set, the secondary replacement algorithm (3-bit running free counter) is used.
For details on the replacement algorithm, see Section 3.7.7.4, “L3 Cache Replacement
Selection.”

MOTOROLA

Chapter 2. Programming Model 2-33

MPC7451 Processor Register Set

Table 2-12. L3CR Field Descriptions (continued)

Bits Name Description
20 L3HWF L3 hardware flush
0 L3 hardware flush disabled
1 L3 hardware flush enabled
When L3CR[L3HWF] is set, the L3 begins a flush by starting with way 0. Each modified block
(sector) is cast out as it is flushed. After the first line in the first way is flushed, the next way
(same index) is flushed. When all ways for a given index have been flushed, the index is
incremented and same process occurs for line 1, etc.
During a hardware flush, the L3 services both read hits and bus snooping.
The hardware flush completes when all blocks in the L3 have a status of invalid. At this time,
the processor automatically clears L3CR[L3HWF]. However, even though the hardware flush is
considered complete, there may still be outstanding castouts queued in the BSQ waiting to be
performed to the system interface.
See Section 3.6.3.1.5, “Flushing of L1, L2, and L3 Caches,” for more information.
21 L3I L3 global invalidate
0 Do not globally invalidate the L3
1 Globally invalidate the L3
Invalidates the L3 cache globally by clearing the L3 status bits. This bit must not be set while
the L3 cache is enabled. Note that L3I is automatically cleared when the global invalidate
completes.
22-23 L3RT L3 SRAM type. Configures the L3 SRAM interface for the type of synchronous SRAMs used:
* MSUG dual data rate SRAMSs that provide data synchronous to the L3_ECHO_CLK input
signals to the MPC7451 and on each clock edge
 Late-write SRAMs which are required by the MPC7451 to be of the pipelined
(register-register) configurations
* Pipeline burst SRAMs, referred to as PB2-type SRAMs
For burst RAM selections, the MPC7451 does not use the burst feature of the SRAM; it
generates an address for each access.
00 MSUG2 DDR SRAM
01 Pipelined (register-register) synchronous late-write SRAM
10 Reserved
11 PB2 SRAM
24 L3NIRCA | L3 non-integer ratios clock adjustment for the SRAM. When this bit is set, the AC timing of
L3_CLK]J0:1] is changed.
0 L3 SRAM clock timing is unchanged (default).
1 The L3_CLK][0:1] signals occur earlier relative to the MPC7451 driving the L3 address,
control and data buses in non-integer L3 clock ratios. Because of the way that the L3_CLK][0:1]
signals are internally derived, these signals may be driven slightly later (one-eight of a core
clock) with non-integer clock ratios than they would normally be with an integer L3 clock ratio.
This can potentially cause AC hold timing problems on the L3 interface if the timing margins are
very small. This signal corrects for this phenomenon by causing the MPC7451 to drive the
L3_CLK]J0:1] signals one-quarter of a core clock earlier at the expense of AC setup timing.
See the MPC7451 Hardware Specifications for further clarification.
25 L3DO L3 data-only mode
0 Data-only operation in the L3cache disabled
1 Data-only operation in the L3 cache enabled
Enables data-only operation in the L3 cache. When this bit is set, only data accesses can be
cached in the L3 cache. Instruction cache operations are serviced for instruction addresses
already in the L3 cache; however, the L3 cache is not reloaded for instruction cache misses.
Note that setting both L3CR[L3DO] and L3CR[L3IO] effectively locks the L3 cache.
26-28 — Reserved
2-34 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Table 2-12. L3CR Field Descriptions (continued)

Bits Name Description

29 PMEN Private memory enable

0 Private memory disabled

1 Private memory enabled

When this bit is set, the MPC7451 does not manage the coherency of the contents of private
memory. Thus, the software must manage addresses mapped to this range very carefully.

30-31 PMSIZ Private memory size

For the MPC7451, L3CR[31] is used:

01MB

12MB

Note that L3CR[30] bit is reserved on the MPC7451 and MPC7455.
For the MPC7457, L3CR[30—31] is used:

00 1 MB

01 2 MB

10 4 MB

11 Reserved

The L3CR register can be accessed with the mtspr and mfspr instructionsusing SPR 1018.

2.1.5.5.3 L3 Cache Output Hold Control Register
(L3OHCR)—MPC7457-Specific

The L3 cache output hold control register (L3OHCR), shown in Figure2-20, is a
supervisor-level, implementation-specific SPR used to control the output AC timing of the
L3 cache interface of the MPC7457. All L3OHCR bits are cleared by a hard reset or
power-on reset. For more information, see the MPC7457 Hardware Specification.

| L3AOH ‘LSCLKO_O}-{L3CLK1_OH‘ L3DOHO ‘ L3DOH8 ‘LSDOHlG ‘ L3DOH24 ‘ LSDOHSZ‘ L3DOH40 ‘ L3DOH48‘ L3DOH56|

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-14. L3 Cache Output Hold Control Register (L3OHCR) for the MPC7457

The L3 cache interface is described in Chapter 3, “L 1, L2, and L3 Cache Operation.” The
L30OHCR bits are described in Table 2-13.

Table 2-13. L30OHCR Field Descriptions

Bits Name Description

0-1 L3AOH L3 address output hold. These bits configure output hold time for address and control signals
driven by the MPC7457 to the L3 data RAMs. They should generally be set according to the
SRAM’s input hold time requirements.

See the MPC7457 Hardware Specification for specific output hold times.

2-4 | L3CLKO_OH |L3_CLKO output hold. These bits configure output hold time for L3_CLKO signal driven by the
MPC7457 to the L3 data RAMs. They should generally be set according to the SRAM’s input
hold time requirements.

See the MPC7457 Hardware Specification for specific output hold times.

MOTOROLA Chapter 2. Programming Model 2-35

MPC7451 Processor Register Set

Table 2-13. L3OHCR Field Descriptions (continued)

Bits Name Description

5-7 | L3CLK1_OH |L3_CLK1 output hold. These bits configure output hold time for L3_CLK1 signal driven by the
MPC7457 to the L3 data RAMs. They should generally be set according to the SRAM’s input
hold time requirements.

See the MPC7457 Hardware Specification for specific output hold times.

8-10 L3DOHO | L3_DATA[00:07]/L3_DP[0] output hold. These bits configure output hold time for
L3_DATA[00:07] and L3_DP[0] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.

See the MPC7457 Hardware Specification for specific output hold times.

11-13 L3DOH8 | L3_DATA[08:15]/L3_DP[1] output hold. These bits configure output hold time for L3_DATA[8:15]
and L3_DP[1] signals driven by the MPC7457 to the L3 data RAMs. They should generally be
set according to the SRAM'’s input hold time requirements.

See the MPC7457 Hardware Specification for specific output hold times.

14-16 | L3DOH16 |L3_DATA[16:23]/L3_DP[2] output hold. These bits configure output hold time for
L3_DATA[16:23] and L3_DP[2] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.

See the MPC7457 Hardware Specification for specific output hold times.

17-19 | L3DOH24 |L3_DATA[24:31]/L3_DP[3] output hold. These bits configure output hold time for
L3_DATA[24:31] and L3_DP[3] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.

See the MPC7457 Hardware Specification for specific output hold times.

20-22 | L3DOH32 |L3_DATA[32:39]/L3_DP[4] output hold. These bits configure output hold time for
L3_DATA[32:39] and L3_DP[4] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.

See the MPC7457 Hardware Specification for specific output hold times.

23-25 | L3DOH40 |L3_DATA[40:47])/L3_DPI[5] output hold. These bits configure output hold time for
L3_DATA[40:47] and L3_DP[5] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.

See the MPC7457 Hardware Specification for specific output hold times.

26-28 | L3DOH48 |L3_DATA[48:55]/L3_DP[6] output hold. These bits configure output hold time for
L3_DATA[48:55] and L3_DP[6] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.

See the MPC7457 Hardware Specification for specific output hold times.

29-31 | L3DOH56 |L3_DATA[56:63]/L3_DP[7] output hold. These bits configure output hold time for
L3_DATA[56:63] and L3_DP[7]signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.

See the MPC7457 Hardware Specification for specific output hold times.

The L3OHCR register is specific to the MPC7457 and can be accessed with the mtspr and
mfspr instructions using SPR 1000.

2.1.5.5.4 L3 Cache Input Timing Control (L3ITCRO)

The L3 cache input timing control register (L3ITCRQO), shown in Figure2-15, is a
supervisor-level, implementation-specific SPR used to control the input AC timing of the
L3 cache interface of the MPC7451. For the MPC7457, the L3ITCRO, shown in
Figure 2-16, is used to control the input AC timing of L3_DATA[0:15] and L3 _DP[0:1]

2-36 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

signals of the L3 cacheinterface. All L3ITCRO bits are cleared by ahard reset or power-on
reset and configured when the L3 clock is enabled. Note: This register is intended for
factory use. Writing to thisregister will overridethe default input AC timing of the L3 cache
interface and may cause improper operation of the L3 cache.

L3DCDISO [] Reserved
‘ L3DCO0

L3DCO ‘ ‘ ‘ 000_0000 |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-15. L3 Cache Control Register (L3ITCRO) for the MPC7451 and MPC7455

[] Reserved

L3DCOO0
L3DCDIS‘O ‘

L3DCO “|
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-16. L3 Cache Control Register (L3ITCRO) for the MPC7457

The L3 cache interface is described in Chapter 3, “L1, L2, and L3 Cache Operation.” The
L3ITCRO bits for the MPC7451 and MPC7455 are described in Table 2-14.

Table 2-14. L3ITCRO Field Descriptions for the MPC7451 and MPC7455

Bits Name Description

0-22 L3DCO L3 delay count. These bits contain a delay counter value used to internally align the
L3_ECHO_CLK inputs to data being returned from the SRAM.

23 L3DCDISO |L3 delay counter disable. Setting this bit disables the automic delay count configuration. Always
read as 0.

24 L3DCOO0 | L3 delay counter override. Setting this bit overrides the automatic configuration value of the
delay count. Always read as 0.

25-31 Reserved.

The L3ITCRO bits for the MPC7457 are described in Table 2-15.

MOTOROLA Chapter 2. Programming Model 2-37

MPC7451 Processor Register Set

Table 2-15. L3ITCRO Field Descriptions for the MPC7457

Bits Name Description
0-29 L3DCO L3 delay count. These bits contain a delay counter value used to internally align the
L3_ECHO_CLKO input to data being returned on L3_DATA[0:15] and L3_DP[0:1] from the
SRAM.
30 L3DCDISO |L3 delay counter disable. Setting this bit disables the automic delay count configuration. Always
read as 0.
31 L3DCOO0 | L3 delay counter override. Setting this bit overrides the automatic configuration value of the

delay count. Always read as O.

The L3ITCRO register can be accessed with the mtspr and mfspr instructions using
SPR 984.

2.1.5.55 L3 Cache InputTiming Control (L3ITCR1)

The L3 cache input timing control register (L3ITCRL), shown in Figure2-20, is a
supervisor-level, implementation-specific SPR used to control the input AC timing of
L3 DATA[16:31] and L3 _DP[2:3] signals of the L3 cache interface of the MPC7457. All
L3ITCRL1 bits are cleared by a hard reset or power-on reset and configured when the L3 is
enabled. Note: Thisregister isintended for factory use. Writing to thisregister will override
the default input AC timing of the L3 cacheinterface and may cause improper operation of
the L3 cache.

[] Reserved

L3DCO1
L3DCDIS‘1 ‘

L3DC1 “|
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-17. L3 Cache Control Register (L3ITCR1) for the MPC7457

The L3 cache interface is described in Chapter 3, “L 1, L2, and L3 Cache Operation.” The
L3ITCRO bits for the MPC7457 are described in Table 2-16.

Table 2-16. L3ITCRL1 Field Descriptions for the MPC7457

Bits Name Description

0-22 L3DC1 L3 delay count. These bits contain a delay counter value used to internally align the
L3_ECHO_CLK inputs to data being returned from the SRAM.

23 L3DCDIS1 |L3 delay counter disable. Setting this bit disables the automic delay count configuration. Always
read as 0.

2-38 MPC7450 RISC Microprocessor Family User’'s Manual MOTOROLA

MPC7451 Processor Register Set

Table 2-16. L3ITCRL1 Field Descriptions for the MPC7457 (continued)

Bits Name Description

24 L3DCO1 |L3 delay counter override. Setting this bit overrides the automatic configuration value of the
delay count. Always read as 0.

25-31 Reserved.

The L3CR register can be accessed with the mtspr and mfspr instructionsusing SPR 1001.

2.1.5.5.6 L3 Cache InputTiming Control (L3ITCR2)

The L3 cache input timing control register (L3ITCR2), shown in Figure2-18, is a
supervisor-level, implementation-specific SPR used to control the input AC timing of
L3 _DATA[32:47] and L3_DP[4:5] signds of the L3 cache interface of the MPC7457. All
L3ITCR2 bits are cleared by a hard reset or power-on reset and configured when the L3 is
enabled. Note: Thisregister isintended for factory use. Writing to thisregister will override
the default input AC timing of the L3 cacheinterface and may cause improper operation of
the L3 cache.

[] Reserved

L3DCO2
L3DCDIS2
\

e T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-18. L3 Cache Control Register (L3ITCR2) for the MPC7457

The L3 cache interface is described in Chapter 3, “L1, L2, and L3 Cache Operation.” The
L3ITCR2 bits for the MPC7457 are described in Table 2-16.

Table 2-17. L3ITCR2 Field Descriptions for the MPC7457

Bits Name Description

0-22 L3DC2 L3 delay count. These bits contain a delay counter value used to internally align the
L3_ECHO_CLK inputs to data being returned from the SRAM.

23 L3DCDIS2 |L3 delay counter disable. Setting this bit disables the automic delay count configuration. Always
read as 0.

24 L3DCO2 |L3 delay counter override. Setting this bit overrides the automatic configuration value of the
delay count. Always read as O.

25-31 Reserved.

The L3ITCR2 register can be accessed with the mtspr and mfspr instructions using
SPR 1002.

MOTOROLA Chapter 2. Programming Model 2-39

MPC7451 Processor Register Set

2.1.5.5.7 L3 Cache Input Timing Control (L3ITCR3)

The L3 cache input timing control register (L3ITCR3), shown in Figure2-19, is a
supervisor-level, implementation-specific SPR used to control the input AC timing of
L3 _DATA[48:63] and L3_DP[6:7] signds of the L3 cache interface of the MPC7457. All
L3ITCRS bits are cleared by a hard reset or power-on reset and configured when the L3 is
enabled. Note: Thisregister isintended for factory use. Writing to thisregister will override
the default input AC timing of the L3 cache interface and may cause improper operation of
the L3 cache.

[] Reserved

L3DCO3
L3DCDIS3
\

e T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-19. L3 Cache Control Register (L3ITCR3) for the MPC7457

The L3 cache interface is described in Chapter 3, “L1, L2, and L3 Cache Operation.” The
L3ITCRS3 bits for the MPC7457 are described in Table 2-18.

Table 2-18. L3ITCR3 Field Descriptions for the MPC7457

Bits Name Description

0-22 L3DC3 L3 delay count. These bits contain a delay counter value used to internally align the
L3_ECHO_CLK inputs to data being returned from the SRAM.

23 L3DCDIS3 | L3 delay counter disable. Setting this bit disables the automic delay count configuration. Always
read as 0.

24 L3DCO3 | L3 delay counter override. Setting this bit overrides the automatic configuration value of the
delay count. Always read as O.

25-31 Reserved.

The L3CR register can be accessed with the mtspr and mfspr instructionsusing SPR 1003.

2-40 MPC7450 RISC Microprocessor Family User’'s Manual MOTOROLA

MPC7451 Processor Register Set

2.1.5.5.8 Instruction Cache and Interrupt Control Register (ICTRL)

Theinstruction cache and interrupt control register (ICTRL), shownin Figure 2-20, isused
in configuring interrupts and error reporting for the instruction and data caches. It is
accessed as SPR 1011. Control and access to the ICTRL is through the privileged
mtspr/mfspr instructions.

[] Reserved
EDCE EICP

000 ‘ ‘ ‘ 00_0000_0000_0000_000 ‘ ‘ ICWL |
0 3 4 5 6 22 23 24 31

Figure 2-20. Instruction Cache and Interrupt Control Register (ICTRL)

Table 2-19 describes the bit fields for the ICTRL register.
Table 2-19. ICTRL Field Descriptions

Bits Name Description

0 CIRQ CPU interrupt request

0 No processor interrupt request forwarded to exception handling. If software clears the CIRQ
bit, it does not cancel a previously sent interrupt request.

1 Processor interrupt request sent to the exception mechanism.

This interrupt request is combined with the external interrupt request (assertion of INT). When

external interrupts are enabled with the MSR[EE] bit and either this bit is set or INT is asserted,

the MPC7451 takes the external interrupt exception. If there is more than one interrupt request

pending (CIRQ and INT is asserted), only one interrupt is taken. When the external interrupt

exception is taken, the ICTRL[CIRQ)] bit is automatically cleared.

Note that this mechanism allows a processor to interrupt itself. If software leaves CIRQ set

while waiting for the interrupt to be taken, it can poll CIRQ to determine when the interrupt has

been taken.

1-3 — Reserved

4 EIEC! |Instruction cache parity error enable

0 When the bitis cleared, any parity error in the L1 instruction cache is masked and does not
cause machine checks or checkstop

1 Enables instruction cache parity errors. When an instruction cache parity error occurs, a
machine check exception is taken if MSR[ME] = 1. When this condition occurs, SRR1[1] is
set.

For details on the machine check exception see Section 4.6.2, “Machine Check Exception

(0x00200)”

5 EDCE? |Data cache parity error enable

0 Whenthe bitis cleared, any parity error in the L1 data cache is masked and does not cause
machine checks or checkstop

1 Enables data cache parity errors. When a data cache parity error occurs, a machine check
exception is taken if MSR[ME] = 1. When this condition occurs, SRR1[2] is set.

For details on the machine check exception see Section 4.6.2, “Machine Check Exception

(0x00200)”

6-8 — Reserved. Normally cleared, used in debug, writing nonzero values may cause boundedly
undefined results.

MOTOROLA Chapter 2. Programming Model 2-41

MPC7451 Processor Register Set

Table 2-19. ICTRL Field Descriptions (continued)

Bits Name Description
9-22 — Reserved. Read as zeroes and ignores writes.
23 EICP Enable instruction cache parity checking

0 Instruction cache parity disabled

1 When the EICP bit is set, the parity of any instructions fetched from the L1 instruction cache
is checked. Any errors found are reported as instruction cache parity errors in SRR1. If EICE
is also set, these instruction cache errors cause a machine check or checkstop. If either EICP
or EICE is cleared, instruction cache parity is ignored.

Note that when parity checking and error reporting are both enabled, errors are reported even
on speculative fetches that are never actually executed. Correct instruction cache parity is
always loaded into the L1 instruction cache regardless of whether checking is enabled or not.

24-31 IcwLt Instruction cache way lock

0 Instruction cache way lock disabled.

1 Instruction cache way lock enabled.

Each bit in ICWL corresponds to a way of the L1 instruction cache. Setting a bit locks the
corresponding way in the instruction cache. Setting all 8 bits of ICWL is equivalent to locking
the entire instruction cache. When all 8 ICWL bits are set, MPC7451 behaves the same as
when HIDO[ILOCK] is set. See Section 2.1.5.1, “Hardware Implementation-Dependent
Register 0 (HIDO) for details. See Chapter 3, “L1, L2, and L3 Cache Operation,” for
suggestions on how to keep the PLRU replacement algorithm symmetrical, and for
synchronization requirements for modifying ICWL.

1 A context synchronizing instruction must precede and follow a mtspr.

2 Adssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow. Note that
if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
ICTRL[EDCE] bit.

ICTRL can be accessed with the mtspr and mfspr instructions using SPR 1011.

2.1.5.5.9 Load/Store Control Register (LDSTCR)

The load/store control register (LDSTCR) provides away to lock the ways for the L1 data
cache. The LDSTCR is shown in Figure 2-26.

[] Reserved

0000_0000_0000_0000_0000_0000 ‘ DCWL |
0 23 24 31

Figure 2-21. Load/Store Control Register (LDSTCR)

Table 2-25 describes the bit fields for the LDSTCR register.

2-42 MPC7450 RISC Microprocessor Family User’'s Manual MOTOROLA

MPC7451 Processor Register Set

Table 2-20. LDSTCR Field Descriptions

Bits Name Description

0-23 — Reserved. Writing nonzero values may cause boundedly undefined results.

24-31 DCWL | Data cache way lock

0 Each cleared bit corresponds to a way not being locked in the L1 data cache.

1 Each set bit locks the corresponding way in the L1data cache.
When DCWL[24-31] are all set, it is equivalent to locking the entire L1 data cache and the
MPC7451 behaves the same as if HIDO[DLOCK] is set. “Chapter 3, “L1, L2, and L3 Cache
Operation,” describes how to keep the PLRU replacement algorithm symmetrical and for
more information on synchronization requirements with LDSTCR.

The LDSTCR register can be accessed with the mtspr and mfspr instructions using
SPR 1016. For synchronization requirements on the register see Section 2.3.2.4,
“Synchronization.”

2.1.5.5.10 L3 Private Memory Address Register (L3PM)

The L3 private address register (L3PM), shown in Figure 2-22, is a supervisor-level,
implementation-specific SPR used to configure the base address of the range of addresses
that defines the L3 private memory space. It is cleared by a hard reset or power-on reset.

Note that the L3CR[PMEN] and L3CR[PMSIZ] bits control aspects of the MPC7451
private memory feature. Refer to Section 3.7.8, “L3 Private Memory Operation,” for more
details on the L3 private memory.

[] Reserved

L3PMADDR 0000_0000_0000_0000 ‘
0 15 16 31

Figure 2-22. L3 Private Memory Address Register (L3PM)

The L3PM bits are described in Table 2-21.
Table 2-21. L3PM Field Descriptions

Bits Name Description

0-15 | L3PMADDR |L3 base address of L3 private memory. L3PMADDR contain the base address of the
range of addresses used in the L3 private memory. Specific bits of the
L3PM[L3PMADDR] field are used based on the memory size as follows:

1MB L3PM[0-15]

2MB L3PM[0-14]

16-31 — Reserved

The L3PM register can be accessed with the mtspr and mfspr instructions using SPR 983.
For synchronization requirements on the register see Section 2.3.2.4, “ Synchronization.”

MOTOROLA Chapter 2. Programming Model 2-43

MPC7451 Processor Register Set

2.1.5.6 Instruction Address Breakpoint Register (IABR)

The instruction address breakpoint register (IABR), shown in Table 2-23, supports the
instruction address breakpoint exception. When this exception is enabled, instruction fetch
addresses are compared with an effective address stored in the IABR. If the word specified
in the IABR is fetched, the instruction breakpoint handler is invoked. The instruction that
triggers the breakpoint does not execute before the handler is invoked. For more
information, see Section 4.6.16, “Instruction Address Breakpoint Exception (0x01300).”
The IABR can be accessed with mtspr and mfspr using the SPR 1010. The MPC7451
requires that an mtspr[IABR] be followed by a context synchronizing instruction. The
MPC7451 may not generate a breakpoint response for that context synchronizing
instruction if the breakpoint was enabled by mtspr[IABR] immediately preceding it. The
MPC7451 can not block a breakpoint response on the context synchronizing instruction if
the breakpoint was disabled by mtspr[IABR] immediately preceding it. For more
information on synchronization see Section 2.3.2.4.1, “ Context Synchronization.”

Address ‘BE‘TE|
0 29 30 31
Figure 2-23. Instruction Address Breakpoint Register

The IABR bits are described in Table 2-22.
Table 2-22. Instruction Address Breakpoint Register Field Descriptions

Bits 1| Name Description

0-29 | Address | Word instruction breakpoint address to be compared with EA[0—29] of the next
instruction.

30 BE Breakpoint enabled. Setting this bit enables breakpoint address checking.

31 TE Translation Enable
IABR[TE] must equal MSR[IR] in order for a match to be signalled. When IABR[TE]
and MSRJ[IR] = 0 or when IABR[TE] and MSR[IR] = 1, then a match is signalled.

1 A context synchronizing instruction must follow a mtspr.

2.1.5.7 Memory Management Registers Used for Software Table
Searching

This section describes the registers used by the MPC7451 when software searching is
enabled (HIDO[STEN] = 1) and a TLB miss exception occurs. Software table searching is
described in detail in Chapter 5, “Memory Management.”

