
1

ECSE 425 – Topic 4

Advanced