2.1.5.7.1 TLB Miss Register (TLBMISS)

The TLBMISS register is automatically loaded by the MPC7451 when software searching
isenabled (HIDO[STEN] = 1) and a TLB miss exception occurs. Its contents are used by
the TLB miss exception handlers (the software table search routines) to start the search

2-44 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

process. Note that the MPC7451 always loads a big-endian address into the TLBMISS
register. This register is read-only. The TLBMISS register has the format shown in
Figure 2-24 for the MPC7451.

PAGE | LRU|
30 31

Figure 2-24. TLBMISS Register for MPC7451

Table 2-23 described the bitsin the TLBMISS register.
Table 2-23. TLBMISS Register—Field and Bit Descriptions for the MPC7451

Bits Name Description

0-30 PAGE Effective page address
Stores EA[0-30] of the access that caused the TLB Miss exception.

31 LRU Least recently used way of the addressed TLB set

The LRU bit can be loaded into bit 31 of rB, prior to execution of tIbli or tlbld to
select the way to be replaced for a TLB miss. However, this value should be inverted
in rB prior to execution of tibli or tibld for a TLB miss exception caused by the need
to update the C-bit.

TLBMISS can be accessed with mtspr and mfspr using SPR 980.

2.1.5.7.2 PageTable Entry Registers (PTEHI and PTELO)

The PTEHI and PTELO registersare used by thetlbld and tibli instructionsto createaTLB
entry. When software table searching is enabled (HIDO[STEN] = 1), and a TLB miss
exception occurs, the bits of the page table entry (PTE) for this access are located by
software and saved in the PTE registers. Figure 2-25 shows the format for two supervisor
registers, PTEHI and PTELO, respectively.

PTEHI |:| Reserved
0o 1 24 25 26 31
| \% | VSID Iil API |
PTELO
0 19 20 22 23 24 25 28 29 30 31
| RPN | XPN |O|C| WIMG |X| PP |

Figure 2-25. PTEHI and PTELO Registers—Extended Addressing

Note that the contents of PTEHI are automatically loaded when any of the three software
table search exceptionsistaken. PTEL O isloaded by the software table search routines (the

MOTOROLA Chapter 2. Programming Model 2-45

MPC7451 Processor Register Set

TLB miss exception handlers) based on the valid PTE located in the page tables prior to

execution of tibli or tibld instruction.

Table 2-24 lists the corresponding bit definitions for the PTEHI and PTEL O registers.
Table 2-24. PTEHI and PTELO Bit Definitions

Register Bit Name Description
PTEHI 0 \ Entry valid (V = 1) or invalid (V = 0). Always set by the processor on a TLB miss
exception.
1-24 VSID Virtual segment ID. The corresponding SR[VSID] field is copied to this field.
25 — Reserved. Corresponds to the hash function identifier in PTE.
26-31 API Abbreviated page index. TLB miss exceptions will set this field with bits from

TLBMISS[4-9] which are bits from the effective address for the access that
caused the software table search operation. The tlbld and tlbli instructions will
ignore the API bits in PTEHI register and get the API from instruction’s
operand, rB. However, for future compatibility, the APl in rB should match the

PTEHI[API].
PTELO 0-19 RPN Physical page number
20-22 XPN Extended page number
The XPN field provides the physical address bits, PA[0-2].
23 — Reserved
24 C Changed bit
25-28 WIMG Memory / cache control bits
29 X Extended page number

The X field provides the physical address bit 3, PA[3].

30-31 PP Page protection bits

Note that PTELQO[23] corresponds to the reference bit in a PTE. The reference bit is not
stored in the page tables, so this bit isignored in the PTELO register. All the other bitsin
PTELO correspond to the bitsin the low word of the PTE. When extended addressing is not
enabled, (HIDO[XAEN] = 0), the software must clear the PTEL O[X PI] and PTEL O[X] bits;
otherwise whatever values are in the fields become the four most significant bits of the
physical address. Note: The PTEHI register is accessed with mtspr and mfspr as SPR 981
and PTELO is accessed as SPR 982.

2.1.5.8 Thermal Management Register

The MPC7451 provides an instruction cache throttling mechanism to effectively reducethe
instruction execution rate without the complexity and overhead of dynamic clock control.
When used with the dynamic power management, instruction cache throttling provides the
system designer with a flexible way to control device temperature while allowing the
processor to continue operating.

2-46 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

2.1.5.8.1 Instruction Cache Throttling Control Register (ICTC)

Reducing the rate of instruction fetching can control junction temperature without the
complexity and overhead of dynamic clock control. System software can control
instruction forwarding by writing a nonzero value to the ICTC register, a supervisor-level
register shown in Figure 2-26. The overall junction temperature reduction comes from the
dynamic power management of each functiona unit when the MPC7451 isidle in between
instruction fetches. Phase-locked loop (PLL) and delay-locked loop (DLL) configurations
are unchanged.

[] Reserved

0000 _0000_0000_0000_0000_000 ‘ Fi ‘ E |
0 22 23 30 31

Figure 2-26. Instruction Cache Throttling Control Register (ICTC)

Table 2-25 describes the hit fields for the ICTC register.
Table 2-25. ICTC Field Descriptions

Bits Name Description

0-22 — Reserved. The bits should be cleared.

23-30 | INTERVAL |Instruction forwarding interval expressed in processor clocks. When throttling is enabled, the
interval field specifies the minimum number of cycles between instructions being dispatched.
(MPC7451 dispatches one instruction every INTERVAL cycle.) The minimum interval for
throttling control is two cycles.

0x00, 0x01, 0x02 One instruction dispatches every 2 processor clocks.!

0x03 One instruction dispatches every 3 processor clocks

OxFF One instruction dispatches every 255 processor clocks.

31 E Enable instruction throttling
0 Instructions dispatch normally.
1 Only one instruction dispatches every INTERVAL cycles.

Instruction cache throttling is enabled by setting ICTC[E] and writing the instruction
forwarding interval into ICTC[INTERVAL]. Note when instruction cache throttling is
enabled to reduce overall junction temperature, the performance does degrade. A context
synchronizing instruction should be executed after a move to the ICTC register to ensure
that it has taken effect. Enabling, disabling, and changing the instruction forwarding
interval affect instruction forwarding immediately.

ThelCTC register can be accessed with the mtspr and mfspr instructionsusing SPR 1019.

2.1.5.9 Performance Monitor Registers

This section describes the registers used by the performance monitor, which isdescribed in
Chapter 11, “Performance Monitor.”

MOTOROLA Chapter 2. Programming Model 2-47

MPC7451 Processor Register Set

2.1.5.9.1 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO), shown in Figure 2-27, is a 32-bit SPR
provided to specify events to be counted and recorded. If the state of MSR[PR] and
MSR[PMM] matches a state specified in MMCRO, then counting is enabled see
Section 11.4, “Event Counting,” for further details. The MM CRO can be accessed only in
supervisor mode. User-level software can read the contents of MMCRO by issuing an
mfspr instruction to UMMCRO, described in Section 2.1.5.9.2, “User Monitor Mode
Control Register 0 (UMMCRO0).”

FCS FCMO PMXE TBSEL PMCnCE
TC FCM1 | FCECE TBTE PMClC‘E TRIGGER
| THRESHOLD | | | | PMCI1SEL | PMC2SEL
0 1 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

Figure 2-27. Monitor Mode Control Register 0 (MMCRO)

Thisregister isautomatically cleared at power-up. Reading this register does not changeits
contents. Table 2-26 describes MMCRO fields.

Table 2-26. MMCRO Field Descriptions

Bits Name Description
0 FC Freeze counters
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented (performance monitor counting is disabled). The
processor sets this bit when an enabled condition or event occurs and
MMCRO[FCECE] = 1. Note that SIAR is not updated if performance monitor counting
is disabled.
1 FCS Freeze counters in supervisor mode
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PR] = 0.
2 FCP Freeze counters in user mode
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PR] = 1.
3 FCM1 Freeze counters while mark = 1
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PMM] = 1.
4 FCMO Freeze counters while mark = 0
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PMM] = 0.
5 PMXE Performance monitor exception enable
0 Performance monitor exceptions are disabled.
1 Performance monitor exceptions are enabled until a performance monitor exception
occurs, at which time MMCRO[PMXE] is cleared.
Software can clear PMXE to prevent performance monitor exceptions. Software can
also set PMXE and then poll it to determine whether an enabled condition or event
occurred.
2-48 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Table 2-26. MMCRO Field Descriptions (continued)

Bits Name Description

6 FCECE Freeze counters on enabled condition or event

0 The PMCs are incremented (if permitted by other MMCR bits).

1 The PMCs are incremented (if permitted by other MMCR bits) until an enabled
condition or event occurs when MMCRO[TRIGGER] = 0, at which time MMCRO[FC]
is set. If the enabled condition or event occurs when MMCRO[TRIGGER] = 1, FCECE
is treated as if it were 0.

The use of the trigger and freeze counter conditions depends on the enabled conditions

and events described in Section 11.2, “Performance Monitor Exception.”

7-8 TBSEL Time base selector. Selects the time base bit that can cause a time base transition event
(the event occurs when the selected bit changes from 0 to 1).
00 TBL[31]
01 TBL[23]
10 TBL[19]
11 TBL[15]

Time base transition events can be used to periodically collect information about
processor activity. In multiprocessor systems in which the TB registers are
synchronized among processors, time base transition events can be used to correlate
the performance monitor data obtained by the several processors. For this use,
software must specify the same TBSEL value for all the processors in the system.
Because the time-base frequency is implementation-dependent, software should
invoke a system service program to obtain the frequency before choosing a value for
TBSEL.

9 TBEE Time base event enable

0 Time-base transition events are disabled.

1 Time-base transition events are enabled. A time-base transition is signaled to the
performance monitor if the TB bit specified in MMCRO[TBSEL] changes from 0 to 1.
Time-base transition events can be used to freeze the counters (MMCRO[FCECE]),
trigger the counters (MMCRO[TRIGGERY]), or signal an exception (MMCRO[PMXE]).

Changing the bits specified in MMCRO[TBSEL] while MMCRO[TBEE] is enabled may

cause a false 0 to 1 transition that signals the specified action (freeze, trigger, or

exception) to occur immediately.

10-15 THRESHOLD | Threshold. Contains a threshold value between 0 to 63. Two types of thresholds can be
counted. The first type counts any event that lasts longer than the threshold value and
uses MMCR2[THRESHMULT] to scale the threshold value by 2 or 32.

The second type counts only the events that exceed the threshold value. This type does
not use MMCR2[THRESHMULT] to scale the threshold value.

By varying the threshold value, software can obtain a profile of the characteristics of the
events subject to the threshold. For example, if PMC1 counts cache misses for which
the duration exceeds the threshold value, software can obtain the distribution of cache
miss durations for a given program by monitoring the program repeatedly using a
different threshold value each time.

16 PMC1CE PMC1 condition enable. Controls whether counter negative conditions due to a negative

value in PMC1 are enabled.

0 Counter negative conditions for PMC1 are disabled.

1 Counter negative conditions for PMC1 are enabled. These events can be used to
freeze the counters (MMCRO[FCECE]), trigger the counters (MMCRO[TRIGGERY]), or
signal an exception (MMCRO[PMXE]).

MOTOROLA Chapter 2. Programming Model 2-49

MPC7451 Processor Register Set

Table 2-26. MMCRO Field Descriptions (continued)

Bits Name Description

17 PMCnCE PMCn condition enable. Controls whether counter negative conditions due to a negative

value in any PMCn (that is, in any PMC except PMC1) are enabled.

0 Counter negative conditions for all PMCns are disabled.

1 Counter negative conditions for all PMCns are enabled. These events can be used
to freeze the counters (MMCRO[FCECE])), trigger the counters (MMCRO[TRIGGER]),
or signal an exception (MMCRO[PMXE]).

18 TRIGGER Trigger

0 The PMCs are incremented (if permitted by other MMCR bits).

1 PMC1 is incremented (if permitted by other MMCR bits). The PMCns are not
incremented until PMCL1 is negative or an enabled timebase or event occurs, at which
time the PMCns resume incrementing (if permitted by other MMCR bits) and
MMCRO[TRIGGER] is cleared. The description of FCECE explains the interaction
between TRIGGER and FCECE.

Uses of TRIGGER include the following:

« Resume counting in the PMCns when PMC1 becomes negative without causing a
performance monitor exception. Then freeze all PMCs (and optionally cause a
performance monitor exception) when a PMCn becomes negative. The PMCns then
reflect the events that occurred after PMC1 became negative and before PMCn
becomes negative. This use requires the following MMCRO bit settings.
-TRIGGER =1
-PMC1CE =0
—-PMCNnCE =1
-TBEE=0
-FCECE=1
—PMXE = 1 (if a performance monitor exception is desired)

« Resume counting in the PMCns when PMC1 becomes negative, and cause a
performance monitor exception without freezing any PMCs. The PMCns then reflect
the events that occurred between the time PMC1 became negative and the time the
interrupt handler reads them. This use requires the following MMCRO bit settings.

-TRIGGER =1
-PMCI1CE=1
-TBEE=0
-FCECE=0
-PMXE =1

The use of the trigger and freeze counter conditions depends on the enabled conditions
and events described in Section 11.2, “Performance Monitor Exception.”

19-25 PMC1SEL PMC1 selector. Contains a code (one of at most 128 values) that identifies the event to
be counted in PMCL1. See Table 11-9.

26-31 PMC2SEL PMC2 selector. Contains a code (one of at most 64 values) that identifies the event to
be counted in PMC2. See Table 11-10.

MM CRO can be accessed with mtspr and mfspr using SPR 952.

2.1.5.9.2 User Monitor Mode Control Register 0 (UMMCRO)

The contents of MMCRO are reflected to UMMCRO, which can be read by user-level
software. MM CRO can be accessed with mfspr using SPR 936.

2-50 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

2.1.5.9.3 Monitor Mode Control Register 1 (MMCR1)

The monitor mode control register 1 (MMCR1) functions as an event selector for
performance monitor counter registers 3, 4, 5, and 6 (PMC3, PMC4, PMC5, PMC6). The
MMCRL1 register is shown in Figure 2-28.

|:| Reserved

|PMC3SELECT | PMC4SELECT| PMC5$ELECT| PMCG6SELECT | 000_0000_0000 |

0 4 5 910 14 15 20 21 31
Figure 2-28. Monitor Mode Control Register 1 (MMCR1)

Bit settings for MMCRL are shown in Table 2-27. The corresponding events are described
in Section 2.1.5.9.8, “ Performance Monitor Counter Registers (PMC1-PMC6).”

Table 2-27. MMCRL1 Field Descriptions

Bits Name Description

0-4 PMC3SELECT |PMC3 selector. Contains a code (one of at most 32 values) that identifies the event to
be counted in PMC3. See Table 11-11.

5-9 PMCA4SELECT | PMC4 selector. Contains a code (one of at most 32 values) that identifies the event to
be counted in PMC4. See Table 11-12.

10-14 PMC5SELECT | PMCS5 selector. Contains a code (one of at most 32 values) that identifies the event to
be counted in PMC5. See Table 11-13.

15-20 PMC6SELECT | PMCE6 selector. Contains a code (one of at most 64 values) that identifies the event to
be counted in PMC6. See Table 11-14.

21-31 — Reserved

MMCR1 can be accessed with mtspr and mfspr using SPR 956. User-level software can
read the contents of MMCRL1 by issuing an mfspr instruction to UMMCRL, described in
Section 2.1.5.9.4, “User Monitor Mode Control Register 1 (UMMCR1).”

2.1.5.9.4 User Monitor Mode Control Register 1 (UMMCR1)

The contents of MMCRL1 are reflected to UMMCRL, which can be read by user-level
software. MM CR1 can be accessed with mfspr using SPR 940.

2.1.5.9.5 Monitor Mode Control Register 2 (MMCR2)

The monitor mode control register 2 (MMCR2) functions as an event selector for
performance monitor counter registers 3 and 4 (PMC3 and PMC4). The MM CR2 register
is shown in Figure 2-29.

MOTOROLA Chapter 2. Programming Model 2-51

MPC7451 Processor Register Set

THRESHMULT
|

| | 000_0000_0000_0000_ 0000_0000_0000_0000

01 31

Figure 2-29. Monitor Mode Control Register 2 (MMCR2)

Table 2-28 describes MM CR2 fields.
Table 2-28. MMCR?2 Field Descriptions

Bits Name Description

0 THRESHMULT | Threshold multiplier

Used to extend the range of the THRESHOLD field, MMCRO[10-15].
0 Threshold field is multiplied by 2.

1 Threshold field is multiplied by 32.

1-31 — Reserved

MM CR2 can be accessed with mtspr and mfspr using SPR 944. User-level software can
read the contents of MM CR2 by issuing an mfspr instruction to UMMCR?2, described in
Section 2.1.5.9.6, “User Monitor Mode Control Register 2 (UMMCR2).”

2.1.5.9.6 User Monitor Mode Control Register 2 (UMMCR2)

The contents of MMCR2 are reflected to UMMCR2, which can be read by user-level
software. UMMCR2 can be accessed with the mfspr instruction using SPR 928.

2.1.5.9.7 Breakpoint Address Mask Register (BAMR)

The breakpoint address mask register (BAMR), shown in Figure 2-30, is used in
conjunction with the events that monitor |ABR hits.

|:| Reserved

MASK ‘ 00 ‘
0 29 30 31

Figure 2-30. Breakpoint Address Mask Register (BAMR)

Table 2-29 describes BAMR fields.

2-52 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Table 2-29. BAMR Field Descriptions

Bit Name Description

0-29 MASK 1 Used with PMC1 event (PMC1 event 42) that monitor IABR hits. The addresses to be
compared for an IABR match are affected by the value in BAMR:
* IABR hit (PMC1, event 42) occurs if IABR_CMP (that is, IABR AND BAMR) =
instruction_address_compare (that is, EA AND BAMR)
IABR_CMP[0-29] = IABR[0-29] AND BAMR[0-29]
instruction_addr_cmp[0-29] = instruction_addr[0-29] AND BAMR[0-29]
Be aware that breakpoint event 42 of PMC1 can be used to trigger performance
monitor exceptions when the performance monitor detects an enabled overflow. This
feature supports debug purposes and occurs only when IABR[30] is set. To avoid
taking one of the above interrupts, make sure that IABR[30] is cleared.

30-31 — Reserved

1A context synchronizing instruction must follow the mtspr.

BAMR can be accessed with mtspr and mfspr using SPR 951. For synchronization
requirements on the register see Section 2.3.2.4, “ Synchronization.”

2.1.5.9.8 Performance Monitor Counter Registers (PMC1-PMCS6)

PMC1-PMC6, shown in Figure2-31, are 32-bit counters that can be programmed to
generate a performance monitor exception when they overflow.

|OV| Counter Value |
0 1 31

Figure 2-31. Performance Monitor Counter Registers (PMC1-PMC6)

The bits contained in the PMC registers are described in Table 2-30.
Table 2-30. PMCn Field Descriptions

Bits Name Description

0 oV Overflow
When this bit is set, it indicates that this counter has overflowed and reached its maximum
value so that PMCn[OV] = 1.

1-31 | Counter value |Counter value
Indicates the number of occurrences of the specified event.

Counters overflow when the high-order (sign) bit becomes set; that is, they reach the value
2,147,483,648 (0x8000_0000). However, an exception is not generated unless both
MMCRO[PMXE] and either MMCRO[PMC1CE] or MMCRO[PMCcCE] are aso set as

appropriate.
Note that the exception can be masked by clearing MSR[EE]; the performance monitor
condition may occur with MSR[EE] cleared, but the exception is not taken until M SR[EE]

isset. Setting MM CRO[FCECE] forces countersto stop counting when a counter exception
or any enabled condition or event occurs. Setting MMCRO[TRIGGER] forces counters

MOTOROLA Chapter 2. Programming Model 2-53

MPC7451 Processor Register Set

PMCn (n> 1), to begin counting when PMC1 goes negative or an enabled condition or
event occurs.

Software is expected to use the mtspr instruction to explicitly set PMC to non-overflowed
values. Setting an overflowed value may cause an erroneous exception. For example, if
both MM CRO[PM XE] and either MM CRO[PMC1CE] or MMCRO[PMCnCE] are set and
the mtspr instruction loads an overflow value, an exception may be taken without an event
counting having taken place.

The PMC registers can be accessed with the mtspr and mfspr instructions using the
following SPR numbers:

« PMC1lisSPR 953

« PMC2isSPR 954

« PMC3isSPR 957

« PMC4isSPR 958

» PMC5isSPR 945

+ PMC6isSPR 946

2.1.5.9.9 User Performance Monitor Counter Registers (UPMC1-UPMCS6)

The contents of the PMC1-PMC6 are reflected to UPM C1-UPM C6, which can be read by
user-level software. The UPMC registers can be read with mfspr using the following SPR
numbers:

» UPMC1isSPR 937
» UPMC2isSPR 938
e UPMC3isSPR 941
* UPMC4isSPR 942
* UPMC5isSPR 929
* UPMC6isSPR 930

2.1.5.9.10 Sampled Instruction Address Register (SIAR)

The sampled instruction address register (SIAR) is asupervisor-level register that contains
the effective address of the last instruction to complete before the performance monitor
exception issignaed. The SIAR is shown in Figure 2-32.

Instruction Address

Figure 2-32. Sampled Instruction Address Registers (SIAR)
Note that SIAR is not updated:

2-54 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

« if performance monitor counting has been disabled by setting MM CRO[FC] or
« if the performance monitor exception has been disabled by clearing
MM CRO[PM XE].

SIAR can be accessed with the mtspr and mfspr instructions using SPR 955.

2.1.5.9.11 User-Sampled Instruction Address Register (USIAR)

The contents of SIAR are reflected to USIAR, which can be read by user-level software.
USIAR can be accessed with the mfspr instructions using SPR 939.

2.1.5.9.12 Sampled Data Address Register (SDAR) and User-Sampled Data
Address Register (USDAR)

The MPC7451 does not implement the sampled data address register (SDAR) or the
user-level, read-only USDA registers.Note that in previous processors the SDAR and
USDAR registers could be written to by boot code without causing an exception, thisis not
the case in the MPC7451. A mtspr or mfspr SDAR or USDAR instruction causes a
program exception.

2.1.6 Reset Settings

Table 2-31 shows the state of the registers and other resources after a hard reset and before
the first instruction is fetched from address OXFFFO_0100 (the system reset exception
vector). When aregister isnot initialized at hard reset. the setting is undefined.

Table 2-31. Settings Caused by Hard Reset (Used at Power-On)

Resource Setting
BAMR 0x0000_0000
BATs Undefined
Caches (L1/L2) Disabled. The caches are not invalidated and must be invalidated in software before they
are enabled.
CR 0x0000_0000
CTR 0x0000_0000
DABR Breakpoint is disabled. Address is undefined.
DAR 0x0000_0000
DEC OXFFFF_FFFF
DSISR 0x0000_0000
EAR 0x0000_0000
FPRs Undefined
FPSCR 0x0000_0000
GPRs Undefined

MOTOROLA Chapter 2. Programming Model 2-55

MPC7451 Processor Register Set

Table 2-31. Settings Caused by Hard Reset (Used at Power-On) (continued)

Resource Setting
HIDO 0x8000_0000
HID1 0x0000_0080 (note that bits 15-18 are set to match the settings of PLL_CFG[0:4] at reset)
IABR 0x0000_0000 (Breakpoint is disabled.)
ICTC 0x0000_0000
ICTRL 0x0000_0000
L2CR 0x0000_0000
L3CR 0x0000_0000
L3PM 0x0000_0000
LDSTCR 0x0000_0000
LR 0x0000_0000
MMCRnN 0x0000_0000
MSSCRO 0x0040_0000 0x0000_0000 (except that the ABD (bit 11) and BMODE (bits 16—17) are set
depending on setting of BMODE[0:1] at reset)
MSSSRO 0x0000_0000
MSR 0x0000_0040 (only IP set)
PIR 0x0000_0000
PMCn Undefined
PTEHI 0x0000_0000
PTELO 0x0000_0000
PVR For the MPC7441, 0x8000_xxxx, where xxxx depends on the revision level, starting at 0200.

For the MPC7445, 0x8001_xxxx, where xxxx depends on the revision level, starting at 0100.
For the MPC7447, 0x8002_xxxx, where xxxx depends on the revision level, starting at 0100.
For the MPC7451, 0x8000_xxxx, where xxxx depends on the revision level, starting at 0200.
For the MPC7455, 0x8001_xxxx, where xxxx depends on the revision level, starting at 0100.
For the MPC7457, 0x8002_xxxx, where xxxx depends on the revision level, starting at 0100.

Reservation address

Undefined

Reservation flag

Cleared

SDR1

0x0000_0000

SIAR

0x0000_0000

SPRGO-SPGR7

0x0000_0000

SRs Undefined
SRRO 0x0000_0000
SRR1 0x0000_0000

TBU and TBL 0x0000_0000
TLBs Undefined
TLBMISS 0x0000_0000

2-56

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Operand Conventions

Table 2-31. Settings Caused by Hard Reset (Used at Power-On) (continued)

Resource Setting
UMMCRnN 0x0000_0000
UPMCn 0x0000_0000
USIAR 0x0000_0000

VRs Undefined

VRSAVE 0x0000_0000
VSCR 0x0001_0000
XER 0x0000_0000

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of datain these registers.

2.2.1 Floating-Point Execution Models—UISA

The |IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

The PowerPC UISA follows these guidelines:

« Double-precision arithmetic instructions can have single-precision operands but
always produce double-precision resullts.

» Single-precision arithmetic instructions require al operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision isdoneimplicitly
by the processor.

All implementations of the PowerPC architecture provide the equivalent of the following
execution models to ensure that identical results are obtained. The definition of the
arithmetic instructions for infinities, denormalized numbers, and NaNs follow conventions
described in the following sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second

MOTOROLA Chapter 2. Programming Model 2-57

Operand Conventions

bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

e Underflow during multiplication using a denormalized operand
¢ Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands can be bytes, half words, words, double words, quad words, or, for the
load/store multiple and load/store string instructions, a sequence of bytes or words. The
address of amemory operand is the address of itsfirst byte (that is, of itslowest-numbered
byte). Operand length isimplicit for each instruction.

2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has an alignment boundary
equal toitslength. An operand's addressis misaligned if it is not a multiple of its width.

The concept of alignment is also applied more generally to datain memory. For example,
a 12-byte dataitem is said to be word-aligned if its addressis amultiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment can affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

The MPC7451 does not provide hardware support for floating-point memory that is not
word-aligned. If a floating-point operand is not word-aligned, the MPC7451 invokes an
alignment exception, and it is left up to software to break up the offending memory access
operation appropriately. In addition, some non-double-word-aligned memory accesses
suffer performance degradation as compared to an aligned access of the same type.

In general, floating-point word accesses should always be word-aligned and floating-point
double-word accesses should always be double-word—aligned. Frequent use of misaligned
accesses is discouraged because they can degrade overall performance.

2.2.4 Floating-Point Operands

The MPC7451 provides hardware support for al singlee and double-precision
floating-point operations for most value representations and all rounding modes. This
architecture provides for hardware to implement a floating-point system as defined in
ANSI/IEEE standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic.

2-58 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Detailed information about the floating-point execution model can be found in Chapter 3,
“Operand Conventions,” in The Programming Environments Manual.

The MPC7451 supports non-lEEE mode when FPSCR[29] is set. In this mode,
denormalized numbers are treated in anon-1EEE conforming manner. Thisisaccomplished
by delivering results that are forced to the value zero.

2.3

Instruction Set Summary

This chapter describes instructions and addressing modes defined for the MPC7451. These
instructions are divided into the following functional categories:

Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

Floating-point instructions—Theseinclude fl oating-point arithmetic instructions, as
well asinstructionsthat affect the fl oating-point statusand control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”

L oad and storeinstructions—Theseincludeinteger and floating-point load and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

Processor control instructions—These instructions are used for synchronizing
memory accesses and managing segment registers. For more information, see
Section 2.3.4.6, “Processor Control Instructions—UISA,” Section 2.3.5.1,
“Processor Control Instructions—VEA,” and Section 2.3.6.2, “ Processor Control
Instructions—OEA.”

Memory synchronization instructions—These instructions are used for memory
synchronizing. See Section 2.3.4.7, “Memory Synchronization
Instructions—UISA,” and Section 2.3.5.2, “Memory Synchronization
Instructions—VEA,” for more information.

Memory control instructions—T hese instructions provide control of caches and
TLBs. For moreinformation, see Section 2.3.5.3, “Memory Control
Instructions—VEA,” and Section 2.3.6.3, “Memory Control Instructions—OEA.”

Externa control instructions—These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, “Optional External
Control Instructions.”

AltiVec instructions-AltiVec technology does not have optional instructions
defined, so al instructions listed in the AltiVec Technology Programming
Environments Manual are implemented for MPC7451. Instructions that are

MOTOROLA Chapter 2. Programming Model 2-59

Instruction Set Summary

implementation specific are described in Section 2.6.2, “AltiVec Instructions with
Specific Implementations for the MPC7451.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes aparticular instruction or group of instructions. Thisinformation, which isuseful
for scheduling instructions most effectively, is provided in Chapter 6, “Instruction Timing.”

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and doubl e-precision floating-point operands. AltiVec instructions operate
on byte, half-word, word, and quad-word operands. The PowerPC architecture uses
instructions that are four bytes long and word-aligned. It provides for byte, half-word, and
word operand loads and stores between memory and a set of 32 general-purpose registers
(GPRs). It provides for word and double-word operand loads and stores between memory
and a set of 32 floating-point registers (FPRs). It also provides for byte, half-word, word,
and quad-word operand loads and stores between memory and a set of 32 vector registers
(VRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into aregister, modified, and then written to the target
location using load and store instructions.

Thedescription of each instruction includes the mnemonic and aformatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual for a complete list of simplified
mnemonics. Programswritten to be portable across the various assembl ersfor the PowerPC
architecture should not assume the existence of mnemonics not described in that document.

2.3.1 Classes of Instructions

The MPC7451 instructions belong to one of the following three classes:

+ Defined

o lllega

* Reserved
Note that while the definitions of these terms are consistent among the processors that
implement the PowerPC architecture, the assignment of these classifications is not. For

example, PowerPC instructions defined for 64-bit implementations are treated asillegal by
32-bit implementations such as the MPC7451.

The classis determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of areserved instruction, the instruction isillegal.

2-60 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Instruction encodings that are now illegal can become assigned to instructions in the
architecture or can be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor stateis not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction can vary between implementations and
between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all implementations of the PowerPC
architecture, except as stated in the instruction descriptionsin Chapter 8, “Instruction Set,”
of The Programming Environments Manual. The MPC7451 provides hardware support for
al instructions defined for 32-bit implementations. It does not support the optiona fsgrt,
fsgrts, and tlbia instructions.

A processor invokes the illegal instruction error handler (part of the program exception)
when it encounters a PowerPC instruction that has not been implemented. The instruction
can be emulated in software, as required.

A defined instruction can have invalid forms. The MPC7451 provides limited support for
instructions represented in an invalid form.

2.3.1.3 lllegal Instruction Class

Illegal instructions can be grouped into the following categories:

* Instructions not defined in the PowerPC architecture.The following primary
opcodes are defined asillegal, but can be used in future extensions to the
architecture:

1,5,6,9, 22,56, 57, 60, 61
Future versions of the PowerPC architecture can define any of these instructions to
perform new functions.

¢ Instructions defined in the PowerPC architecture but not implemented in a specific
implementation. For example, instructionsthat can be executed on 64-bit processors
that implement the PowerPC architecture are considered illegal by 32-bit processors
such as the MPC7451.

Thefollowing primary opcodes are defined for 64-bit implementations only and are
illegal on the MPC7451.:

MOTOROLA Chapter 2. Programming Model 2-61

Instruction Set Summary

2, 30, 58, 62

» All unused extended opcodes areillegal. The unused extended opcodes can be
determined from information in Section A.4, “Instructions Sorted by Opcode
(Binary),” and Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended
opcodesfor instructions defined only for 64-bit implementationsareillegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes:

17, 19, 31, 59, 63 (Primary opcodes 30 and 62 areillegal for al 32-hit
implementations, but as 64-hit opcodes, they have some unused extended opcodes.)

¢ Aninstruction consisting of only zerosisguaranteed to beanillegal instruction. This
increases the probability that an attempt to execute data or memory that was not
initialized invokes the system illegal instruction error handler (a program
exception). Notethat if only the primary opcode consists of all zeros, theinstruction
is considered areserved instruction, as described in Section 2.3.1.4, “ Reserved
Instruction Class.”

The MPC7451 invokes the system illega instruction error handler (a program exception)
when it detects any instruction from this class or any instructions defined only for 64-hit
implementations.

See Section 4.6.7, “ Program Exception (0x00700),” for additional information about illegal
and invalid instruction exceptions. Except for an instruction consisting of binary zeros,
illegal instructions are available for additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. Attempting to execute a reserved instruction that has
not been implemented invokes the illegal instruction error handler (a program exception).
See “Program Exception (0x0_0700),” in Chapter 6, “Exceptions,” in The Programming
Environments Manual for information about illegal and invalid instruction exceptions.

The PowerPC architecture defines four types of reserved instructions:

* Instructionsin the POWER architecture not part of the PowerPC UISA. For details
on POWER architecture incompatibilities and how they are handled by processors
that implement the PowerPC architecture, see Appendix B, “POWER Architecture
Cross Reference,” in The Programming Environments Manual .

» Implementation-specific instructions required for the processor to conform to the
PowerPC architecture (none of these are implemented in the MPC7451)

« All other implementation-specific instructions
< Architecturally alowed extended opcodes

2-62 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,” of The Programming Environments
Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands

Memory operands can be bytes, half words, words, double words, quad words or, for the
load/store multiple and load/store string instructions, a sequence of bytes or words. The
address of amemory operand is the address of itsfirst byte (that is, of its lowest-numbered
byte). Operand length is implicit for each instruction. The PowerPC architecture supports
both big-endian and little-endian byte ordering. The default byte and bit ordering is
big-endian. See “Byte Ordering,” in Chapter 3, “Operand Conventions,” of The
Programming Environments Manual for more information about big- and little-endian byte
ordering.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length; that is, the natural address of an operandisanintegral
multiple of itslength. A memory operand is said to be aligned if it isaligned at its natural
boundary; otherwiseit ismisaligned. For adetail ed discussion about memory operands, see
Chapter 3, “Operand Conventions,” of The Programming Environments Manual.

2.3.2.3 Effective Address Calculation

An effective address is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address O, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O isignored.

MOTOROLA Chapter 2. Programming Model 2-63

Instruction Set Summary

L oad and store operations have the following modes of effective address generation:
e EA =(rA|0) + offset (including offset = 0) (register indirect with immediate index)
¢ EA =(rA|0) + rB (register indirect with index)
Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.
Branch instructions have three categories of effective address generation:
¢ Immediate
e Link register indirect
» Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization

The System Call (sc) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
achange in context. Execution of one of these instructions ensures the following:

* No higher priority exception exists (sc).
« All previousinstructions have completed to a point where they can no longer cause
an exception. If aprior memory access instruction causes direct-store error

exceptions, the results are guaranteed to be determined before thisinstruction is
executed.

* Previousinstructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

e Theingtructionsfollowing the sc or rfi instruction execute in the context established
by these instructions.

Modifying certain registers requires software synchronization to follow certain register
dependencies. Table 2-32 defines specific synchronization procedures that are required
when using various SPRs and specific bits within SPRs. Context synchronizing instructions
that can be used are: isync, sc, rfi, and any exception other than system reset and machine
check. If multiple bits are being modified that have different synchronization requirements,
the most restrictive requirements can be used. However, a mtspr instruction to modify
either HIDO[ICE] or HIDO[ICFI] should not aso modify other HIDO bits that requires
synchronization.

2-64 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Table 2-32. Control Registers Synchronization Requirements

Register Bits Synchronization Requirements
BAMR Any A context synchronizing instruction must follow the mtspr.
DABR Any A dssall and sync must precede the mtspr and then a sync and a context synchronizing

instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing the register.

DBATs Any A dssall and sync must precede the mtspr and then a sync and a context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing the register.

EAR Any A dssall and sync must precede the mtspr and then a sync and a context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing register.

MOTOROLA Chapter 2. Programming Model 2-65

Instruction Set Summary

Table 2-32. Control Registers Synchronization Requirements (continued)

Register Bits Synchronization Requirements

HIDO BHTCLR | A context synchronizing instruction must precede a mtspr and a branch instruction should
follow. The branch instruction may be either conditional or unconditional. It ensures that all
subsequent branch instructions see the newly initialized BHT values. For correct results, the
BHT should be disabled (HIDO[BHT] = 0) before setting BHTCLR.

BHT A context synchronizing instruction must follow the mtspr.
BTIC
DPM
FOLD
LRSTK
NAP
NHR
SLEEP
SPD
TBEN
DCE A dssall and sync must precede a mtspr and then a sync and context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
DCFI then a dssall is not necessary prior to accessing the HIDO{DCE] or HIDO[DCFI] bit.
DLOCK
NOPDST
STEN
ICE A context synchronizing instruction must immediately follow a mtspr. A mtspr instruction for
HIDO should not modify either of these bits at the same time it modifies another bit that
ICFI requires additional synchronization.
ILOCK | A context synchronizing instruction must precede and follow a mtspr.
NOPTI | A mtspr must follow a sync and a context synchronizing instruction.
SGE
XAEN | A dssall and sync must precede a mtspr and then a sync and a context-synchronizing
instruction must follow. Alteration of HIDO[XAEN] must be done with caches and translation
disabled. The caches and TLBs must be flushed before they are re-enabled after the XAEN
bit is altered. Note that if a user is not using the AltiVec data streaming instructions, then a
dssall is not necessary prior to accessing the HIDO[XAEN] bit.

HID1 Any A sync and context synchronizing instruction must follow a mtspr.

IABR Any A context synchronizing instruction must follow a mtspr.

IBATs Any A context synchronizing instruction must follow a mtspr.

ICTRL EDCE |Adssall and sync must precede a mtspr and then a sync and context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing the ICTRL[EDCE] bit.

ICWL | A context synchronizing instruction must precede and follow a mtspr.
EICE
2-66 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Table 2-32. Control Registers Synchronization Requirements (continued)

Register Bits Synchronization Requirements

LDSTCR Any A dssall and sync must precede a mtspr and then a sync and context synchronizing
instruction must follow.Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing the register.

MSR BE A context synchronizing instruction must follow a mtmsr instruction.

VEC
FEO
FE1

FP

SE

IR A context synchronizing instruction must follow a mtmsr. When changing the MSR[IR] bit
the context synchronizing instruction must reside at both the untranslated and the translated
address following the mtmsr.

DR A dssall and sync must precede a mtmsr and then a sync and context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,

PR then a dssall is not necessary prior to accessing the MSR[DR] or MSR[PR] bit.

LE A dssall and sync must precede an rfi to guarantee a solid context boundary. Note that if a
user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior
to accessing the MSRI[LE] bit.

POW | A dssall and sync must precede a mtmsr instruction and then a context synchronizing
instruction must follow.

MSSCRO Any A dssall and sync must precede a mtspr instruction and then a sync and context
synchronizing instruction must follow. Note that if a user is not using the AltiVec data
streaming instructions, then a dssall is not necessary prior to accessing the register.

SDR1 Any A dssall and sync must precede a mtspr and then a sync and context synchronizing

instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing the register.

L3PM Any A sync must precede a mtspr instruction and then a sync and context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming
instructions, then a dssall is not necessary prior to accessing the register.

SRO - Any A dssall and sync must precede a mtsr or mtsrin instruction and then a sync and context

SR15 synchronizing instruction must follow. Note that if a user is not using the AltiVec data

streaming instructions, then a dssall is not necessary prior to accessing the register.

Other — No special synchronization requirements.

registers

or bits

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previoudly initiated instructions appear to
have completed before the instruction isinitiated or, in the case of sync and isync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr)
instruction is execution synchronizing. It ensures that all preceding instructions have
completed execution and cannot cause an exception before the instruction executes, but

MOTOROLA

Chapter 2. Programming Model 2-67

Instruction Set Summary

does not ensure subsequent instructions execute in the newly established environment. For
example, if the mtmsr sets the MSR[PR] hit, unless an isync immediately follows the
mtmsr instruction, aprivileged instruction could be executed or privileged access could be
performed without causing an exception even though the M SR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions

There aretwo kinds of exceptionsin the M PC7451—those caused directly by the execution
of an instruction and those caused by an asynchronous event (or interrupts). Either can
cause components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

« Anattempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by auser-level program to execute the
supervisor-level instructionslisted bel ow causesthe privileged instruction (program
exception) handler to be invoked. The MPC7451 provides the following
supervisor-level instructions—dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr,
mtsr, mtsrin, rfi, tibie, and tlbsync. Note that the privilege level of the mfspr and
mtspr instructions depends on the SPR encoding.

* Any mtspr, mfspr, or mftb instruction with an invalid SPR (or TBR) field causes
an illegal type program exception. Likewise, a program exception is taken if
user-level software triesto access a supervisor-level SPR. An mtspr instruction
executing in supervisor mode (MSR[PR] = 0) with the SPR field specifying PVR
(read-only register) executes as a no-op.

¢ Anattempt to access memory that is not available (page fault) causesthe Sl or DS
exception handler to be invoked.

« The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

e Theexecution of atrap instruction invokes the program exception trap handler.

« Theexecution of an instruction that causes a floating-point exception while
exceptions are enabled in the M SR invokes the program exception handler.

A detailed description of exception conditionsis provided in Chapter 4, “ Exceptions.”

2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the
MPC7451 and highlights any special information with respect to how the MPC7451
implements a particular instruction. Note that the categories used in this section correspond
to those used in Chapter 4, “Addressing Modes and Instruction Set Summary,” in The
Programming Environments Manual. These categorizations are somewhat arbitrary, are
provided for the convenience of the programmer, and do not necessarily reflect the
PowerPC architecture specification.

Note that some instructions have the following optional features:

2-68 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

¢ CR Update—Thedot (.) suffix on the mnemonic enables the update of the CR.
* Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding afew user-level
cache control, synchronization, and time base instructions), user-level registers,
progranming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2341

This section describes the integer instructions. These consist of the following:
« Integer arithmetic instructions
* Integer compare instructions
* Integer logical instructions
« Integer rotate and shift instructions

Integer Instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, the XER register, and condition register (CR) fields.

23411

Table 2-33 lists the integer arithmetic instructions for the processors that implement the

Integer Arithmetic Instructions

PowerPC architecture.

Table 2-33. Integer Arithmetic Instructions

Name Mnemonic Syntax
Add Immediate addi rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add add (add. addo addo.) rD,rA,rB
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Add Immediate Carrying addic rD,rA,SIMM
Add Immediate Carrying and Record addic. rD,rA,SIMM
Subtract from Immediate Carrying subfic rD,rA,SIMM
Add Carrying addc (addc. addco addco.) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
MOTOROLA Chapter 2. Programming Model 2-69

Instruction Set Summary

Table 2-33. Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA
Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate mulli rD,rA,SIMM
Multiply Low Word mullw (mullw. mullwo mullwo.) rD,rA,rB
Multiply High Word mulhw (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (r A) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

The UISA states that an implementation that executes instructions that set the overflow
enable bit (OE) or the carry bit (CA) can either execute these instructions slowly or prevent
execution of the subsequent instruction until the operation completes. Chapter 6,
“Instruction Timing,” describes how the MPC7451 handles CR dependencies. The
summary overflow bit (SO) and overflow bit (OV) in the XER register are set to reflect an
overflow condition of a 32-bit result. This can happen only when OE = 1.

2.3.4.1.2 Integer Compare Instructions

Theinteger compareinstructionsalgebraically or logically compare the contents of register
r A with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of rB. The comparison is signed for the cmpi and cmp
instructions, and unsigned for the cmpli and cmpl instructions. Table 2-34 summarizesthe
integer compare instructions.

Table 2-34. Integer Compare Instructions

Name Mnemonic Syntax
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rA,rB
Compare Logical Immediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rA,rB

2-70 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary
The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in crfD, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table2-35 perform bit-parallel operations on the
specified operands. Logical instructionswith the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO to characterize the result of the logical
operation. Logical instructions do not affect XER[SO], XER[OV], or XER[CA].

See Appendix F, “ Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples for integer logical operations.

Table 2-35. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes

AND Immediate andi. rA,rS,UiMM —

AND Immediate Shifted andis. rA,rS,UuiMM —

OR Immediate ori rA,rS,UIMM | The PowerPC architecture defines ori r0,r0,0 as the
preferred form for the no-op instruction. The
dispatcher discards this instruction and only
dispatches it to the completion queue, but not to any
execution unit.

OR Immediate Shifted oris rA,rS,UuiMM —

XOR Immediate XOri rA,rS,UuiMM —

XOR Immediate Shifted X0ris rA,rS,UuiMM —

AND and (and.) rA,rS,rB —

OR or (or.) rA,rS,rB —

XOR Xor (xor.) rA,rS,rB —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

Equivalent eqv (eqv.) rA,rS,rB —

AND with Complement andc (andc.) rA,rS,rB —

OR with Complement orc (orc.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) rA,rS —

Extend Sign Half Word extsh (extsh.) rA,rS —

Count Leading Zeros Word |cntlzw (cntlzw.) |rA,rS —

MOTOROLA Chapter 2. Programming Model 2-71

Instruction Set Summary

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
alows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of aregister, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of aregister. The result of therotation iseither
inserted into the target register under control of amask (if amask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is O the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

The integer rotate instructions are summarized in Table 2-36.

Table 2-36. Integer Rotate Instructions

Name Mnemonic Syntax
Rotate Left Word Immediate then AND with Mask riwinm (rlwinm.) rA,rS,SH,MB,ME
Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME
Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts” in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-37.

Table 2-37. Integer Shift Instructions

Name Mnemonic Syntax
Shift Left Word slw (slw.) rA,rS,rB
Shift Right Word srw (srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

2.3.4.2 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:

* Foating-point arithmetic instructions
* Foating-point multiply-add instructions

2-72 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

* Foating-point rounding and conversion instructions

* Foating-point compare instructions
» Foating-point status and control register instructions
* Foating-point move instructions

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the |IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the |EEE 754 standard, except if software sets the non-IEEE mode
bit (FPSCR[NI]).

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-38.

Table 2-38. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax
Floating Add (Double-Precision) fadd fadd.) frD,frA,frB
Floating Add Single fadds fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frA,frB
Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC
Floating Multiply Single fmuls (fmuls.) frD,frA,frC
Floating Divide (Double-Precision) fdiv fdiv.) frD,frA,frB
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Reciprocal Estimate Single 1 fres (fres.) frD,frB
Floating Reciprocal Square Root Estimatel frsqrte (frsqrte.) frD,frB
Floating Select! fsel frD,frA,frC,frB

1 These instructions are optional in the PowerPC architecture.

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, asingle-precision instruction using only single-precision operands,
in double-precision format, has the same latency as its double-precision equival ent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-39.

MOTOROLA Chapter 2. Programming Model 2-73

Instruction Set Summary

Table 2-39. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax
Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB
Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB
Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Hoating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precison number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” in The Programming Environments Manual.

Table 2-40. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax
Floating Round to Single frsp (frsp.) frD,frB
Floating Convert to Integer Word fetiw (fctiw.) frD,frB
Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = —0). The floating-point compare
instructions are summarized in Table 2-41.

Table 2-41. Floating-Point Compare Instructions

Name Mnemonic Syntax
Floating Compare Unordered fcmpu crfD,frA,frB
Floating Compare Ordered fcmpo crfD,frA,frB

2-74 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that
al floating-point instructions previoudly initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-42.

Table 2-42. Floating-Point Status and Control Register Instructions

Name Mnemonic Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR mcrfs crfD,crfS
Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM,frB
Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD
Move to FPSCR Bit 1 mtfsbl (mtfsb1.) crbD

Implementation Note—The PowerPC architecture states that in some implementations,
the Move to FPSCR Fields (mtfsf) instruction can perform more slowly when only some
of the fields are updated as opposed to al of the fields. In the MPC7451, there is no
degradation of performance.

2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CR1. Table 2-43 summarizes the floating-point
move instructions.

Table 2-43. Floating-Point Move Instructions

Name Mnemonic Syntax
Floating Move Register fmr (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

MOTOROLA Chapter 2. Programming Model 2-75

Instruction Set Summary

* Integer load instructions

* Integer store instructions

* Integer load and store with byte-reverse instructions
* Integer load and store multiple instructions

* Foating-point load instructions

» Floating-point storeinstructions

¢ Memory synchronization instructions

Implementation Note—The following describes how the MPC7451 handles
misalignment:

The MPC7451 provides hardware support for misaligned memory accesses. It performs
those accesses within a single cycle if the operand lies within a double-word boundary.
Misaligned memory accesses that cross a double-word boundary degrade performance.

Although many misaligned memory accesses are supported in hardware, the frequent use
of them is discouraged because they can compromise the overall performance of the
processor. Only one outstanding misalignment at a time is supported which means it is
non-pipelined.

Accessesthat crossatrang ation boundary can berestarted. That is, amisaligned accessthat
crosses a page boundary is completely restarted if the second portion of the access causes
apage fault. This can cause the first access to be repeated.

On some processors, such asthe MPC603e, a TLB reload operation causes an instruction
restart. On the MPC7451, TLB reloads are performed transparently (if hardware table
search operations are enabled—HIDO[STEN] = 0) and only a page fault causes arestart. If
software table searching is enabled (HIDO[STEN] = 1) on the MPC7451, a TLB miss
causes an instruction restart (asit causes a TLB miss exception)

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that can be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by executing the following instruction sequence (using
either dcbst or dcbf):

dcbst (or dcbf) |update memory

sync |wait for update

icbi |remove (invalidate) copy in instruction cache

sync |ensure that ICBI invalidate at the icache has completed
isync | remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Because
instruction fetching bypasses the data cache, changesto items in the data cache can not be

2-76 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

reflected in memory until the fetch operations complete. The sync after the icbi isrequired
to ensure that the icbi invalidation has completed in the instruction cache.

Special care must be taken to avoid coherency paradoxesin systemsthat implement unified
secondary caches (likethe MPC7451), and designers should carefully follow the guidelines
for maintaining cache coherency that are provided in the VEA, and discussed in Chapter 5,
“Cache Model and Memory Coherency,” in The Programming Environments Manual .

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned can suffer performance degradation. Refer to Section 4.6.6, “Alignment Exception
(0x00600),” for additional information about load and store address aignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if
rA=0andrA =rD (otherwiseinvalid), the EA isplaced into r A and the memory element
(byte, half word, word, or double word) addressed by the EA isloaded into rD. Note that
the PowerPC architecture defines load with update instructions with operand rA = 0 or
rA =rD asinvalid forms.

Implementation Notes—The following notes describe the MPC7451 implementation of
integer load instructions:

» The PowerPC architecture cautions programmers that some implementations of the
architecture can execute the load half algebraic (Iha, Ihax) instructions with greater
latency than other types of load instructions. Thisis not the case for the MPC7451,
these instructions operate with the same latency as other load instructions.

« The PowerPC architecture cautions programmers that some implementations of the
architecture can run the load/store byte-reverse (Ihbrx, Ibrx, sthbrx, stwbrx)
instructions with greater latency than other types of load/store instructions. Thisis
not the case for the MPC7451. These instructions operate with the same latency as
the other load/store instructions.

« The PowerPC architecture describes some preferred instruction forms for load and
store multiple instructions and integer move assist instructions that can perform
better than other formsin some implementations. None of these preferred forms
affect instruction performance on the MPC7451. Usage of |oad/store string
instruction is discouraged.

MOTOROLA Chapter 2. Programming Model 2-77

Instruction Set Summary

¢ ThePowerPC architecture definesthe Iwar x and stwcx. asaway to update memory
atomically. In the MPC7451, reservations are made on behalf of aligned 32-byte
sections of the memory address space. Executing Iwar x and stwcx. to apage marked
write-through does cause a DSI exception if the page is marked cacheable
write-through (WIM = 10x) or caching-inhibited (WIM = x1x), but as with other
memory accesses, DSI exceptions can result for other reasons such as a protection
violations or page faults.

Table 2-44 summarizes the integer load instructions.

Table 2-44. Integer Load Instructions

Name Mnemonic Syntax
Load Byte and Zero bz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,rB
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Half Word and Zero lhz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed lhzux rD,rA,rB
Load Half Word Algebraic lha rD,d(rA)
Load Half Word Algebraic Indexed lhax rD,rA,rB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed Ihaux rD,rA,rB
Load Word and Zero Iwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rA,rB

2.3.4.3.4 Integer Store Instructions

For integer storeinstructions, the contents of r S are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which r A is updated with the EA. For these forms, the following

rules apply:
e If rA #0, the effective addressis placed into r A.
e |IfrS=rA, the contentsof register r S are copied to the target memory element, then
the generated EA isplaced intorA (rS).

The PowerPC architecture defines store with update instructions with rA =0 asan invalid
form. In addition, it defines integer store instructions with the CR update option enabled

2-78 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-45
summarizes the integer store instructions.

Table 2-45. Integer Store Instructions

Name Mnemonic Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rArB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rArB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rA,rB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rArB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rArB

2.3.4.3.5 Integer Store Gathering

The MPC7451 performs store gathering for write-through accesses to nonguarded space or
to cache-inhibited stores to nonguarded space if the requirements described in
Section 3.1.2.3, “Store Gathering/Merging,” are met. These stores are combined in the
load/store unit (L SU) to form a double word or quad word and are sent out on the system
bus as a single operation. However, stores can be gathered only if the successive stores that
meet the criteria are queued and pending. The MPC7451 also performs store merging as
described in Section 3.1.2.3, “ Store Gathering/Merging.”

Store gathering takes place regardless of the address order of the stores. The store gathering
and merging feature is enabled by setting HIDO[SGE].

If store gathering is enabled and the stores do not fall under the above categories, an eieio
or sync instruction must be used to prevent two stores from being gathered.

2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions

Table 2-46 describes integer load and store with byte-reverse instructions. When used in a
system operating with the default big-endian byte order, these instructions have the effect
of loading and storing datain little-endian order. Likewise, when used in asystem operating
with little-endian byte order, these instructions have the effect of loading and storing data
in big-endian order. For more information about big-endian and little-endian byte ordering,
see “Byte Ordering,” in Chapter 3, “Operand Conventions,” in the Programming
Environments Manual.

MOTOROLA Chapter 2. Programming Model 2-79

Instruction Set Summary

Table 2-46. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax
Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB
Load Word Byte-Reverse Indexed lwbrx rD,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

2.3.4.3.7 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of datato and from the GPRs.
The load multiple and store multiple instructions can have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions can be
interrupted by a DSI exception associated with the address trand ation of the second page.

The PowerPC architecture defines the Load Multiple Word (Imw) instruction with rA in
the range of registers to be loaded as an invalid form.

Table 2-47. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax
Load Multiple Word Imw rD,d(rA)
Store Multiple Word stmw rS,d(rA)

2.3.4.3.8 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registersor from registersto memory without concern for alignment. Theseinstructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in someimplementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 2-48
summarizes the integer load and store string instructions.

Table 2-48. Integer Load and Store String Instructions

Name Mnemonic Syntax
Load String Word Immediate Iswi rD,rA,NB
Load String Word Indexed Iswx rD,rA,rB
Store String Word Immediate stswi rS,rA,NB
Store String Word Indexed stswx rS,rA,rB

Inthe MPC7451 implementation operating with little-endian byte order, execution of aload
or string instruction will take an alignment exception.

2-80 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Load string and store string instructions can involve operands that are not word-aligned.

For load/store string operations, the MPC7451 does not combine register values to reduce
the number of discrete accesses. However, if store gathering is enabled and the accessesfall
under the criteria for store gathering the stores can be combined to enhance performance.
At a minimum, additional cache access cycles are required. Usage of load/store string
instructions is discouraged.

2.3.4.3.9 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store access results in an alignment exception.

There are two forms of the floating-point load instruction—single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precision format, single-precision floating-point load instructions convert
single-precision data to double-precision format before loading an operand into an FPR.

Implementation Note—The MPC7451 treats exceptions as follows:

¢ TheFPU can berunintwo different modes—Ignore exceptions mode (M SR[FEQ] =
MSR[FE1] = 0) and precise mode (any other settings for M SR[FEO,FE1]). For the
MPC7451, ignore exceptions mode allows floating-point instructions to complete
earlier and thus can provide better performance than precise mode.

Thefloating-point load and storeindexed instructions (Ifsx, Ifsux, Ifdx, Ifdux, stfsx, stfsux,
stfdx, stfdux) are invalid when the Rc hit is one. The PowerPC architecture defines aload
with update instruction with rA = 0 as an invalid form. Table 2-49 summarizes the
floating-point load instructions.

Table 2-49. Floating-Point Load Instructions

Name Mnemonic Syntax
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB

MOTOROLA Chapter 2. Programming Model 2-81

Instruction Set Summary

2.3.4.3.10 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by the optional stfiwx instruction. Because the FPRs support only floating-point,
double-precision format for floating-point data, single-precision floating-point store
instructions convert double-precision data to single-precision format before storing the
operands. Table 2-50 summarizes the floating-point store instructions.

Table 2-50. Floating-Point Store Instructions

Name Mnemonic Syntax
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frS,r B
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frS,r B
Store Floating-Point Double stfd frS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rB
Store Floating-Point Double with Update stfdu frS,d(rA)
Store Floating-Point Double with Update Indexed stfdux frS,r B
Store Floating-Point as Integer Word Indexed 1 stfiwx frS,rB

1 The stfiwx instruction is optional to the PowerPC architecture

Some floating-point store instructions require conversions in the LSU. Table 2-51 shows
conversions the L SU makes when executing a Store Floating-Point Single instruction.

Table 2-51. Store Floating-Point Single Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero, infinity, QNaN Store
Single SNaN Store
Double Normalized If (exp < 896)
then
Denormalize and Store
else
Store
Double Denormalized Store zero
Double Zero, infinity, QNaN Store
Double SNaN Store

2-82 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Table 2-52 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is simply stored.
Only in afew cases are any other actions taken.

Table 2-52. Store Floating-Point Double Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and Store
Single Zero, infinity, QNaN Store
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero, infinity, QNaN Store
Double SNaN Store

Architecturaly, al floating-point numbers are represented in double-precision format
within the MPC7451. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization. The MPC7451 supportsthis
denormalization by shifting the mantissa one bit at atime. Anywhere from 1 to 23 clock
cyclesarerequired to complete the denormalization, depending upon the value to be stored.

Because of how floating-point numbers are implemented in the MPC7451, thereis also a
case when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction
can require internal shifting of the mantissa. This case occurs when the operand of a store
floating-point double instruction is a denormalized single-precision value. The value could
be the result of a load floating-point single instruction, a single-precision arithmetic
instruction, or a floating round to single-precision instruction. In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These
cycles areincurred during the store.

2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of bitsin the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress can affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

MOTOROLA Chapter 2. Programming Model 2-83

Instruction Set Summary

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the processors that ignore the two low-order bits
of the generated branch target address.

Branch instructions compute the EA of the next instruction address using the following
addressing modes:

* Branchrelative

< Branch conditiona to relative address
e Branch to absolute address

» Branch conditional to absolute address
¢ Branch conditional to link register

< Branch conditional to count register

Note that in the MPC7451, all branch instructions (b, ba, bl, bla, bc, bca, bcl, bcla, bclr,
bclrl, bectr, bectrl) are executed in the BPU and condition register logical instructions
(crand, cror, crxor, crnand, crnor, crandc, cregv, crorc, and mcrf) are executed by the
IU2. Some of these instructions can redirect instruction execution conditionally on the
value of CR, CTR, or LR bits. When the CR bits resolve, the branch instruction is either
marked as correct or mispredicted. Correcting a mispredicted branch requires that the
MPC7451 flush speculatively executed instructions and restore the machine state to
immediately after the branch. This correction can be done when all non-speculative
instructions older than the mispredicting branch have completed.

2.3.4.4.2 Branch Instructions

Table 2-53 lists the branch instructions provided by the processors that implement the
PowerPC architecture. To simplify assembly language programming, a set of simplified
mnemonics and symbols is provided for the most frequently used forms of branch
conditional, compare, trap, rotate and shift, and certain other instructions. See Appendix F,
“Simplified Mnemonics,” in the Programming Environments Manual for a list of
simplified mnemonic examples.

Table 2-53. Branch Instructions

Name Mnemonic Syntax
Branch b (ba bl bla) target_addr
Branch Conditional bc (bca bcl bcela) BO,Bl,target_addr
Branch Conditional to Link Register bcelr (belrl) BO,BI
Branch Conditional to Count Register becetr (bectrl) BO,BI

2-84 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

2.3.4.4.3 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 2-54, and the Move Condition
Register Field (mcrf) instruction are also defined as flow control instructions.

Table 2-54. Condition Register Logical Instructions

Name Mnemonic Syntax

Condition Register AND crand crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA, crbB
Condition Register AND with Complement crandc crbD,crbA, crbB
Condition Register OR with Complement crorc crbD,crbA, crbB
Move Condition Register Field mcrf crfD,crfS

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions asinvalid.

2.3.4.4.4 Trap Instructions

The trap instructions shown in Table 2-55 are provided to test for a specified set of
conditions. If any of the conditionstested by atrap instruction are met, the system trap type
program exception is taken. For more information, see Section 4.6.7, “ Program Exception
(0x00700).” If the tested conditions are not met, instruction execution continues normally.

Table 2-55. Trap Instructions

Name Mnemonic Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rArB

See Appendix F, “ Simplified Mnemonics,” in The Programming Environments Manual for
acomplete set of simplified mnemonics.

2.3.45 System Linkage Instruction—UISA

The System Call (sc) instruction permits a program to call on the system to perform a
service; see Table 2-56 and al so Section 2.3.6.1, * System Linkage I nstructions—OEA,” for
additional information.

MOTOROLA Chapter 2. Programming Model 2-85

Instruction Set Summary

Table 2-56. System Linkage Instruction—UISA

Name Mnemonic Syntax

System Call sc —

Executing this instruction causes the system call exception handler to be evoked. For more
information, see Section 4.6.10, “ System Call Exception (0x00C00).”

2.3.4.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register (CR),
machine state register (MSR), and special-purpose registers (SPRs). See Section 2.3.5.1,
“Processor Control Instructions—VEA," for the mftb instruction and Section 2.3.6.2,
“Processor Control Instructions—OEA,” for information about the instructions used for
reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions

Table 2-57 summarizes the instructions for reading from or writing to the condition
register.

Table 2-57. Move to/from Condition Register Instructions

Name Mnemonic Syntax
Move to Condition Register Fields mtcrf CRM,rS
Move to Condition Register from XER mcrxr crfD

Move from Condition Register

mfcr

rD

Implementation Note—The PowerPC architectureindicatesthat in someimplementations
the Move to Condition Register Fields (mtcrf) instruction can perform more slowly when
only aportion of thefields are updated as opposed to all of thefields. The condition register
access latency for the MPC7451 is the same in both cases, if multiple fields are affected.
Notethat mtcrf singlefield ishandledinthelU1sand latency may belower if amtcr f multi
issplit into its component single field pieces by the compiler.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 2-58 lists the mtspr and mfspr instructions.
Table 2-58. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Syntax

Move to Special-Purpose Register mtspr SPR,rS

Move from Special-Purpose Register mfspr rD,SPR

Table 2-59 lists the SPR numbers for user-level PowerPC SPR accesses.

2-86 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Encodings for the MPC7451-specific user-level SPRs are listed in Table 2-60.
Table 2-59. User-level PowerPC SPR Encodings

SPR*
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
CTR 9 00000 01001 User (UISA) Both
LR 8 00000 01000 User (UISA) Both
TBL 2 268 01000 01100 User (VEA) mftb
TBU 2 269 01000 01101 User (VEA) mftb
VRSAVE 3 256 01000 00000 User (AltiVec/UISA) Both
XER 1 00000 00001 User (UISA) Both

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For mtspr
and mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five bits

appearing in bits 16—20 of the instruction and the low-order five bits in bits 11-15.
The TB registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction in supervisor mode

and the TBR numbers here. The TB registers can be read in user mode using either the mftb instruction and specifying TBR 268
for TBL and TBR 269 for TBU.

3 Register defined by the AltiVec Technology

Table 2-60. User-level SPR Encodings for MPC7451-Defined Registers

Register SPR *
Name . Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
UMMCRO 936 11101 01000 User mfspr
UMMCR1 940 11101 01100 User mfspr
UMMCR2 928 11101 00000 User mfspr
UPMC1 937 11101 01001 User mfspr
UPMC2 938 11101 01010 User mfspr
UPMC3 941 11101 01101 User mfspr
UPMC4 942 11101 01110 User mfspr
UPMC5 929 11101 00001 User mfspr
UPMC6 930 11101 00010 User mfspr
USIAR 939 11101 01011 User mfspr

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For mtspr and
mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits appearing
in bits 16—20 of the instruction and the low-order 5 bits in bits 11-15.

MOTOROLA

Chapter 2. Programming Model

2-87

Instruction Set Summary

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. SeeSection 3.3.3.6, “Atomic
Memory References,” for additional information about these instructions and about related
aspects of memory synchronization. See Table 2-61 for a summary.

Table 2-61. Memory Synchronization Instructions—UISA

Name Mnemonic | Syntax Implementation Notes
Load Word Iwarx 1 rD,rA,rB | Programmers can use lwarx with stwcx. to emulate common semaphore
and Reserve operations such as test and set, compare and swap, exchange memory, and
Indexed fetch and add. Both instructions must use the same EA. Reservation granularity

is implementation-dependent. The MPC7451 makes reservations on behalf of

1
Store Word stwex. rSrArB aligned 32-byte sections of the memory address space. Executing Iwarx and

Conditional stwex. to a page marked write-through (WIMG = 10xx) or caching-inhibited
Indexed (WIMG = x1xx) or when the data cache is disabled or locked causes a DSI
exception. If the location is not word-aligned, an alignment exception occurs.
The stwcx. instruction is the only load/store instruction with a valid form if Rc is
set. If Rc is zero, executing stwcx. sets CRO to an undefined value.
Synchronize sync — Because it delays execution of subsequent instructions until all previous

instructions complete to where they cannot cause an exception, sync is a
barrier against store gathering. Additionally, all load/store cache/bus activities
initiated by prior instructions are completed. Touch load operations (dcbt,
dcbtst) must complete address translation, but need not complete on the bus.
The sync completes after a successful broadcast on the system bus.

The latency of sync depends on the processor state when it is dispatched and
on various system-level situations. Note that, frequent use of sync will degrade
performance.

1 Note that the MPC7451 implements the Iwarx and stwcx. as defined in the PowerPC architecture version 1.10. The
execution of an lwarx or stwcx. instructions to memory marked write-through or cache-inhibited will cause a DSI
exception.

System designs with an external cache should take specia care to recognize the hardware
signaling caused by a SYNC bus operation and perform the appropriate actions to
guarantee that memory references that can be queued internally to the external cache have
been performed globally.

See Section 2.3.5.2, “Memory Synchronization Instructions—VEA,” for details about
additional memory synchronization (eieio) instructions.

In the PowerPC architecture, the Rc bit must be zero for most load and store instructions.
If Rcisset, theinstruction formisinvalid for sync and lwar x instructions. If the MPC7451
encounters one of these invalid instruction forms, it sets CRO to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and i ncludes descriptions of the

2-88 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

cache model, cache control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but do not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions—VEA

In addition to the move to condition register instructions (specified by the UISA), the VEA
defines the mftb instruction (user-level instruction) for reading the contents of the time
base register; see Chapter 3, “L1, L2, and L3 Cache Operation,” for more information.
Table 2-62 shows the mftb instruction.

Table 2-62. Move from Time Base Instruction

Name Mnemonic Syntax

Move from Time Base mftb rD, TBR

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of the mftb
instruction rather than of mfspr. The mftb instruction serves as both abasic and simplified
mnemonic. Assembl ers recognize an mftb mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the simplified form.

Implementation Note—In the MPC7451, note the following:

¢ The MPC7451 allows user-mode read access to the time base counter through the
use of the Move from Time Base (mftb) instruction. As a 32-bit implementation of
the PowerPC architecture, the MPC7451 can access TBU and TBL separately only.

e Thetime base counter is clocked at afrequency that is one-fourth that of the bus
clock. Counting is enabled by assertion of the time base enable (TBEN) input signal.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “L1, L2, and
L3 Cache Operation,” for more information about these instructions and about related
aspects of memory synchronization.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce
In-Order Execution of 1/0O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete an eieio instruction depends on system parameters
and on the processor's state when the instruction is issued. As aresult, frequent use of this

MOTOROLA Chapter 2. Programming Model 2-89

Instruction Set Summary

instruction can degrade performance. Note that the broadcast of these instructions on the
busis controlled by the HID1[SY NCBE] bit.

Table 2-63 describes the memory synchronization instructions defined by the VEA.

Table 2-63. Memory Synchronization Instructions—VEA

Name Mnemonic | Syntax Implementation Notes
Enforce eieio — The eieio instruction is dispatched to the LSU and executes after all previous
In-Order cache-inhibited or write-through accesses are performed; all subsequent
Execution of instructions that generate such accesses execute after eieio. As the eieio
lfe} operation doesn't affect the caches, it bypasses the L2 and L3 caches and is

forwarded to the bus. An EIEIO operation is broadcast on the external bus to
enforce ordering in the external memory system. Because the MPC7451 does
reorder noncacheable accesses, eieio may be needed to force ordering.
However, if store gathering is enabled and an eieio is detected in a store queue,
stores are not gathered. Broadcasting eieio prevents external devices, such as
a bus bridge chip, from gathering stores.

Instruction isync — The isync instruction is refetch serializing; that is, it causes the MPC7451 to wait
Synchronize for all prior instructions to complete first then executes which purges all
instructions from the processor and then refetches the next instruction. The
isync instruction is not executed until all previous instructions complete to the
point where they cannot cause an exception. The isync instruction does not wait
for all pending stores in the store queue to complete. Any instruction after an
isync sees all effects of prior instructions occurring before the isync.

2.3.5.3 Memory Control Instructions—VEA

Memory control instructions can be classified as follows:
» Cache management instructions (user-level and supervisor-level)
» Trandation lookaside buffer management instructions (OEA)

This section describes the user-level cache management instructions defined by the VEA.
See Section 2.3.6.3, “Memory Control Instructions—OEA," for information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions. For acomplete description of the bus operations caused by cache
control instructions, see Section 3.8.2, “Bus Operations Caused by Cache Control
Instructions.”

2.3.5.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section help user-level programs manage on-chip
caches if they are implemented. See Chapter 3, “L1, L2, and L3 Cache Operation,” for
more information about cache topics. The following sections describe how these operations
are treated with respect to the MPC7451’s caches.

As with other memory-related instructions, the effects of cache management instructions
on memory are weakly-ordered. If the programmer must ensure that cache or other

2-90 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed after those instructions.

Note that the MPC7451 interprets cache control instructions (icbi, dcbi, dcbf, dcbz, and
dcbst) asif they pertain only to thelocal L1, and L2, and L3 caches. A dcbz (with M set)
isaways broadcast on the businterface if it does not hit as modified in any on-chip cache.

All cache control instructions to direct-store space are no-ops. For information how cache
control instructions affect the L2 cache, see 3.6.4, “L 2 Cache Operation.”

Table 2-64 summarizes the cache instructions defined by the VEA. Note that these
instructions are accessible to user-level programs.

Table 2-64. User-Level Cache Instructions

Name

Mnemonic

Syntax

Implementation Notes

Data Cache Block
Touch 1

dchbt

rA,rB

The VEA defines this instruction to allow for potential system performance
enhancements through the use of software-initiated prefetch hints.
Implementations are not required to take any action based on execution
of this instruction, but they can prefetch the cache block corresponding to
the EA into their cache. When dcbt executes, the MPC7451 checks for
protection violations (as for a load instruction). This instruction is treated
as a no-op for the following cases:

« The access causes a protection violation.

* The page is mapped cache-inhibited or direct-store (T = 1).

« The cache is locked or disabled

+ HIDO[NOPTI] = 1

Otherwise, if no data is in the cache location, the MPC7451 requests a
cache line fill. Data brought into the cache is validated as if it were a load
instruction. The memory reference of a dcbt sets the reference bit.

Data Cache Block
Touch for Store 1

dcbtst

rArB

This instruction dcbtst can be noped by setting HIDO[NOPTI].

The dcbtst instruction behaves similarly to a dcbt instruction, except that
the line fill request on the bus is signaled as read or read-claim, and the
data is marked as exclusive in the L1 data cache if there is no shared
response on the bus. More specifically, the following cases occur
depending on where the line currently exists or does not exist in the
MPC7451.

« dcbtst hits in the L1 data cache. In this case, the dcbtst does nothing
and the state of the line in the cache is not changed. Thus, if the line
was in the shared state, a subsequent store hits on this shared line and
incur the associated latency penalties.

dcbtst misses in the L1 data cache and hits in the L2 or L3 cache. In
this case, the dcbtst will reload the L1 data cache with the state found
in the L2 cache. Again, if the line was in the shared state in the L2, a
subsequent store will hit on this shared line and incur the associated
latency penalties.

dcbtst misses in L1 data cache, L2, and L3 caches. In this case,
MPC7451 will request the line from memory with read or read-claim and
reload the L1 data cache in the exclusive state. As subsequent store will
hit on exclusive and can perform the store to the L1 data cache
immediately.

In addition, a dcbtst instruction will be no-oped if the target address of the
dcbtst is mapped as write-through.

MOTOROLA

Chapter 2. Programming Model 2-91

Instruction Set Summary

Table 2-64. User-Level Cache Instructions (continued)

Name

Mnemonic

Syntax

Implementation Notes

Data Cache Block
Set to Zero

dcbz

rArB

The EA is computed, translated, and checked for protection violations. For
cache hits, 32 bytes of zeros are written to the cache block and the tag is
marked modified. For cache misses with the replacement block marked
not modified, the zero reload is performed and the cache block is marked
modified. However, if the replacement block is marked modified, the
contents are written back to memory first. The instruction takes an
alignment exception if the cache is locked or disabled or if the cache is
marked WT or Cl. If WIMG = xx1x (coherency enforced), the address is
broadcast to the bus before the zero reload fill.

The exception priorities (from highest to lowest) are as follows:

1 Cache disabled—Alignment exception

2 Cache is locked—Alignment exception

3 Page marked write-through or cache-inhibited—alignment exception
4 BAT protection violation—DSI exception

5 TLB protection violation—DSI exception

dcbz is broadcast if WIMG = xx1x (coherency enforced).

Data Cache Block
Allocate

dcba

rArB

The EA is computed, translated, and checked for protection violations. For
cache hits, 32 bytes of zeros are written to the cache block and the tag is
marked modified. For cache misses with the replacement block marked
non-dirty, the zero reload is performed and the cache block is marked
modified. However, if the replacement block is marked modified, the
contents are written back to memory first. The instruction performs a no-op
if the cache is locked or disabled or if the cache is marked WT or CI. If
WIMG =xx1x (coherency enforced), the address is broadcast to the bus
before the zero reload fill.

A no-op occurs for the following:

* Cache is disabled

« Cache is locked

« Page marked write-through or cache-inhibited

« BAT protection violation

« TLB protection violation

dcba is broadcast if WIMG = xx1x (coherency enforced).

Data Cache Block
Store

dcbst

rArB

The EA is computed, translated, and checked for protection violations.

« For cache hits with the tag marked not modified, no further action is
taken.

« For cache hits with the tag marked modified, the cache block is written
back to memory and marked exclusive.

If WIMG = xx1x (coherency enforced) dcbst is broadcast. The instruction

acts like a load with respect to address translation and memory protection.

It executes regardless of whether the cache is disabled or locked.

The exception priorities (from highest to lowest) for dcbst are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception

2-92

MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Table 2-64. User-Level Cache Instructions (continued)

Name Mnemonic | Syntax Implementation Notes
Data Cache Block dcbf rA,rB | The EA is computed, translated, and checked for protection violations:
Flush « For cache hits with the tag marked modified, the cache block is written

back to memory and the cache entry is invalidated.
« For cache hits with the tag marked not modified, the entry is invalidated.
« For cache misses, no further action is taken.
A dcbf is broadcast if WIMG = xx1x (coherency enforced).The instruction
acts like a load with respect to address translation and memory protection.
It executes regardless of whether the cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbf are as follows:
1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception

Instruction Cache ichbi rA,rB | This instruction is broadcast on the bus if WIMG = xx1x. icbi should
Block Invalidate always be followed by a sync and an isync to make sure that the effects
of the icbi are seen by the instruction fetches following the icbi itself.

1A program that uses dcbt and dcbtst instructions improperly performs less efficiently. To improve performance, HIDO[NOPTI] can be
set, which causes dcbt and dcbtst to be no-oped at the cache. They do not cause bus activity and cause only a 1-clock execution
latency. The default state of this bit is zero which enables the use of these instructions.

2.3.5.4 Optional External Control Instructions

The PowerPC architecture defines an optional external control feature that, if implemented,
is supported by the two external control instructions, eciwx and ecowx. These instructions
adlow a user-level program to communicate with a specia-purpose device. These
instructions are provided in the MPC7451 and are summarized in Table 2-65.

Table 2-65. External Control Instructions

Name Mnemonic | Syntax Implementation Note
External eciwx rD,rA,rB | A transfer size of 4 bytes is implied; the TBST and TSIZ[0:2] signals are
Control In redefined to specify the resource ID (RID), copied from bits EAR[28-31]. For
Word Indexed these operations, TBST carries the EAR[28] data. Misaligned operands for
these instructions cause an alignment exception. Addressing a location
External ecowx rSIATB | \where SR[T] = 1 causes a DSl exception. If MSR[DR] = 0 a programming
Control Out error occurs and the physical address on the bus is undefined.
Word Indexed Note: These instructions are optional to the PowerPC architecture.

The eciwx/ecowx instructions let a system designer map specia devicesin an alternative
way. The MMU trandation of the EA isnot used to select the special device, sinceitisused
in most instructions such as loads and stores. Rather, the EA is used as an address operand
that is passed to the device over the address bus. Four other signals (the burst and size
signals on the system bus) are used to select the device; these four signals output the 4-bit
resource ID (RID) field located in the EAR. The eciwx instruction also loads aword from
the databusthat is output by the special device. For moreinformation about therelationship
between these instructions and the system interface, refer to Chapter 8, “Signd
Descriptions.”

MOTOROLA Chapter 2. Programming Model 2-93

Instruction Set Summary

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA aso adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA.

2.3.6.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 2-66). The user-level sc
instruction lets a user program call on the system to perform a service and causes the
processor to take a system call exception. The supervisor-level rfi instruction is used for
returning from an exception handler.

Table 2-66. System Linkage Instructions—OEA

Name Mnemonic | Syntax Implementation Notes
System Call sc — The sc instruction is context-synchronizing.
Return from rfi — The rfi instruction is context-synchronizing. For the MPC7451, this means the
Interrupt rfi instruction works its way to the final stage of the execution pipeline,
updates architected registers, and redirects the instruction flow.

2.3.6.2 Processor Control Instructions—OEA

The instructions listed in Table 2-67 provide access to the segment registers for 32-hit
implementations. These instructions operate completely independently of the MSR[IR]
and MSR[DR] hit settings. Refer to “ Synchronization Requirements for Special Registers
and for Lookaside Buffers,” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for serialization requirements and other recommended precautions
to observe when manipulating the segment registers.

Table 2-67. Segment Register Manipulation Instructions (OEA)

Name Mnemonic | Syntax Implementation Notes
Move to Segment Register mtsr SRS |—
Move to Segment Register Indirect mtsrin rSrB |—
Move from Segment Register mfsr rD,SR |—
Move from Segment Register Indirect mfsrin DB | —

The processor control instructions used to accessthe M SR and the SPRsisdiscussed in this
section. Table 2-68 lists instructions for accessing the MSR.

2-94 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Table 2-68. Move to/from Machine State Register Instructions

Name Mnemonic Syntax
Move to Machine State Register mtmsr rS
Move from Machine State Register mfmsr rD

The OEA defines encodings of mtspr and mfspr to provide access to supervisor-level
registers. The instructions are listed in Table 2-69.

Table 2-69. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Syntax
Move to Special-Purpose Register mtspr SPR,rS
Move from Special-Purpose Register mfspr rD,SPR

Encodings for the architecture-defined SPRs are listed in Table 2-59. Encodings for
MPC7451-specific, supervisor-level SPRs are listed in Table 2-60. Simplified mnemonics
are provided for mtspr and mfspr in Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual .

Table liststhe SPR numbers for supervisor-level PowerPC SPR accesses.

Table 2-70. Supervisor-level PowerPC SPR Encodings

SPR !
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
DABR 2 1013 11111 10101 Supervisor (OEA) Both
DAR 19 00000 10011 Supervisor (OEA) Both
DBATOL 537 10000 11001 Supervisor (OEA) Both
DBATOU 536 10000 11000 Supervisor (OEA) Both
DBAT1L 539 10000 11011 Supervisor (OEA) Both
DBAT1U 538 10000 11010 Supervisor (OEA) Both
DBAT2L 541 10000 11101 Supervisor (OEA) Both
DBAT2U 540 10000 11100 Supervisor (OEA) Both
DBAT3L 543 10000 11111 Supervisor (OEA) Both
DBAT3U 542 10000 11110 Supervisor (OEA) Both
DEC 22 00000 10110 Supervisor (OEA) Both
DSISR 18 00000 10010 Supervisor (OEA) Both
EAR 2 282 01000 11010 Supervisor (OEA) Both
IBATOL 529 10000 10001 Supervisor (OEA) Both
IBATOU 528 10000 10000 Supervisor (OEA) Both
IBAT1L 531 10000 10011 Supervisor (OEA) Both
MOTOROLA Chapter 2. Programming Model 2-95

Instruction Set Summary

Table 2-70. Supervisor-level PowerPC SPR Encodings (continued)

SPR !
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]

IBAT1U 530 10000 10010 Supervisor (OEA) Both
IBAT2L 533 10000 10101 Supervisor (OEA) Both
IBAT2U 532 10000 10100 Supervisor (OEA) Both
IBAT3L 535 10000 10111 Supervisor (OEA) Both
IBAT3U 534 10000 10110 Supervisor (OEA) Both
MMCRO 2 952 11101 11000 Supervisor Both
MMCR1 2 956 11101 11100 Supervisor Both
PIR 2 1023 11111 11111 Supervisor (OEA) Both
PMC1 2 953 11101 11001 Supervisor Both
PMC2 2 954 11101 11010 Supervisor Both
PMC3 2 957 11101 11101 Supervisor Both
PMC4 2 958 11101 11110 Supervisor Both
PMC5 2 945 11101 10001 Supervisor Both
PMC6 2 946 11101 10010 Supervisor Both
PVR 287 01000 11111 Supervisor (OEA) mfspr
SDR1 25 00000 11001 Supervisor (OEA) Both
SIAR 2 955 11101 11011 Supervisor Both
SPRGO 272 01000 10000 Supervisor (OEA) Both
SPRG1 273 01000 10001 Supervisor (OEA) Both
SPRG2 274 01000 10010 Supervisor (OEA) Both
SPRG3 275 01000 10011 Supervisor (OEA) Both
SRRO 26 00000 11010 Supervisor (OEA) Both
SRR1 27 00000 11011 Supervisor (OEA) Both
TBL3 284 01000 11100 Supervisor (OEA) mtspr
TBU 3 285 01000 11101 Supervisor (OEA) mtspr

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For mtspr and
mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits appearing
in bits 16—20 of the instruction and the low-order 5 bits in bits 11-15.

Optional register defined by the PowerPC architecture
The TB registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction in supervisor mode

and the TBR numbers here. The TB registers can be read in user mode using the mftb instruction and specifying TBR 268 for
TBL and TBR 269 for TBU.

Encodings for the supervisor-level MPC7451-specific SPRs are listed in Table 2-60.

2-96

MPC7450 RISC Microprocessor Family User’s Manual

MOTOROLA

Instruction Set Summary

Table 2-71. Supervisor-level SPR Encodings

for MPC7451-Defined Registers

1
Register SPR
Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
BAMR 951 11101 10111 Supervisor Both
DBATA4L 2 569 10001 11001 Supervisor Both
(OEA)
DBAT4U 2 568 10001 11000 Supervisor Both
(OEA)
DBATS5L 2 571 10001 11011 Supervisor Both
(OEA)
DBAT5U 2 570 10001 11010 Supervisor Both
(OEA)
DBAT6L 2 573 10001 11101 Supervisor Both
(OEA)
DBAT6U 2 572 10001 11100 Supervisor Both
(OEA)
DBAT7L 2 575 10001 11111 Supervisor Both
(OEA)
DBAT7U 2 574 10001 11110 Supervisor Both
(OEA)
HIDO 1008 11111 10000 Supervisor Both
HID1 1009 11111 10001 Supervisor Both
IABR 1010 11111 10010 Supervisor Both
IBATAL 2 561 10001 10001 Supervisor Both
(OEA)
IBAT4U 2 560 10001 10000 Supervisor Both
(OEA)
IBATSL 2 563 10001 10011 Supervisor Both
(OEA)
IBAT5U 2 562 10001 10010 Supervisor Both
(OEA)
IBAT6L 2 565 10001 10101 Supervisor Both
(OEA)
IBAT6U 2 564 10001 10100 Supervisor Both
(OEA)
IBAT7L 2 567 10001 10111 Supervisor Both
(OEA)
IBAT7U 2 566 10001 10110 Supervisor Both
(OEA)
ICTC 1019 11111 11011 Supervisor Both
ICTRL 1011 11111 10011 Supervisor Both
MOTOROLA Chapter 2. Programming Model 2-97

Instruction Set Summary

Table 2-71. Supervisor-level SPR Encodings
for MPC7451-Defined Registers (continued)

. SPR 1
Rﬁlglniteer Access mfsprimtspr
Decimal spr[5-9] spr[0-4]
L2CR 1017 11111 11001 Supervisor Both
L3CR 3 1018 11111 11010 Supervisor Both
L3ITCRO 3 984 11111 11010 Supervisor Both
L3ITCR1 4 1001 11111 11010 Supervisor Both
L3ITCR2 4 1002 11111 11010 Supervisor Both
L3ITCR3 4 1003 11111 11010 Supervisor Both
L30OHCR 4 1000 11111 11010 Supervisor Both
L3PM3 983 11110 10111 Supervisor Both
LDSTCR 1016 11111 11000 Supervisor Both
MMCR2 944 11101 10000 Supervisor Both
MSSCRO 1014 11111 10110 Supervisor Both
MSSSRO 1015 11111 10111 Supervisor Both
PTEHI 981 11110 10101 Supervisor Both
PTELO 982 11110 10110 Supervisor Both
SPRG4 2 276 01000 10100 Supervisor Both
(OEA)
SPRGS5 2 277 01000 10101 Supervisor Both
(OEA)
SPRG6 2 278 01000 100110 Supervisor Both
(OEA)
SPRG7 2 279 01000 10111 Supervisor Both
(OEA)
TLBMISS 980 11110 10100 Supervisor Both

[N

Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding.
For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit
binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in the instruction,
with the high-order 5 bits appearing in bits 16—20 of the instruction and the low-order 5 bits in bits 11-15.

2 MPC7445-, MPC7447-, MPC7455-, and MPC7457-specific only, register may not be supported on other processors
that implement the PowerPC architecture

MPC7451-, MPC7455-, MPC7457-specific register, not supported on the MPC7441, MPC7445, and MPC7447

4 MPC7457-specific register, not supported on the MPC7441, MPC7445, MPC7447, MPC7451,and MPC7455

w

2.3.6.3 Memory Control Instructions—OEA

Memory control instructions include the following:

¢ Cache management instructions (supervisor-level and user-level)
» Trandation lookaside buffer management instructions

2-98 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

This section describes supervisor-level memory control instructions. Section 2.3.5.3,
“Memory Control Instructions—VEA,” describes user-level memory control instructions.

2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
Table 2-72 lists the only supervisor-level cache management instruction.

Table 2-72. Supervisor-Level Cache Management Instruction

Name Mnemonic | Syntax Implementation Notes
Data Cache dcbi rA,rB | The dcbi instruction is executed identically to the dcbf instruction except that it
Block is privileged (supervisor-only). See Section 2.3.5.3.1, “User-Level Cache
Invalidate Instructions—VEA."

See Section 2.3.5.3.1, “User-Level Cache Instructions—VEA,” for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references a direct-store segment, the instruction is treated as a no-op.

2.3.6.3.2 Translation Lookaside Buffer Management Instructions—OEA

The address translation mechanism is defined in terms of the segment descriptors and page
table entries (PTES) that processors use to locate the logical-to-physical address mapping
for a particular access. These segment descriptors and PTESs reside in on-chip segment
registers and page tablesin memory, respectively.

Implementation Note—The MPC7451 provides two implementation-specific instructions
(tIbld and tIbli) that are used by software table search operations following TLB missesto
load TLB entries on-chip when HIDO[STEN] = 1.

For more information on tlbld and tlbli refer to Section 2.3.8, “Implementation-Specific
Instructions”

See Chapter 7, “Memory Management,” for more information about TLB operations.
Table 2-73 summarizes the operation of the TLB instructions in the MPC7451. Note that
the broadcast of tlbie and tlbsync instructions is enabled by the setting of
HID1[SYNCBE].

Table 2-73. Translation Lookaside Buffer Management Instruction

Name Mnemonic | Syntax Implementation Notes
TLB Invalidate tibie rB Invalidates both ways in both instruction and data TLB entries at the
Entry index provided by EA[14-19]. It executes regardless of the MSR[DR]

and MSR[IR] settings. To invalidate all entries in both TLBs, the
programmer should issue 64 tlbie instructions that each successively
increment this field.

Load Data TLB tibld rB Load Data TLB Entry
Entry Loads fields from the PTEHI and PTELO and the EA in rB to the way
defined in rB[31].

MOTOROLA Chapter 2. Programming Model 2-99

Instruction Set Summary

Table 2-73. Translation Lookaside Buffer Management Instruction

Name Mnemonic | Syntax Implementation Notes
Load Instruction tibli B Load Instruction TLB Entry
TLB Entry Loads fields from the PTEHI and PTELO and the EA in rB to the way

defined in rB[31].

TLB Synchronize tibsync — TLBSYNC is broadcast.

Implementation Note—The tlbia instruction is optional for an implementation if its
effects can be achieved through some other mechanism. Therefore, it is not implemented
on the MPC7451. As described above, tlbie can be used to invalidate a particular index of
the TLB based on EA[14-19]—a sequence of 64 tlbie instructions followed by atlbsync
instruction invalidates all the TLB structures (for EA[14-19] =0, 1, 2, .. ., 63). Attempting
to execute tlbia causes an illegal instruction program exception.

The presence and exact semantics of the TLB management instructions are
implementation-dependent. To minimize compatibility problems, system software should
incorporate uses of these instructions into subroutines.

2.3.7 Recommended Simplified Mnemonics

The description of each instruction includes the mnemonic and aformatted list of operands.
PowerPC-architecture-compliant assemblers support the mnemonics and operand lists. To
simplify assembly language programming, a set of simplified mnemonics and symbols is
provided for some of the most frequently-used instructions, refer to Appendix F,
“Simplified Mnemonics,” in the The Programming Environments Manual for a complete
list. Programs written to be portable across the various assemblers for the PowerPC
architecture should not assume the existence of mnemonics not described in this document.

2.3.8 Implementation-Specific Instructions

This section provides the details for the two MPC7451 implementation-specific
instructions—tlbld and tlbli.

2-100 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

tibld tibld

Load Data TLB Entry Integer Unit
tibld rB
D Reserved

31 00000 00000 B 978 |O|
0 5 6 10 11 15 16 20 21 30 31

EA « (rB)

TLB entry created from PTEHI and PTELO

DTLB entry selected by EA[14-19] and rB[31] « created TLB entry
The EA isthe contents of rB. Thetlbld instruction |oads the contents of the PTEHI special
purpose register and PTEL O special purpose register into the selected data TLB entry. The
set of the data TLB to be loaded is determined by EA[14-19]. The way to be loaded is
determined by rB[31]. EA[10-13] are stored in the tag portion of the TLB and are used to
match anew EA when anew EA isbeing translated.

The tlbld instruction should only be executed when address trandation is disabled
(MSR[IR] =0 and MSR[DR] = 0).

Notethat it is possible to execute the tIbld instruction when address translation is enabl ed;
however, extreme caution should be used in doing so. If data address trandation is enabled
(MSR[DR] = 1), tlbld must be preceded by a sync instruction and succeeded by a context
synchronizing instruction.

Note that if extended addressing is not enabled (HIDO[XAEN] = 0), then PTELO[20-22]
and PTELO[29] should be cleared (zero) by software when executing a tlbld instruction.

Thisisasupervisor-level instruction; it isaso aMPC7451-specific instruction, and not part
of the PowerPC instruction set.

Other registers atered:
* None

MOTOROLA Chapter 2. Programming Model 2-101

Instruction Set Summary

tibli tibli

Load Instruction TLB Entry Integer Unit
tibli rB
|:| Reserved
31 00000 00000 B 1010 |o|
0 5 6 10 11 15 16 20 21 30 31
EA « (rB)

TLB entry created from PTEHI and PTELO

ITLB entry selected by EA[14-19] and rB[31] « created TLB entry
The EA isthe contents of rB. Thetlbli instruction loads an instruction TLB entry. Thetlbli
instruction loads the contents of the PTEHI specia purpose register and PTELO specia
purpose register into a selected instruction TLB entry. The set of the instruction TLB to be
loaded is determined by EA[14-19]. The way to be loaded is determined by rB[31].
EA[10-13] are stored in the tag portion of the TLB and are used to match anew EA when
anew EA isbeing trandated.

The tlbli instruction should only be executed when address trandation is disabled
(MSR[IR] =0 and MSR[DR] = 0).

Note that it is possible to execute the tlbli instruction when address trand ation is enabled;
however, extreme caution should be used in doing so. If instruction address trandlation is
enabled (MSR[IR] = 1), tlbli must befollowed by a context synchronizing instruction such
asisync or rfi.

Notethat if extended addressing isnot enabled (HIDO[XAEN]=0) then PTEL O[20-22] and
PTELO[29] should be cleared (set to zero) by software when executing a tlbli instruction.

Note also that care should be taken to avoid modification of theinstruction TLB entriesthat
tranglate current instruction prefetch addresses.

Thisisasupervisor-level instruction; it isalso aMPC7451-specific instruction, and not part
of the PowerPC instruction set.

Other registers altered:
* None

2-102 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec Instructions

2.4 AltiVec Instructions 6

The following sections provide a general summary of the instructions and addressing
modes defined by the AltiVec Instruction Set Architecture (ISA). For specific details on the
AltiVec instructions see the AltiVec Technology Programming Environments Manual and
Chapter 7, “AltiVec Technology Implementation.” AltiVec instructions belong primarily to
the UISA, unless otherwise noted. AltiVec instructions are divided into the following
categories:

e Vector integer arithmetic instructions—These include arithmetic, logical, compare,
rotate and shift instructions, described in Section 2.3.4.1, “Integer Instructions.”

« Vector floating-point arithmetic instructions—These floating-point arithmetic
instructions and floating-point modes are described in Section 2.3.4.2,
“Floating-Point Instructions.”

» Vector load and store instructions—These load and store instructions for vector
registers are described in Section 2.5.3, “Vector Load and Store Instructions.”

» Vector permutation and formatting instructions—These include pack, unpack,
merge, splat, permute, select and shift instructions, and are described in
Section 2.5.5, “Vector Permutation and Formatting Instructions.”

* Processor control instructions—These instructions are used to read and write from
the AltiVec Status and Control Register, and are described in Section 2.3.4.6,
“Processor Control Instructions—UISA.”

« Memory control instructions—These instructions are used for managing caches
(user level and supervisor level), and are described in Section 2.6.1, “AltiVec Vector
Memory Control Instructions—VEA."

Thisgrouping of instructions does not necessarily indicate the execution unit that processes
aparticular instruction or group of instructions within a processor implementation.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision operands. The AltiVec I SA uses instructions that
are four byteslong and word-aligned. It providesfor byte, half-word, word, and quad-word
operand fetches and stores between memory and the vector registers (VRS).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into aregister, modified, and then written to the target
location using load and store instructions.

The AltiVec | SA supports both big-endian and little-endian byte ordering. The default byte
and bit ordering is big-endian; see“Byte Ordering,” in Chapter 3, “Operand Conventions,”
of the AltiVeec Technology Programming Environments Manual for more information.

MOTOROLA Chapter 2. Programming Model 2-103

AltiVec UISA Instructions

2.5 AltiVec UISA Instructions

This section describes the instructions defined in the AltiVec user instruction set
architecture (UISA).

2.5.1 Vector Integer Instructions

Thefollowing are categories for vector integer instructions:

« Vector integer arithmetic instructions

* Vector integer compare instructions

e Vector integer logical instructions

« Vector integer rotate and shift instructions
Integer instructions use the content of VRS as source operands and also place results into
VRs. Setting the Rc bit of a vector compare instruction causes the CR6 field of the

PowerPC condition register (CR) to be updated; refer to Section 2.5.1.2, “Vector Integer
Compare Instructions’ for more details.

The AltiVec integer instructions treat source operands as signed integers unless the
instruction is explicitly identified as performing an unsigned operation. For example, both
the Vector Add Unsigned Word Modulo (vadduwm) and Vector Multiply Odd Unsigned
Byte (vmuloub) instructions interpret the operands as unsigned integers.

2.5.1.1 Vector Integer Arithmetic Instructions

Table 2-74 lists the integer arithmetic instructions for the processors that implement the
PowerPC architecture.

Table 2-74. Vector Integer Arithmetic Instructions

Name Mnemonic Syntax

Vector Add Unsigned Integer [b,h,w] Modulol vaddubm vD,vA,vB
vadduhm
vadduwm

Vector Add Unsigned Integer [b,h,w] Saturate vaddubs vD,vA,vB
vadduhs
vadduws

Vector Add Signed Integer [b.h.w] Saturate vaddsbs vD,vA,vB
vaddshs
vaddsws

Vector Add and Write Carry-out Unsigned Word vaddcuw vD,vA,vB

Vector Subtract Unsigned Integer Modulo vsububm vD,vA vB
vsubuhm
vsubuwm

2-104 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec UISA Instructions

Table 2-74. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax
Vector Subtract Unsigned Integer Saturate vsububs vD,vA,vB
vsubuhs
vsubuws
Vector Subtract Signed Integer Saturate vsubsbs vD,vA,vB
vsubshs
vsubsws
Vector Subtract and Write Carry-out Unsigned Word vsubcuw vD,vA vB
Vector Multiply Odd Unsigned Integer [b,h] Modulo vmuloub vD,vA,vB
vmulouh
Vector Multiply Odd Signed Integer [b,h] Modulo vmulosb vD,vA,vB
vmulosh
Vector Multiply Even Unsigned Integer [b,h] Modulo vmuleub vD,vA,vB
vmuleuh
Vector Multiply Even Signed Integer [b,h] Modulo vmulesb vD,vA,vB
vmulesh
Vector Multiply-High and Add Signed Half-Word Saturate vmhaddshs vD,vA,vB, vC
Vector Multiply-High Round and Add Signed Half-Word Saturate vmhraddshs vD,vA,vB,vC
Vector Multiply-Low and Add Unsigned Half-Word Modulo vmladduhm vD,vA,vB,vC
Vector Multiply-Sum Unsigned Integer [b,h] Modulo vmsumubm vD,vA,vB,vC
vmsumuhm
Vector Multiply-Sum Signed Half-Word Saturate vmsumshs vD,vA vB,vC
Vector Multiply-Sum Unsigned Half-Word Saturate vmsumuhs vD,vA vB,vC
Vector Multiply-Sum Mixed Byte Modulo vmsummbm vD,vA vB,vC
Vector Multiply-Sum Signed Half-Word Modulo vmsumshm vD,vA vB,vC
Vector Sum Across Signed Word Saturate VsSumsws vD,vA vB
Vector Sum Across Partial (1/2) Signed Word Saturate vsSum2sws vD,vA,vB
Vector Sum Across Partial (1/4) Unsigned Byte Saturate vsum4ubs vD,vA,vB
Vector Sum Across Partial (1/4) Signed Integer Saturate vsumd4sbs vD,vA,vB
vsum4shs
Vector Average Unsigned Integer vavgub vD,vA,vB
vavguh
vavguw
Vector Average Signed Integer vavgsb vD,vA,vB
vavgsh
vavgsw
Vector Maximum Unsigned Integer vmaxub vD,vA,vB
vmaxuh
vmaxuw

MOTOROLA Chapter 2. Programming Model 2-105

AltiVec UISA Instructions

Table 2-74. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax

Vector Maximum Signed Integer vmaxsb vD,vA,vB
vmaxsh
vmaxsw

Vector Minimum Unsigned Integer vminub vD,vA,vB
vminuh
vminuw

Vector Minimum Signed Integer vminsb vD,vA vB
vminsh
vminsw

2.5.1.2 Vector Integer Compare Instructions

The vector integer compare instructions algebraically or logically compare the contents of
the elements in vector register vA with the contents of the elements in vB. Each compare
result vector is comprised of TRUE (OxFF, OxFFFF, OxFFFF_FFFF) or FALSE (0x00,
0x0000, 0x0000_0000) elements of the size specified by the compare source operand
element (byte, half word, or word). The result vector can be directed to any VR and can be
mani pulated with any of the instructions as normal data (for example, combining condition
results).

Vector compares provide equal-to and greater-than predicates. Others are synthesized from
these by logically combining or inverting result vectors.

Theinteger compare instructions (shown in Table 2-76) can optionally set the CR6 field of
the PowerPC condition register. If Rc = 1 in the vector integer compare instruction, then
CR6 is set to reflect the result of the comparison, asfollows in Table 2-75.

Table 2-75. CR6 Field Bit Settings for Vector Integer Compare Instructions

CR Bit CR6 Bit Vector Compare
24 0 1 Relation is true for all element pairs (that is, vD is set to all ones)
25 1 0
26 2 1 Relation is false for all element pairs (that is, register vD is cleared)
27 3 0

Table 2-76 summarizes the vector integer compare instructions.

2-106 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec UISA Instructions

Table 2-76. Vector Integer Compare Instructions

Name

Mnemonic

Syntax

Vector Compare Greater than Unsigned Integer

vempgtubl.]
vempgtuh[.]
vempgtuwl.]

vD,vAvB

Vector Compare Greater than Signed Integer

vempgtsbl.]
vempgtsh[.]
vempgtswl.]

vD,vA,vB

Vector Compare Equal to Unsigned Integer

vcempequbl[.]
vempequh[.]
vempequwl.]

vD,vA,vB

2.5.1.3 Vector Integer Logical Instructions

The vector integer logical instructions shown in Table 2-77 perform bit-parallel operations

on the operands.

Table 2-77. Vector Integer Logical Instructions

Name Mnemonic Syntax
Vector Logical AND vand vD,vA,vB
Vector Logical OR vor vD,vA,vB
Vector Logical XOR vxor vD,vA,vB
Vector Logical AND with Complement vandc vD,vA,vB
Vector Logical NOR vnor vD,vA,vB

2.5.1.4 Vector Integer Rotate and Shift Instructions

The vector integer rotate instructions are summarized in Table 2-78.

Table 2-78. Vector Integer Rotate Instructions

Name Mnemonic Syntax

Vector Rotate Left Integer vrlb vD,vA,vB
vrlh
vriw

The vector integer shift instructions are summarized in Table 2-79.

MOTOROLA

Chapter 2. Programming Model

AltiVec UISA Instructions

Table 2-79. Vector Integer Shift Instructions

Name Mnemonic Syntax
Vector Shift Left Integer vslb vD,vA,vB
vslh
vslw
Vector Shift Right Integer vsrb vD,vA,vB
vsrh
vsrw
Vector Shift Right Algebraic vsrab vD,vA,vB
Integer vsrah
vsraw

2.5.2 Vector Floating-Point Instructions

This section describes the vector floating-point instructions that include the following:

» Vector floating-point arithmetic instructions

» Vector floating-point rounding and conversion instructions

» Vector floating-point compare instructions

» Vector floating-point estimate instructions
The AltiVec floating-point data format complies with the ANSI/IEEE-754 standard as
defined for single precision. A quantity in this format represents a signed normalized
number, a signed denormalized number, a signed zero, a signed infinity, a quiet not a
number (QNaN), or asignaling NaN (SNaN). Operations conform to the description in the

section “AltiVec Floating-Point Instructions-UISA,” in Chapter 3, “ Operand Conventions,”
of the AltiVec Technology Programming Environments Manual .

The AltiVec ISA does not report |EEE exceptions but rather produces default results as
specified by the Javal/lEEE/COX Standard; for further details on exceptions see
“Foating-Point Exceptions,” in Chapter 3, “Operand Conventions,” of the AltiVec
Technology Programming Environments Manual .

2.5.2.1 Vector Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-80.

Table 2-80. Vector Floating-Point Arithmetic Instructions

Name Mnemonic Syntax
Vector Add Floating-Point vaddfp vD,vA,vB
Vector Subtract Floating-Point vsubfp vD,vA,vB
Vector Maximum Floating-Point vmaxfp vD,vA,vB
Vector Minimum Floating-Point vminfp vD,vA,vB

2-108 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec UISA Instructions

2.5.2.2 Vector Floating-Point Multiply-Add Instructions

Vector multiply-add instructions are critically important to performance because amultiply
followed by a data dependent addition is the most common idiom in DSP algorithms. In
most implementations, floating-point multiply-add instructions perform with the same
latency as either a multiply or add alone, thus doubling performance in comparing to the
otherwise serial multiply and adds.

AltiVec floating-point multiply-add instructions fuse (a multiply-add fuse implies that the
full product participatesin the add operation without rounding, only the final result rounds).
This not only simplifies the implementation and reduces latency (by eliminating the
intermediate rounding) but also increases the accuracy compared to separate multiply and
adds.

The floating-point multiply-add instructions are summarized in Table 2-81.
Table 2-81. Vector Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax
Vector Multiply-Add Floating-Point vmaddfp vD,vAvC,vB
Vector Negative Multiply-Subtract Floating-Point vnmsubfp vD,vAvC,vB

2.5.2.3 Vector Floating-Point Rounding and Conversion Instructions

All AltiVec floating-point arithmetic instructions use the IEEE default rounding mode
round-to-nearest. The AltiVec ISA does not provide the | EEE directed rounding modes.

The AltiVec ISA provides separate instructions for converting floating-point numbers to
integral floating-point values for all |EEE rounding modes as follows:

¢ Round-to-nearest (vrfin) (round)

* Round-toward-zero (vrfiz) (truncate)

¢ Round-toward-minus-infinity (vrfim) (floor)

* Round-toward-positive-infinity (vrfip) (ceiling)
Floating-point conversions to integers (vctuxs, vctsxs) use round-toward-zero (truncate)
rounding. The floating-point rounding instructions are shown in Table 2-82.

Table 2-82. Vector Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax
Vector Round to Floating-Point Integer Nearest vrfin vD,vB
Vector Round to Floating-Point Integer toward Zero vrfiz vD,vB
Vector Round to Floating-Point Integer toward Positive Infinity vrfip vD,vB
Vector Round to Floating-Point Integer toward Minus Infinity vrfim vD,vB
Vector Convert from Unsigned Fixed-Point Word vefux vD,vB,UIMM

MOTOROLA Chapter 2. Programming Model 2-109

AltiVec UISA Instructions

Table 2-82. Vector Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax
Vector Convert from Signed Fixed-Point Word vefsx vD,vB,UIMM
Vector Convert to Unsigned Fixed-Point Word Saturate VCtuxs vD,vB,UIMM
Vector Convert to Signed Fixed-Point Word Saturate vctsxs vD,vB,UIMM

2.5.2.4 Vector Floating-Point Compare Instructions
The floating-point compare instructions are summarized in Table 2-83.

Table 2-83. Vector Floating-Point Compare Instructions

Name Mnemonic Syntax
Vector Compare Greater Than Floating-Point [Record] vempgtfp[.] vD,vA,vB
Vector Compare Equal to Floating-Point [Record] vempeqfpl.] vD,vA,vB
Vector Compare Greater Than or Equal to Floating-Point [Record] vempgeqfpl[.] vD,vA,vB
Vector Compare Bounds Floating-Point [Record] vempbfpl[.] vD,vA,vB

2.5.2.5 Vector Floating-Point Estimate Instructions
The floating-point estimate instructions are summarized in Table 2-84.

Table 2-84. Vector Floating-Point Estimate Instructions

Name Mnemonic Syntax
Vector Reciprocal Estimate Floating-Point vrefp vD,vB
Vector Reciprocal Square Root Estimate Floating-Point vrsqrtefp vD,vB
Vector Log2 Estimate Floating-Point vlogefp vD,vB
Vector 2 Raised to the Exponent Estimate Floating-Point vexptefp vD,vB

2.5.3 Vector Load and Store Instructions

Only very basic load and store operations are provided in the AltiVec ISA. This keeps the
circuitry in the memory path fast so the latency of memory operations is minimized.
Instead, a powerful set of field manipulation instructions are provided to manipulate data
into the desired alignment and arrangement after the data has been brought into the VRs.

Load vector indexed (lvx, lvxl) and store vector indexed (stvx, stvxl) instructions transfer
an aigned quad-word vector between memory and VRs. Load vector element indexed
(Ivebx, lvehx, Ivewx) and store vector element indexed instructions (stvebx, stvehx,
stvewx) transfer byte, half-word, and word scalar elements between memory and VRs.

2-110 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec UISA Instructions

2.5.3.1 Vector Load Instructions

For vector load instructions, the byte, half word, word, or quad word addressed by the EA
(effective address) isloaded into vD.

The default byte and bit ordering is big-endian as in the PowerPC architecture; see “Byte
Ordering,” in Chapter 3, “ Operand Conventions,” of the AltiVec Technology Programming
Environments Manual for information about little-endian byte ordering.

Table 2-85 summarizes the vector load instructions.

Table 2-85. Vector Integer Load Instructions

Name Mnemonic Syntax
Load Vector Element Integer Indexed Ivebx vD,rA,rB
Ilvehx
Ivewx
Load Vector Element Indexed lvx vD,rA,rB
Load Vector Element Indexed LRU 1 lvxI vD,rArB

1 Onthe MPC7451, lvxl and stvx| are interpreted to be transient. See Section 7.1.2.3, “Data Stream
Touch Instructions.”

2.5.3.2 Vector Load Instructions Supporting Alignment

Thelvdl and Ivsr instructions can be used to create the permute control vector to be used
by a subsequent vperm instruction. Let X andY be the contents of vA and vB specified by
vperm. The control vector created by Ivsl causes the vperm to select the high-order 16
bytes of the result of shifting the 32-byte value X || Y left by sh bytes (sh = the value in
EA[60-63]). The control vector created by Ivsr causes the vperm to select the low-order
16 bytes of the result of shifting X ||'Y right by sh bytes.

Table 2-86 summarizes the vector alignment instructions.

Table 2-86. Vector Load Instructions Supporting Alignment

Name Mnemonic Syntax
Load Vector for Shift Left lvsl vD,rArB
Load Vector for Shift Right lvsr vD,rA,rB

2.5.3.3 Vector Store Instructions

For vector store instructions, the contents of the VR used as a source (vS) are stored into
the byte, half word, word or quad word in memory addressed by the effective address (EA).
Table 2-87 provides a summary of the vector store instructions.

MOTOROLA Chapter 2. Programming Model 2-111

AltiVec UISA Instructions

Table 2-87. Vector Integer Store Instructions

Name Mnemonic Syntax
Store Vector Element Integer Indexed svetbx VS,rA,rB
svethx
svetwx
Store Vector Element Indexed stvx vS,rA,rB
Store Vector Element Indexed LRU 1 stvxl| vS,rA,rB

1 Onthe MPC7451, Ivxl, stvx| are interpreted to be transient. See Section 7.1.2.3, “Data Stream Touch
Instructions.”

2.5.4 Control Flow

AltiVec instructions can be freely intermixed with existing PowerPC instructionsto form a
complete program. AltiVec instructions provide a vector compare and select mechanism to
implement conditional execution as the preferred mechanism to control data flow in
AltiVec programs. In addition, AltiVec vector compare instructions can update the
condition register thus providing the communication from AltiVec execution units to
PowerPC branch instructions necessary to modify program flow based on vector data.

2.5.5 Vector Permutation and Formatting Instructions

Vector pack, unpack, merge, splat, permute, and select can be used to accelerate various
vector math operations and vector formatting. Details of these instructions follow.

2.5.5.1 Vector Pack Instructions

Half-word vector pack instructions (vpkuhum, vpkuhus, vpkshus, vpkshss) truncate the
sixteen half words from two concatenated source operands producing a single result of
sixteen bytes (quad word) using either modulo (28), 8-bit signed-saturation, or 8-bit
unsigned-saturation to perform the truncation. Similarly, word vector pack instructions
(vpkuwum, vpkuwus, vpkswus, vpksws) truncate the eight words from two concatenated
source operands producing a single result of eight half words using modulo (216), 16-bit
signed-saturation, or 16-bit unsigned-saturation to perform the truncation.

Table 2-88 describes the vector pack instructions.

Table 2-88. Vector Pack Instructions

Name Mnemonic Syntax
Vector Pack Unsigned Integer [h,w] vpkuhum vD, VA, vB
Unsigned Modulo vpkuwum
Vector Pack Unsigned Integer [h,w] vpkuhus vD, VA, vB
Unsigned Saturate vpkuwus
Vector Pack Signed Integer [h,w] vpkshus vD, VA, vB
Unsigned Saturate vpkswus

2-112 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec UISA Instructions

Table 2-88. Vector Pack Instructions (continued)

Name Mnemonic Syntax
Vector Pack Signed Integer [h,w] signed vpkshss vD, VA, vB
Saturate vpkswss
Vector Pack Pixel vpkpx vD, VA, vB

2.5.5.2 Vector Unpack Instructions

Byte vector unpack instructions unpack the 8 low bytes (or 8 high bytes) of one source
operand into 8 half words using sign extension to fill the most-significant bytes (M SBs).
Half word vector unpack instructions unpack the 4 low half words (or 4 high half words)
of one source operand into 4 words using sign extension to fill the MSBs.

Two specia purpose forms of vector unpack are provided—the Vector Unpack Low Pixel
(vupklpx) and the Vector Unpack High Pixel (vupkhpx) instructionsfor 1/5/5/5 oRGB
pixels. The 1/5/5/5 pixel vector unpack, unpacksthe four low 1/5/5/5 pixels (or four 1/5/5/5
high pixels) into four 32-bit (8/8/8/8) pixels. The 1-bit o element in each pixel is sign
extended to 8 bits, and the 5-bit R, G, and B elements are each zero extended to 8 hits.

Table 2-89 describes the unpack instructions.
Table 2-89. Vector Unpack Instructions

Name Mnemonic Syntax

Vector Unpack High Signed Integer vupkhsb vD, vB
vupkhsh

Vector Unpack High Pixel vupkhpx vD, vB

Vector Unpack Low Signed Integer vupklsb vD, vB
vupklsh

Vector Unpack Low Pixel vupklpx vD, vB

2.5.5.3 Vector Merge Instructions

Byte vector merge instructions interleave the 8 low bytes or 8 high bytes from two source
operands producing a result of 16 bytes. Similarly, half-word vector merge instructions
interleave the 4 low half words (or 4 high half words) of two source operands producing a
result of 8 half words, and word vector merge instructions interleave the 2 low words or 2
high words from two source operands producing a result of 4 words. The vector merge
instruction has many uses. For example, it can be used to efficiently transpose SIMD
vectors. Table 2-90 describes the merge instructions.

MOTOROLA Chapter 2. Programming Model 2-113

AltiVec UISA Instructions

Table 2-90. Vector Merge Instructions

Name Mnemonic Syntax

Vector Merge High Integer vmrghb vD, VA, vB
vmrghh
vmrghw

Vector Merge Low Integer vmrglb vD, VA, vB
vmrglh
vmrglw

2.5.5.4 Vector Splat Instructions

When aprogram needs to perform arithmetic vector operations, the vector splat instructions
can be used in preparation for performing arithmetic for which one source vector is to
consist of elements that all have the same value. Vector splat instructions can be used to
move data where it is required. For example to multiply all elements of a vector register
(VR) by aconstant, the vector splat instructions can be used to splat the scalar into the VR.
Likewise, when storing a scalar into an arbitrary memory location, it must be splatted into
aVR, and that VR must be specified as the source of the store. This guarantees that the data
appearsin all possible positions of that scalar size for the store.

Table 2-91. Vector Splat Instructions

Name Mnemonic Syntax

Vector Splat Integer vspltb vD, vB, UIMM
vsplth
vspltw

Vector Splat Immediate Signed Integer vspltisb vD, SIMM
vspltish
vspltisw

2.5.5.5 Vector Permute Instructions

Permuteinstructions allow any byte in any two source VRsto be directed to any bytein the
destination vector. The fields in a third source operand specify from which field in the
source operands the corresponding destination field is taken. The Vector Permute (vper m)
instruction is a very powerful one that provides many useful functions. For example, it
provides a way to perform table-lookups and data alignment operations. An example of
how to use the vperm instruction in aligning data is described in “Quad-Word Data
Alignment” in Chapter 3, “Operand Conventions,” of the AltiVlec Technology Programming
Environments Manual. Table 2-88 describes the vector permute instruction.

Table 2-92. Vector Permute Instruction

Name Mnemonic Syntax

Vector Permute vperm vD, vA,vB,vC

2-114 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec UISA Instructions

2.5.5.6 Vector Select Instruction

Dataflow in the vector unit can be controlled without branching by using a vector compare
and the Vector Select (vsel) instructions. In this use, the compare result vector is used
directly asamask operand to vector select instructions. The vsel instruction selectsonefield
from one or the other of two source operands under control of its mask operand. Use of the
TRUE/FALSE compare result vector with select in this manner produces a two instruction
equivalent of conditional execution on a per-field basis. Table 2-93 describes the vsel
instruction.

Table 2-93. Vector Select Instruction

Name Mnemonic Syntax

Vector Select vsel vD,vA,vB,vC

2.5.5.7 Vector Shift Instructions

The vector shift instructions shift the contents of one or of two VRs left or right by a
specified number of bytes (vso, vsro, vddoi) or bits (vsl, vsr). Depending on the
instruction, this shift count is specified either by low-order bits of aVR or by an immediate
fieldintheinstruction. Intheformer case thelow-order 7 bits of the shift count register give
the shift count in bits (0 < count < 127). Of these 7 bits, the high-order 4 bits give the
number of complete bytes by which to shift and are used by vdlo and vsro; the low-order 3
bits give the number of remaining bits by which to shift and are used by vsl and vsr.

Table 2-94 describes the vector shift instructions.
Table 2-94. Vector Shift Instructions

Name Mnemonic Syntax
Vector Shift Left vsl vD,vAvB
Vector Shift Right vsr vD,vA vB
Vector Shift Left Double by Octet Immediate vsldoi vD,vA,vB,SH
Vector Shift Left by Octet vslo vD,vA vB
Vector Shift Right by Octet VSro vD,vA vB

2.5.5.8 Vector Status and Control Register Instructions

Table 2-95 summarizes the instructions for reading from or writing to the AltiVec status
and control register (VSCR), described in Section 7.1.1.5, “Vector Save/Restore Register
(VRSAVE).”

MOTOROLA Chapter 2. Programming Model 2-115

AltiVec VEA Instructions

Table 2-95. Move to/from VSCR Register Instructions

Name Mnemonic Syntax
Move to AltiVec Status and Control Register mtvscr vB
Move from AltiVec Status and Control Register mfvscr vB

2.6 AltiVec VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache-control instructions, address aliasing, and other related issues.
Implementationsthat conform to theVEA also adhere to the UISA, but may not necessarily
adhere to the OEA. For further details, see Chapter 4, “Addressing Mode and Instruction
Set Summary,” in The Programming Environments Manual.

This section describes the additional instructions that are provided by the AltiVec ISA for
theVEA.

2.6.1 AltiVec Vector Memory Control Instructions—VEA

Memory control instructions include the following types:
¢ Cache management instructions (user-level and supervisor-level)
e Trandation lookaside buffer (TLB) management instructions

This section briefly summarizes the user-level cache management instructions defined by
the AltiVec VEA. See Chapter 3, “L1, L2, and L3 Cache Operation” for more information
about supervisor-level cache, segment register manipulation, and TLB management
instructions.

The AltiVec architecture specifies the data stream touch instructions dst(t), dstst(t), and it
specifies two data stream stop (dss(all)) instructions. The MPC7451 implements all of
them. The term dstx used below refersto all of the stream touch instructions.

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches, see Chapter 3, “L1, L2, and L3 Cache Operation” for more
information about cache topics.

Bandwidth between the processor and memory is managed explicitly by the programmer
through the use of cache management instructions. These instructions provide a way for
software to communicate to the cache hardware how it should prefetch and prioritize the
writeback of data. The principal instruction for this purpose is a software directed cache
prefetch instruction called data stream touch (dst). Other related instructions are provided
for complete control of the software directed cache prefetch mechanism.

2-116 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec VEA Instructions

Table 2-96 summarizes the directed prefetch cache instructions defined by the AltiVec
VEA. Note that these instructions are accessible to user-level programs.

Table 2-96. AltiVec User-Level Cache Instructions

Name Mnemonic Syntax Implementation Notes
Data Stream Touch (non-transient) dst rArB,STRM |—
Data Stream Touch Transient dstt rA,rB,STRM | Used for last access
Data Stream Touch for Store dstst rA,rB,STRM | Not recommended for use in MPC7451
Data Stream Touch for Store Transient dststt rA,rB,STRM | Not recommended for use in MPC7451
Data Stream Stop (one stream) dss STRM —
Data Stream Stop All dssall STRM —

For detailed information for how to use these instruction, See section7.1.2.3, “Data Stream Touch

o n
Instructions.

2.6.2 AltiVec Instructions with Specific Implementations for
the MPC7451

The AltiVec architecture specifies Load Vector Indexed LRU (lvxl) and Store Vector
Indexed LRU (stvxl) instructions. The architecture suggests that these instructions differ
from regular AltiVec load and store instructions in that they leave cache entriesin a least
recently used (LRU) state instead of a most recently used (MRU) state. This supports
efficient processing of data which is known to have little reuse and poor caching
characteristics. The MPC7451 implements these instructions as suggested. They follow all
the cache dlocation and replacement policies described in Section 3.5, “L1 Cache
Operation,” but they leave their addressed cache entriesin the LRU state. In addition, al
LRU instructions are also interpreted to be transient and are also treated as described in
Section 7.1.2.2, “ Transient Instructions and Caches.”

MOTOROLA Chapter 2. Programming Model 2-117

AltiVec VEA Instructions

2-118 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

	About This Book
	Audience
	Organization
	Suggested Reading
	General Information
	Related Documentation

	Conventions
	Acronyms and Abbreviations
	Terminology Conventions

	Chapter�1 Overview
	1.1 MPC7451 Microprocessor Overview
	1.1.1 MPC7441 Microprocessor Overview
	1.1.2 MPC7450 Microprocessor Overview
	1.1.3 MPC7455 Microprocessor Overview
	1.1.4 MPC7445 Microprocessor Overview
	1.1.5 MPC7447 Microprocessor Overview
	1.1.6 MPC7457 Microprocessor Overview

	1.2 MPC7451 Microprocessor Features
	1.2.1 Overview of the MPC7451 Microprocessor Features
	1.2.2 Instruction Flow
	1.2.2.1 Instruction Queue and Dispatch Unit
	1.2.2.2 Branch Processing Unit (BPU)
	1.2.2.3 Completion Unit
	1.2.2.4 Independent Execution Units
	1.2.2.4.1 AltiVec Vector Permute Unit (VPU)
	1.2.2.4.2 AltiVec Vector Integer Unit 1 (VIU1)
	1.2.2.4.3 AltiVec Vector Integer Unit 2 (VIU2)
	1.2.2.4.4 AltiVec Vector Floating-point Unit (VFPU)
	1.2.2.4.5 Integer Units (IUs)
	1.2.2.4.6 Floating-Point Unit (FPU)
	1.2.2.4.7 Load/Store Unit (LSU)

	1.2.3 Memory Management Units (MMUs)
	1.2.4 On-Chip L1 Instruction and Data Caches
	1.2.5 L2 Cache Implementation
	1.2.6 L3 Cache Implementation
	1.2.7 System Interface
	1.2.8 MPC7451 Bus Operation Features
	1.2.8.1 MPX Bus Features
	1.2.8.2 60x Bus Features

	1.2.9 Overview of System Interface Accesses
	1.2.9.1 System Interface Operation
	1.2.9.2 Signal Groupings
	1.2.9.3 MPX Bus Mode Functional Groupings
	1.2.9.3.1 Clocking

	1.2.10 Power Management
	1.2.11 Thermal Management
	1.2.12 Performance Monitor

	1.3 MPC7451 Microprocessor: Architectural Implementation
	1.3.1 PowerPC Registers and Programming Model
	1.3.2 Instruction Set
	1.3.2.1 PowerPC Instruction Set
	1.3.2.2 AltiVec Instruction Set
	1.3.2.3 MPC7451 Microprocessor Instruction Set

	1.3.3 On-Chip Cache Implementation
	1.3.3.1 PowerPC Cache Model
	1.3.3.2 MPC7451 Microprocessor Cache Implementation

	1.3.4 Exception Model
	1.3.4.1 PowerPC Exception Model
	1.3.4.2 MPC7451 Microprocessor Exceptions

	1.3.5 Memory Management
	1.3.5.1 PowerPC Memory Management Model
	1.3.5.2 MPC7451 Microprocessor Memory Management Implementation

	1.3.6 Instruction Timing
	1.3.7 AltiVec Implementation

	1.4 Differences between MPC7451 and MPC7400/ ��MPC7410
	1.5 Differences Between MPC7441/MPC7451 and ��MPC7445/MPC7455
	1.6 Differences Between MPC7441/MPC7451 and MPC7447/MPC7457
	1.7 User’s Manual Revision History

	Chapter�2 Programming Model
	2.1 MPC7451 Processor Register Set
	2.1.1 Register Set Overview
	2.1.2 MPC7451 Register Set
	2.1.3 PowerPC Supervisor-Level Registers (OEA)
	2.1.3.1 Processor Version Register (PVR)
	2.1.3.2 Processor Identification Register (PIR)
	2.1.3.3 Machine State Register (MSR)
	2.1.3.4 Machine status save/restore registers (SRR0, SRR1)
	2.1.3.5 SDR1 Register

	2.1.4 PowerPC User-Level Registers (VEA)
	2.1.4.1 Time Base Registers (TBL, TBU)

	2.1.5 MPC7451-Specific Register Descriptions
	2.1.5.1 Hardware Implementation-Dependent Register 0 (HID0)
	2.1.5.2 Hardware Implementation-Dependent Register 1 (HID1)
	2.1.5.3 Memory Subsystem Control Register (MSSCR0)
	2.1.5.4 Memory Subsystem Status Register (MSSSR0)
	2.1.5.5 Instruction and Data Cache Registers
	2.1.5.5.1 L2 Cache Control Register (L2CR)
	2.1.5.5.2 L3 Cache Control Register (L3CR)
	2.1.5.5.3 L3 Cache Output Hold Control Register (L3OHCR)—MPC7457-Specific
	2.1.5.5.4 L3 Cache Input Timing Control (L3ITCR0)
	2.1.5.5.5 L3 Cache Input Timing Control (L3ITCR1)
	2.1.5.5.6 L3 Cache Input Timing Control (L3ITCR2)
	2.1.5.5.7 L3 Cache Input Timing Control (L3ITCR3)
	2.1.5.5.8 Instruction Cache and Interrupt Control Register (ICTRL)
	2.1.5.5.9 Load/Store Control Register (LDSTCR)
	2.1.5.5.10 L3 Private Memory Address Register (L3PM)

	2.1.5.6 Instruction Address Breakpoint Register (IABR)
	2.1.5.7 Memory Management Registers Used for Software Table Searching
	2.1.5.7.1 TLB Miss Register (TLBMISS)
	2.1.5.7.2 Page Table Entry Registers (PTEHI and PTELO)

	2.1.5.8 Thermal Management Register
	2.1.5.8.1 Instruction Cache Throttling Control Register (ICTC)

	2.1.5.9 Performance Monitor Registers
	2.1.5.9.1 Monitor Mode Control Register 0 (MMCR0)
	2.1.5.9.2 User Monitor Mode Control Register 0 (UMMCR0)
	2.1.5.9.3 Monitor Mode Control Register 1 (MMCR1)
	2.1.5.9.4 User Monitor Mode Control Register 1 (UMMCR1)
	2.1.5.9.5 Monitor Mode Control Register 2 (MMCR2)
	2.1.5.9.6 User Monitor Mode Control Register 2 (UMMCR2)
	2.1.5.9.7 Breakpoint Address Mask Register (BAMR)
	2.1.5.9.8 Performance Monitor Counter Registers (PMC1–PMC6)
	2.1.5.9.9 User Performance Monitor Counter Registers (UPMC1–UPMC6)
	2.1.5.9.10 Sampled Instruction Address Register (SIAR)
	2.1.5.9.11 User-Sampled Instruction Address Register (USIAR)
	2.1.5.9.12 Sampled Data Address Register (SDAR) and User-Sampled Data Address Register (USDAR)

	2.1.6 Reset Settings

	2.2 Operand Conventions
	2.2.1 Floating-Point Execution Models—UISA
	2.2.2 Data Organization in Memory and Data Transfers
	2.2.3 Alignment and Misaligned Accesses
	2.2.4 Floating-Point Operands

	2.3 Instruction Set Summary
	2.3.1 Classes of Instructions
	2.3.1.1 Definition of Boundedly Undefined
	2.3.1.2 Defined Instruction Class
	2.3.1.3 Illegal Instruction Class
	2.3.1.4 Reserved Instruction Class

	2.3.2 Addressing Modes
	2.3.2.1 Memory Addressing
	2.3.2.2 Memory Operands
	2.3.2.3 Effective Address Calculation
	2.3.2.4 Synchronization
	2.3.2.4.1 Context Synchronization
	2.3.2.4.2 Execution Synchronization
	2.3.2.4.3 Instruction-Related Exceptions

	2.3.3 Instruction Set Overview
	2.3.4 PowerPC UISA Instructions
	2.3.4.1 Integer Instructions
	2.3.4.1.1 Integer Arithmetic Instructions
	2.3.4.1.2 Integer Compare Instructions
	2.3.4.1.3 Integer Logical Instructions
	2.3.4.1.4 Integer Rotate and Shift Instructions

	2.3.4.2 Floating-Point Instructions
	2.3.4.2.1 Floating-Point Arithmetic Instructions
	2.3.4.2.2 Floating-Point Multiply-Add Instructions
	2.3.4.2.3 Floating-Point Rounding and Conversion Instructions
	2.3.4.2.4 Floating-Point Compare Instructions
	2.3.4.2.5 Floating-Point Status and Control Register Instructions
	2.3.4.2.6 Floating-Point Move Instructions

	2.3.4.3 Load and Store Instructions
	2.3.4.3.1 Self-Modifying Code
	2.3.4.3.2 Integer Load and Store Address Generation
	2.3.4.3.3 Register Indirect Integer Load Instructions
	2.3.4.3.4 Integer Store Instructions
	2.3.4.3.5 Integer Store Gathering
	2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions
	2.3.4.3.7 Integer Load and Store Multiple Instructions
	2.3.4.3.8 Integer Load and Store String Instructions
	2.3.4.3.9 Floating-Point Load and Store Address Generation
	2.3.4.3.10 Floating-Point Store Instructions

	2.3.4.4 Branch and Flow Control Instructions
	2.3.4.4.1 Branch Instruction Address Calculation
	2.3.4.4.2 Branch Instructions
	2.3.4.4.3 Condition Register Logical Instructions
	2.3.4.4.4 Trap Instructions

	2.3.4.5 System Linkage Instruction—UISA
	2.3.4.6 Processor Control Instructions—UISA
	2.3.4.6.1 Move to/from Condition Register Instructions
	2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)

	2.3.4.7 Memory Synchronization Instructions—UISA

	2.3.5 PowerPC VEA Instructions
	2.3.5.1 Processor Control Instructions—VEA
	2.3.5.2 Memory Synchronization Instructions—VEA
	2.3.5.3 Memory Control Instructions—VEA
	2.3.5.3.1 User-Level Cache Instructions—VEA

	2.3.5.4 Optional External Control Instructions

	2.3.6 PowerPC OEA Instructions
	2.3.6.1 System Linkage Instructions—OEA
	2.3.6.2 Processor Control Instructions—OEA
	2.3.6.3 Memory Control Instructions—OEA
	2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
	2.3.6.3.2 Translation Lookaside Buffer Management Instructions—OEA

	2.3.7 Recommended Simplified Mnemonics
	2.3.8 Implementation-Specific Instructions

	2.4 AltiVec Instructions
	2.5 AltiVec UISA Instructions
	2.5.1 Vector Integer Instructions
	2.5.1.1 Vector Integer Arithmetic Instructions
	2.5.1.2 Vector Integer Compare Instructions
	2.5.1.3 Vector Integer Logical Instructions
	2.5.1.4 Vector Integer Rotate and Shift Instructions

	2.5.2 Vector Floating-Point Instructions
	2.5.2.1 Vector Floating-Point Arithmetic Instructions
	2.5.2.2 Vector Floating-Point Multiply-Add Instructions
	2.5.2.3 Vector Floating-Point Rounding and Conversion Instructions
	2.5.2.4 Vector Floating-Point Compare Instructions
	2.5.2.5 Vector Floating-Point Estimate Instructions

	2.5.3 Vector Load and Store Instructions
	2.5.3.1 Vector Load Instructions
	2.5.3.2 Vector Load Instructions Supporting Alignment
	2.5.3.3 Vector Store Instructions

	2.5.4 Control Flow
	2.5.5 Vector Permutation and Formatting Instructions
	2.5.5.1 Vector Pack Instructions
	2.5.5.2 Vector Unpack Instructions
	2.5.5.3 Vector Merge Instructions
	2.5.5.4 Vector Splat Instructions
	2.5.5.5 Vector Permute Instructions
	2.5.5.6 Vector Select Instruction
	2.5.5.7 Vector Shift Instructions
	2.5.5.8 Vector Status and Control Register Instructions

	2.6 AltiVec VEA Instructions
	2.6.1 AltiVec Vector Memory Control Instructions—VEA
	2.6.2 AltiVec Instructions with Specific Implementations for the MPC7451

	Chapter�3 L1, L2, and L3 Cache Operation
	3.1 Overview
	3.1.1 Block Diagram
	3.1.2 Load/Store Unit (LSU)
	3.1.2.1 Cacheable Loads and LSU
	3.1.2.2 LSU Store Queues
	3.1.2.3 Store Gathering/Merging
	3.1.2.4 LSU Load Miss, Castout, and Push Queues

	3.1.3 Memory Subsystem Blocks
	3.1.3.1 L1 Service Queues
	3.1.3.2 L2 Cache Block
	3.1.3.3 System Interface Block

	3.1.4 L3 Cache Controller Block

	3.2 L1 Cache Organizations
	3.2.1 L1 Data Cache Organization
	3.2.2 L1 Instruction Cache Organization

	3.3 Memory and Cache Coherency
	3.3.1 Memory/Cache Access Attributes (WIMG Bits)
	3.3.1.1 Coherency Paradoxes and WIMG
	3.3.1.2 Out-of-Order Accesses to Guarded Memory

	3.3.2 Coherency Support
	3.3.2.1 Coherency Between L1, L2, and L3 Caches
	3.3.2.1.1 Cache Closer to Core with Modified Data
	3.3.2.1.2 Transient Data and Different Coherency States

	3.3.2.2 Snoop Response
	3.3.2.3 Intervention
	3.3.2.4 Simplified Transaction Types
	3.3.2.5 MESI State Transitions
	3.3.2.5.1 MESI Protocol in MPX Bus Mode with Data Intervention Enabled
	3.3.2.5.2 MESI Protocol in 60x Bus Mode and MPX Bus Mode (with Intervention Disabled)

	3.3.2.6 Reservation Snooping

	3.3.3 Load/Store Operations and Architecture Implications
	3.3.3.1 Performed Loads and Store
	3.3.3.2 Sequential Consistency of Memory Accesses
	3.3.3.3 Load Ordering with Respect to Other Loads
	3.3.3.4 Store Ordering with Respect to Other Stores
	3.3.3.5 Enforcing Store Ordering with Respect to Loads
	3.3.3.6 Atomic Memory References

	3.4 L1 Cache Control
	3.4.1 Cache Control Parameters in HID0
	3.4.1.1 Enabling and Disabling the Data Cache
	3.4.1.2 Data Cache Locking with DLOCK
	3.4.1.3 Enabling and Disabling the Instruction Cache
	3.4.1.4 Instruction Cache Locking with ILOCK
	3.4.1.5 L1 Instruction and Data Cache Flash Invalidation

	3.4.2 Data Cache Way Locking Setting in LDSTCR
	3.4.3 Cache Control Parameters in ICTRL
	3.4.3.1 Instruction Cache Way Locking
	3.4.3.2 Enabling Instruction Cache Parity Checking
	3.4.3.3 Instruction and Data Cache Parity Error Reporting

	3.4.4 Cache Control Instructions
	3.4.4.1 Data Cache Block Touch (dcbt)
	3.4.4.2 Data Cache Block Touch for Store (dcbtst)
	3.4.4.3 Data Cache Block Zero (dcbz)
	3.4.4.4 Data Cache Block Store (dcbst)
	3.4.4.5 Data Cache Block Flush (dcbf)
	3.4.4.6 Data Cache Block Allocate (dcba)
	3.4.4.7 Data Cache Block Invalidate (dcbi)
	3.4.4.8 Instruction Cache Block Invalidate (icbi)

	3.5 L1 Cache Operation
	3.5.1 Cache Miss and Reload Operations
	3.5.1.1 Data Cache Fills
	3.5.1.2 Instruction Cache Fills

	3.5.2 Cache Allocation on Misses
	3.5.2.1 Instruction Access Allocation in L1 Cache
	3.5.2.2 Data Access Allocation in L1Cache

	3.5.3 Store Miss Merging
	3.5.4 Store Hit to a Data Cache Block Marked Shared
	3.5.5 Data Cache Block Push Operation
	3.5.6 L1 Cache Block Replacement Selection
	3.5.6.1 PLRU Replacement
	3.5.6.2 PLRU Bit Updates
	3.5.6.3 AltiVec LRU Instruction Support
	3.5.6.4 Cache Locking and PLRU

	3.5.7 L1 Cache Invalidation and Flushing
	3.5.8 L1 Cache Operation Summary

	3.6 L2 Cache
	3.6.1 L2 Cache Organization
	3.6.2 L2 Cache and Memory Coherency
	3.6.3 L2 Cache Control
	3.6.3.1 L2CR Parameters
	3.6.3.1.1 Enabling the L2 Cache and L2 Initialization
	3.6.3.1.2 Enabling L2 Parity Checking
	3.6.3.1.3 L2 Instruction-Only and Data-Only Modes
	3.6.3.1.4 L2 Cache Invalidation
	3.6.3.1.5 Flushing of L1, L2, and L3 Caches
	3.6.3.1.6 L2 Replacement Algorithm Selection

	3.6.3.2 L2 Prefetch Engines and MSSCR0
	3.6.3.3 L2 Parity Error Reporting and MSSSR0
	3.6.3.4 Instruction Interactions with L2

	3.6.4 L2 Cache Operation
	3.6.4.1 L2 Cache Miss and Reload Operations
	3.6.4.2 L2 Cache Allocation
	3.6.4.3 Store Data Merging and L2
	3.6.4.4 L2 Cache Line Replacement Algorithms
	3.6.4.5 L2 and L3 Operations Caused by L1 Requests

	3.7 L3 Cache Interface
	3.7.1 L3 Cache Interface Overview
	3.7.2 L3 Cache Organization
	3.7.3 L3 Cache Control Register (L3CR)
	3.7.3.1 Enabling the L3 Cache and L3 Initialization
	3.7.3.2 L3 Cache Size
	3.7.3.3 L3 Cache SRAM Types
	3.7.3.4 L3 Cache Data-Only and Instruction-Only Modes
	3.7.3.4.1 L3 Instruction-Only and Data-Only Operation
	3.7.3.4.2 L3 Cache Locking Using L3CR[L3DO] and L3CR[L3IO]

	3.7.3.5 L3 Cache Parity Checking and Generation
	3.7.3.6 L3 Cache Invalidation
	3.7.3.7 L3 Cache Flushing
	3.7.3.8 L3 Cache Clock and Timing Controls
	3.7.3.9 L3 Sample Point Configuration
	3.7.3.9.1 Pipeline Burst and Late-Write SRAM
	3.7.3.9.2 MSUG2 DDR SRAM

	3.7.4 L3 Private Memory Address Register (L3PM)
	3.7.5 L3 Parity Error Reporting and MSSSR0
	3.7.6 Instruction Interactions with L3
	3.7.7 L3 Cache Operation
	3.7.7.1 L3 Cache Miss and Reload Operations
	3.7.7.2 L3 Cache Allocation
	3.7.7.3 CI and WT Accesses and L3
	3.7.7.4 L3 Cache Replacement Selection

	3.7.8 L3 Private Memory Operation
	3.7.8.1 Enabling and Initializing L3 Private Memory
	3.7.8.1.1 Initializing the L3 Private Memory when Parity is Enabled

	3.7.8.2 CI and WT Accesses Not Supported for Private Memory
	3.7.8.3 Castouts and Private Memory
	3.7.8.4 Snoop Hits and Private Memory
	3.7.8.5 Private Memory and Instruction Interactions

	3.7.9 L3 Cache SRAM Timing Examples
	3.7.9.1 MSUG2 DDR Interface Timing
	3.7.9.2 Late-Write SRAM Timing
	3.7.9.3 Pipelined Burst SRAM

	3.8 System Bus Interface
	3.8.1 MPC7451 Caches and System Bus Transactions
	3.8.2 Bus Operations Caused by Cache Control Instructions
	3.8.3 Transfer Attributes
	3.8.4 Snooping of External Transactions
	3.8.4.1 Types of Transactions Snooped by MPC7451
	3.8.4.2 L1 Cache State Transitions and Bus Operations Due to Snoops
	3.8.4.3 L2 and L3 Operations Caused by External Snoops

	Chapter�4 Exceptions
	4.1 MPC7451 Microprocessor Exceptions
	4.2 MPC7451 Exception Recognition and Priorities
	4.3 Exception Processing
	4.3.1 Enabling and Disabling Exceptions
	4.3.2 Steps for Exception Processing
	4.3.3 Setting MSR[RI]
	4.3.4 Returning from an Exception Handler

	4.4 Process Switching
	4.5 Data Stream Prefetching and Exceptions
	4.6 Exception Definitions
	4.6.1 System Reset Exception (0x00100)
	4.6.2 Machine Check Exception (0x00200)
	4.6.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
	4.6.2.2 Checkstop State (MSR[ME] = 0)

	4.6.3 DSI Exception (0x00300)
	4.6.3.1 DSI Exception—Page Fault
	4.6.3.2 DSI Exception—Data Address Breakpoint Facility

	4.6.4 ISI Exception (0x00400)
	4.6.5 External Interrupt Exception (0x00500)
	4.6.6 Alignment Exception (0x00600)
	4.6.7 Program Exception (0x00700)
	4.6.8 Floating-Point Unavailable Exception (0x00800)
	4.6.9 Decrementer Exception (0x00900)
	4.6.10 System Call Exception (0x00C00)
	4.6.11 Trace Exception (0x00D00)
	4.6.12 Floating-Point Assist Exception (0x00E00)
	4.6.13 Performance Monitor Exception (0x00F00)
	4.6.14 AltiVec Unavailable Exception (0x00F20)
	4.6.15 TLB Miss Exceptions
	4.6.15.1 Instruction Table Miss Exception—ITLB Miss (0x01000)
	4.6.15.2 Data Table Miss-On-Load Exception—DTLB Miss-On-Load ��(0x01100)
	4.6.15.3 Data Table Miss-On-Store Exception—DTLB Miss-On-Store ��(0x01200)

	4.6.16 Instruction Address Breakpoint Exception (0x01300)
	4.6.17 System Management Interrupt Exception (0x01400)
	4.6.18 AltiVec Assist Exception (0x01600)

	Chapter�5 Memory Management
	5.1 MMU Overview
	5.1.1 Memory Addressing
	5.1.2 MMU Organization
	5.1.3 Address Translation Mechanisms
	5.1.4 Memory Protection Facilities
	5.1.5 Page History Information
	5.1.6 General Flow of MMU Address Translation
	5.1.6.1 Real Addressing Mode and Block Address Translation Selection
	5.1.6.2 Page Address Translation Selection

	5.1.7 MMU Exceptions Summary
	5.1.8 MMU Instructions and Register Summary

	5.2 Real Addressing Mode
	5.2.1 Real Addressing Mode—32-Bit Addressing
	5.2.2 Real Addressing Mode—Extended Addressing

	5.3 Block Address Translation
	5.3.1 BAT Register Implementation of BAT Array—Extended Addressing
	5.3.2 Block Physical Address Generation—Extended Addressing
	5.3.2.1 Block Physical Address Generation with an Extended BAT Block Size

	5.3.3 Block Address Translation Summary—Extended Addressing

	5.4 Memory Segment Model
	5.4.1 Page Address Translation Overview
	5.4.1.1 Segment Descriptor Definitions
	5.4.1.2 Page Table Entry (PTE) Definition—Extended Addressing

	5.4.2 Page History Recording
	5.4.2.1 Referenced Bit
	5.4.2.2 Changed Bit
	5.4.2.3 Scenarios for Referenced and Changed Bit Recording

	5.4.3 Page Memory Protection
	5.4.4 TLB Description
	5.4.4.1 TLB Organization and Operation
	5.4.4.2 TLB Invalidation
	5.4.4.2.1 tlbie Instruction
	5.4.4.2.2 tlbsync Instruction
	5.4.4.2.3 Synchronization Requirements for tlbie and tlbsync

	5.4.5 Page Address Translation Summary—Extended Addressing

	5.5 Hashed Page Tables—Extended Addressing
	5.5.1 SDR1 Register Definition—Extended Addressing
	5.5.1.1 Page Table Size
	5.5.1.2 Page Table Hashing Functions
	5.5.1.3 Page Table Address Generation
	5.5.1.4 Page Table Structure Example—Extended Addressing
	5.5.1.5 PTEG Address Mapping Examples—Extended Addressing

	5.5.2 Page Table Search Operations—Implementation
	5.5.2.1 Conditions for a Page Table Search Operation
	5.5.2.2 AltiVec Line Fetch Skipping
	5.5.2.3 Page Table Search Operation—Conceptual Flow

	5.5.3 Page Table Updates
	5.5.4 Segment Register Updates
	5.5.5 Implementation-Specific Software Table Search �Operation
	5.5.5.1 Resources for Table Search Operations
	5.5.5.1.1 TLB Miss Register (TLBMISS)
	5.5.5.1.2 Page Table Entry Registers (PTEHI and PTELO)
	5.5.5.1.3 Special Purpose Registers (4–7)

	5.5.5.2 Example Software Table Search Operation
	5.5.5.2.1 Flow for Example Exception Handlers
	5.5.5.2.2 Code for Example Exception Handlers

	Chapter�6 Instruction Timing
	6.1 Terminology and Conventions
	6.2 Instruction Timing Overview
	6.3 Timing Considerations
	6.3.1 General Instruction Flow
	6.3.2 Instruction Fetch Timing
	6.3.2.1 Cache Arbitration
	6.3.2.2 Cache Hit
	6.3.2.3 Cache Miss
	6.3.2.4 L2 Cache Access Timing Considerations
	6.3.2.4.1 Instruction Cache and L2 Cache Hit
	6.3.2.4.2 Instruction Cache Miss/L3 Cache Hit

	6.3.3 Dispatch, Issue, and Completion Considerations
	6.3.3.1 Rename Register Operation
	6.3.3.2 Instruction Serialization

	6.4 Execution Unit Timings
	6.4.1 Branch Processing Unit Execution Timing
	6.4.1.1 Branch Folding and Removal of Fall-Through Branch Instructions
	6.4.1.2 Branch Instructions and Completion
	6.4.1.3 Branch Prediction and Resolution
	6.4.1.3.1 Static Branch Prediction
	6.4.1.3.2 Predicted Branch Timing Examples

	6.4.2 Integer Unit Execution Timing
	6.4.3 FPU Execution Timing
	6.4.3.1 Effect of Floating-Point Exceptions on Performance

	6.4.4 Load/Store Unit Execution Timing
	6.4.4.1 Effect of Operand Placement on Performance
	6.4.4.2 Store Gathering
	6.4.4.3 AltiVec Instructions Executed by the LSU
	6.4.4.3.1 LRU Instructions
	6.4.4.3.2 Transient Instructions

	6.4.5 AltiVec Instructions
	6.4.5.1 AltiVec Unit Execution Timing
	6.4.5.1.1 AltiVec Permute Unit (VPU) Execution Timing
	6.4.5.1.2 Vector Simple Integer Unit (VIU1) Execution Timing
	6.4.5.1.3 Vector Complex Integer Unit (VIU2) Execution Timing
	6.4.5.1.4 Vector Floating-Point Unit (VFPU) Execution Timing

	6.5 Memory Performance Considerations
	6.5.1 Caching and Memory Coherency

	6.6 Instruction Latency Summary
	6.7 Instruction Scheduling Guidelines
	6.7.1 Fetch/Branch Considerations
	6.7.1.1 Fetching Examples
	6.7.1.1.1 Fetch Alignment Example
	6.7.1.1.2 Branch-Taken Bubble Example

	6.7.1.2 Branch Conditionals
	6.7.1.2.1 Branch Mispredict Example
	6.7.1.2.2 Branch Loop Example

	6.7.1.3 Static versus Dynamic Prediction
	6.7.1.4 Using the Link Stack for Branch Indirect
	6.7.1.4.1 Link Stack Example
	6.7.1.4.2 Position-Independent Code Example

	6.7.1.5 Branch Folding

	6.7.2 Dispatch Unit Resource Requirements
	6.7.2.1 Dispatch Groupings
	6.7.2.1.1 Dispatch Stall due to Rename Availability

	6.7.2.2 Dispatching Load/Store Strings and Multiples
	6.7.2.2.1 Example of Load/Store Multiple Micro Operation Generation

	6.7.3 Issue Queue Resource Requirements
	6.7.3.1 GPR Issue Queue (GIQ)
	6.7.3.2 Vector Issue Queue (VIQ)
	6.7.3.3 Floating-Point Issue Queue (FIQ)

	6.7.4 Completion Unit Resource Requirements
	6.7.4.1 Completion Groupings

	6.7.5 Serialization Effects
	6.7.6 Execution Unit Considerations
	6.7.6.1 IU1 Considerations
	6.7.6.2 IU2 Considerations
	6.7.6.3 FPU Considerations
	6.7.6.4 Vector Unit Considerations
	6.7.6.5 Load/Store Unit (LSU)
	6.7.6.5.1 Load Hit Pipeline
	6.7.6.5.2 Store Hit Pipeline
	6.7.6.5.3 Load/Store Interaction
	6.7.6.5.4 Misalignment Effects
	6.7.6.5.5 Load Miss Pipeline
	6.7.6.5.6 Store Miss Pipeline
	6.7.6.5.7 DST Instructions and the Vector Touch Engine (VTE)

	6.7.7 Memory Subsystem Considerations
	6.7.7.1 L2 Cache Effects
	6.7.7.2 L3 Cache Effects
	6.7.7.3 Hardware Prefetching

	Chapter�7 AltiVec Technology Implementation
	7.1 AltiVec Technology and the Programming Model
	7.1.1 Register Set
	7.1.1.1 Changes to the Condition Register
	7.1.1.2 Addition to the Machine State Register
	7.1.1.3 Vector Registers (VRs)
	7.1.1.4 Vector Status and Control Register (VSCR)
	7.1.1.5 Vector Save/Restore Register (VRSAVE)

	7.1.2 AltiVec Instruction Set
	7.1.2.1 LRU Instructions
	7.1.2.2 Transient Instructions and Caches
	7.1.2.3 Data Stream Touch Instructions
	7.1.2.3.1 Stream Engine Tags
	7.1.2.3.2 Speculative Execution and Pipeline Stalls �for Data Stream Instructions
	7.1.2.3.3 Static/Transient Data Stream Touch Instructions
	7.1.2.3.4 Relationship with the sync/tblsync Instructions
	7.1.2.3.5 Data Stream Termination
	7.1.2.3.6 Line Fetch Skipping
	7.1.2.3.7 Context Awareness and Stream Pausing
	7.1.2.3.8 Differences Between dst/dstt and dstst/dststt Instructions

	7.1.2.4 dss and dssall Instructions
	7.1.2.5 Java Mode, NaNs, Denormalized Numbers, and Zeros

	7.1.3 Differences between the MPC7400/MPC7410 and the �MPC7451
	7.1.3.1 Java and Non-Java Mode
	7.1.3.2 AltiVec Instructions
	7.1.3.3 AltiVec Instruction Sequencing

	7.2 AltiVec Technology and the Cache Model
	7.3 AltiVec and the Exception Model
	7.4 AltiVec and the Memory Management Model
	7.5 AltiVec Technology and Instruction Timing

	Chapter�8 Signal Descriptions
	8.1 Signal Groupings
	8.1.1 Signal Summary
	8.1.2 Output Signal States During Reset

	8.2 MPX Bus Signal Configuration
	8.2.1 MPX/60x Bus Protocol Signal Compatibility
	8.2.2 MPX Bus Mode Signals
	8.2.3 60x Bus Signals Not in the MPC7451
	8.2.3.1 Address Bus Busy and Data Bus Busy (ABB and DBB)
	8.2.3.2 Data Bus Write Only (DBWO)
	8.2.3.3 Data Retry (DRTRY)
	8.2.3.4 Extended Transfer Protocol (XATS)
	8.2.3.5 Transfer Code (TC[0:1])
	8.2.3.6 Cache Set Element (CSE[0:1])
	8.2.3.7 Address Parity Error and Data Parity Error (APE, DPE)

	8.2.4 MPX Bus Mode Functional Groupings
	8.2.5 Address Bus Arbitration Signals
	8.2.5.1 Bus Request (BR)—Output
	8.2.5.2 Bus Grant (BG)—Input

	8.2.6 Address Bus and Parity in MPX Bus Mode
	8.2.6.1 Address Bus (A[0:35])
	8.2.6.1.1 Address Bus (A[0:35])—Output
	8.2.6.1.2 Address Bus (A[0:35])—Input

	8.2.6.2 Address Bus Parity (AP[0:4])
	8.2.6.2.1 Address Bus Parity (AP[0:4])—Output
	8.2.6.2.2 Address Bus Parity (AP[0:4])—Input

	8.2.7 Address Transfer Attribute Signals in MPX Bus Mode
	8.2.7.1 Transfer Start (TS)
	8.2.7.1.1 Transfer Start (TS)—Output
	8.2.7.1.2 Transfer Start (TS)—Input

	8.2.7.2 Transfer Type (TT[0:4])
	8.2.7.2.1 Transfer Type (TT[0:4])—Output
	8.2.7.2.2 Transfer Type (TT[0:4])—Input

	8.2.7.3 Transfer Burst (TBST)—Output
	8.2.7.4 Transfer Size (TSIZ[0:2])—Output
	8.2.7.5 Global (GBL)
	8.2.7.5.1 Global (GBL)—Output
	8.2.7.5.2 Global (GBL)—Input

	8.2.7.6 Write-Through (WT)—Output
	8.2.7.7 Cache Inhibit (CI)—Output

	8.2.8 MPX Address Transfer Termination Signals
	8.2.8.1 Address �Acknowledge (AACK)—Input
	8.2.8.2 Address Retry (ARTRY)
	8.2.8.2.1 Address Retry (ARTRY)—Output
	8.2.8.2.2 Address Retry (ARTRY)—Input

	8.2.8.3 Shared (SHD0, SHD1) Signals
	8.2.8.3.1 Shared (SHD0, SHD1)—Output
	8.2.8.3.2 Shared (SHD0, SHD1)—Input

	8.2.8.4 Snoop Hit (HIT)—Output

	8.2.9 Data Bus Arbitration Signals
	8.2.9.1 Data Bus Grant (DBG)—Input
	8.2.9.2 Data Transaction Index (DTI[0:3])—Input
	8.2.9.3 Data Ready (DRDY)—Output

	8.2.10 Data Transfer Signals
	8.2.10.1 Data Bus (D[0:63])
	8.2.10.1.1 Data Bus (D[0:63])—Output
	8.2.10.1.2 Data Bus (D[0:63])—Input

	8.2.10.2 Data Bus Parity (DP[0:7])
	8.2.10.2.1 Data Bus Parity (DP[0:7])—Output
	8.2.10.2.2 Data Bus Parity (DP[0:7])—Input

	8.2.11 Data Transfer Termination Signals
	8.2.11.1 Transfer �Acknowledge (TA)—Input
	8.2.11.2 Transfer Error Acknowledge (TEA)—Input

	8.3 60x Bus Signal Configuration
	8.3.1 60x Bus Mode Functional Groupings
	8.3.2 60x Address Bus Arbitration Signals
	8.3.2.1 Bus Request (BR)—Output
	8.3.2.2 Bus Grant (BG)—Input

	8.3.3 Address Bus and Parity in 60x Bus Mode
	8.3.3.1 Address Bus (A[0:35])—Output
	8.3.3.2 Address Bus (A[0:35])—Input
	8.3.3.3 Address Parity (AP[0:4])—Output
	8.3.3.4 Address Parity (AP[0:4])—Input

	8.3.4 Address Transfer Attribute Signals in 60x Bus Mode
	8.3.4.1 Transfer Start (TS)
	8.3.4.1.1 Transfer Start (TS)—Output
	8.3.4.1.2 Transfer Start (TS)—Input

	8.3.4.2 Transfer Type (TT[0:4])
	8.3.4.2.1 Transfer Type (TT[0:4])—Output
	8.3.4.2.2 Transfer Type (TT[0:4])—Input

	8.3.4.3 Transfer Burst (TBST)—Output
	8.3.4.4 Transfer Size (TSIZ[0:2])—Output
	8.3.4.5 Global (GBL)
	8.3.4.5.1 Global (GBL)—Output
	8.3.4.5.2 Global (GBL)—Input

	8.3.4.6 Write-Through (WT)—Output
	8.3.4.7 Cache Inhibit (CI)—Output

	8.3.5 60x Address Transfer Termination Signals
	8.3.5.1 Address Acknowledge (AACK)—Input
	8.3.5.2 Address Retry (ARTRY)
	8.3.5.2.1 Address Retry (ARTRY)—Output
	8.3.5.2.2 Address Retry (ARTRY)—Input

	8.3.5.3 Shared (SHD0)
	8.3.5.3.1 Shared (SHD0)—Output
	8.3.5.3.2 Shared (SHD0)—Input

	8.3.6 Data Bus Arbitration Signals
	8.3.6.1 Data Bus Grant (DBG)—Input
	8.3.6.2 Data Transaction Index (DTI[0:3])—Input

	8.3.7 Data Transfer Signals in 60x Bus Mode
	8.3.7.1 Data Bus (D[0:63])
	8.3.7.1.1 Data Bus (D[0:63])—Output
	8.3.7.1.2 Data Bus (D[0:63])—Input

	8.3.7.2 Data Bus Parity (DP[0:7])
	8.3.7.2.1 Data Bus Parity (DP[0:7])—Output
	8.3.7.2.2 Data Bus Parity (DP[0:7])—Input

	8.3.8 Data Transfer Termination Signals in 60x Bus Mode
	8.3.8.1 Transfer �Acknowledge (TA)—Input
	8.3.8.2 Transfer Error Acknowledge (TEA)—Input

	8.4 Non-Protocol Signal Descriptions
	8.4.1 L3 Cache Address/Data
	8.4.1.1 L3 Address (L3_ADDR[17:0])—Output
	8.4.1.2 L3 Data (L3_DATA[0:63])
	8.4.1.2.1 L3 Data (L3_DATA[0:63])—Output
	8.4.1.2.2 L3 Data (L3_DATA[0:63])—Input

	8.4.1.3 L3 Data Parity (L3_DP[0:7])
	8.4.1.3.1 L3 Data Parity (L3_DP[0:7])—Output
	8.4.1.3.2 L3 Data Parity (L3_DP[0:7])—Input

	8.4.2 L3 Cache Clock/Control
	8.4.2.1 L3 Clock (L3_CLK[0:1])—Output
	8.4.2.2 L3 Clock Synchronization (L3_ECHO_CLK[0:3])
	8.4.2.2.1 L3 Clock Synchronization (L3_ECHO_CLK[1,3])—Output
	8.4.2.2.2 L3 Clock Synchronization (L3_ECHO_CLK[0:3])—Input

	8.4.2.3 L3 Control (L3_CNTRL[0:1])
	8.4.2.3.1 L3 Control (L3_CNTL0)—Output
	8.4.2.3.2 L3 Control (L3_CNTL1)—Output

	8.4.2.4 L3 Voltage Select (L3_VSEL)—Input

	8.4.3 Interrupts/Reset Signals
	8.4.3.1 Interrupt (INT)—Input
	8.4.3.2 System Management Interrupt (SMI)—Input
	8.4.3.3 Machine Check (MCP)—Input
	8.4.3.4 Reset Signals
	8.4.3.4.1 Soft Reset (SRESET)—Input
	8.4.3.4.2 Hard Reset (HRESET)—Input

	8.4.3.5 Checkstop Input (CKSTP_IN)—Input
	8.4.3.6 Checkstop Output (CKSTP_OUT)—Output

	8.4.4 Processor Status/Control Signals
	8.4.4.1 Timebase Enable (TBEN)—Input
	8.4.4.2 Quiescent Request (QREQ)—Output
	8.4.4.3 Quiescent Acknowledge (QACK)—Input
	8.4.4.4 Bus Voltage Select (BVSEL)—Input
	8.4.4.5 Bus Mode Select (BMODE[0:1])
	8.4.4.5.1 Bus Selection Mode (BMODE0)—Input During HRESET
	8.4.4.5.2 Address Bus Driven Mode (BMODE0)—Input After HRESET
	8.4.4.5.3 Bus Selection Mode (BMODE1)—Input During HRESET
	8.4.4.5.4 Bus Selection Mode (BMODE1)—Input After HRESET

	8.4.4.6 Performance Monitor In (PMON_IN)—Input
	8.4.4.7 Performance Monitor Out (PMON_OUT)—Output

	8.4.5 Clock Control Signals
	8.4.5.1 System Clock (SYSCLK)—Input
	8.4.5.2 PLL Configuration (PLL_CFG[0:4])—Input
	8.4.5.3 Extension Qualifier (EXT_QUAL)—Input
	8.4.5.4 Clock Out (CLK_OUT)—Output

	8.4.6 IEEE 1149.1a-1993 (JTAG) Interface Description
	8.4.6.1 JTAG Test Clock (TCK)—Input
	8.4.6.2 JTAG Test Data Input (TDI)—Input
	8.4.6.3 JTAG Test Data Output (TDO)—Output
	8.4.6.4 JTAG Test Mode Select (TMS)—Input
	8.4.6.5 JTAG Test Reset (TRST)—Input

	8.4.7 Configuration Signals Sampled at Reset
	8.4.8 Power and Ground Signals

	Chapter�9 System Interface Operation
	9.1 MPC7451 System Interface Overview
	9.1.1 MPC7451 Bus Operation Features
	9.1.1.1 MPX Bus Features
	9.1.1.2 60x Bus Features

	9.1.2 Overview of System Interface Accesses
	9.1.3 Summary of L1 Instruction and Data Cache Operation
	9.1.4 L2 Cache Overview
	9.1.5 L3 Cache Overview
	9.1.6 Operation of the System Interface
	9.1.7 Memory Subsystem Control Register (MSSCR0)
	9.1.8 Memory Subsystem Status Register (MSSSR0)
	9.1.9 Direct-Store Accesses Not Supported
	9.1.10 Common Timing Diagram Symbols

	9.2 MPX Bus Protocol
	9.2.1 MPX Bus Pipelining

	9.3 MPX Bus Address Tenure
	9.3.1 MPX Bus Address Bus Arbitration
	9.3.1.1 Qualified Bus Grant in MPX Bus Mode
	9.3.1.2 MPX Address Bus Parking

	9.3.2 MPX Bus Address Transfer
	9.3.2.1 Address Bus Driven Mode
	9.3.2.2 Address Bus Streaming
	9.3.2.3 Address Bus Parity
	9.3.2.4 Address Transfer Attributes
	9.3.2.4.1 Transfer Type (TT[0:4]) Signals
	9.3.2.4.2 Transfer Size (TSIZ[0:2]) and Transfer Burst TBST Signals
	9.3.2.4.3 Write-Through (WT), Cache Inhibit (CI), and Global (GBL) Signals

	9.3.2.5 Burst Ordering During Data Transfers
	9.3.2.6 Effect of Alignment in Data Transfers
	9.3.2.6.1 Misalignment Example
	9.3.2.6.2 Alignment of External Control Instructions

	9.3.3 MPX Bus Address Tenure Termination
	9.3.3.1 Address Retry Window and Qualified ARTRY
	9.3.3.2 Snoop Copybacks and the Window-of-Opportunity
	9.3.3.3 Shared (SHD0, SHD1) Signals in MPX Bus Mode
	9.3.3.4 Hit (HIT) Signal and Data Intervention

	9.4 MPX Bus Data Tenure
	9.4.1 MPX Bus Data Bus Arbitration
	9.4.1.1 Qualified Data Bus Grant in MPX Bus Mode

	9.4.2 MPX Bus Data Transfer
	9.4.2.1 Data Bus Parity
	9.4.2.2 Earliest Transfer of Data
	9.4.2.2.1 Data Streaming in MPX Bus Mode

	9.4.2.3 Data Tenure Reordering
	9.4.2.4 MPX Bus Data Intervention
	9.4.2.4.1 Data-Only Transaction Protocol
	9.4.2.4.2 DRDY Timing
	9.4.2.4.3 Pipelining of Data-Only Transactions
	9.4.2.4.4 Retrying Data-Only Transactions
	9.4.2.4.5 Ordering of Data-Only Transactions
	9.4.2.4.6 Snarfing

	9.4.3 MPX Bus Data Tenure Termination
	9.4.3.1 Normal Single-Beat Transfer Termination
	9.4.3.2 Normal Burst Transfer Termination
	9.4.3.3 Data Transfer Termination Due to a Bus Error

	9.5 60x Bus Protocol
	9.5.1 60x Bus Pipelining

	9.6 60x Bus Address Tenure
	9.6.1 60x Bus Address Bus Arbitration
	9.6.1.1 Qualified Bus Grant in 60x Bus Mode
	9.6.1.2 60x Address Bus Parking

	9.6.2 60x Bus Address Transfer
	9.6.2.1 60x Address Bus Driven Mode
	9.6.2.2 60x Address Bus Parity
	9.6.2.3 60x Address Transfer Attributes
	9.6.2.3.1 60x Transfer Size (TSIZ[0:2]) and Transfer Burst (TBST) Signals

	9.6.2.4 Aligned and Misaligned Transfers

	9.6.3 60x Bus Address Transfer Termination
	9.6.3.1 Snoop Response and SHD Signal

	9.7 60x Bus Data Tenure
	9.7.1 60x Bus Data Bus Arbitration
	9.7.1.1 Qualified Data Bus Grant in 60x Bus Mode

	9.7.2 60x Bus Data Transfers
	9.7.3 60x Bus Data Tenure Termination

	9.8 60x Bus Timing Examples
	9.9 Reset, Interrupt, Checkstop, and Power Management Signal Interactions
	9.9.1 Reset Inputs
	9.9.2 External Interrupts
	9.9.3 Checkstops
	9.9.4 Power Management Signals

	9.10 IEEE 1149.1a-1993 Compliant Interface
	9.10.1 JTAG/COP Interface

	Chapter�10 Power and Thermal Management
	10.1 Dynamic Power Management
	10.2 Programmable Power Mode
	10.2.1 Full-Power Mode
	10.2.2 Nap Mode
	10.2.2.1 Entering NAP Mode
	10.2.2.2 Exiting Nap Mode
	10.2.2.3 Snooping In Nap Mode (Doze)

	10.2.3 Sleep Mode
	10.2.3.1 Entering Sleep Mode
	10.2.3.2 Exiting Sleep Mode
	10.2.3.3 Deep Sleep Mode

	10.2.4 Power Management Software Considerations

	10.3 Instruction Cache Throttling

	Chapter�11 Performance Monitor
	11.1 Overview
	11.2 Performance Monitor Exception
	11.2.1 Performance Monitor Signals
	11.2.2 Using Timebase Event to Trigger or Freeze a Counter ���or Generate an Exception

	11.3 Performance Monitor Registers
	11.3.1 Performance Monitor Special-Purpose Registers
	11.3.2 Monitor Mode Control Register 0 (MMCR0)
	11.3.2.1 User Monitor Mode Control Register 0 (UMMCR0)

	11.3.3 Monitor Mode Control Register 1 (MMCR1)
	11.3.3.1 User Monitor Mode Control Register 1 (UMMCR1)

	11.3.4 Monitor Mode Control Register 2 (MMCR2)
	11.3.4.1 User Monitor Mode Control Register 2 (UMMCR2)

	11.3.5 Breakpoint Address Mask Register (BAMR)
	11.3.6 Performance Monitor Counter Registers�(PMC1–PMC6).
	11.3.6.1 User Performance Monitor Counter Registers ��(UPMC1–UPMC6)

	11.3.7 Sampled Instruction Address Register (SIAR)
	11.3.7.1 User Sampled Instruction Address Register (USIAR)

	11.4 Event Counting
	11.5 Event Selection
	11.5.1 PMC1 Events
	11.5.2 PMC2 Events
	11.5.3 PMC3 Events
	11.5.4 PMC4 Events
	11.5.5 PMC5 Events
	11.5.6 PMC6 Events

	Appendix�A MPC7451 Instruction Set Listings
	A.1 Instructions Sorted by Mnemonic (Decimal and Hexadecimal)
	A.2 Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)
	A.3 Instructions Sorted by Mnemonic (Binary)
	A.4 Instructions Sorted by Opcode (Binary)
	A.5 Instructions Grouped by Functional Categories
	A.6 Instructions Sorted by Form
	A.7 Instruction Set Legend

	Appendix�B Instructions Not Implemented
	Appendix�C Special-Purpose Registers
	Appendix�D User’s Manual Revision History

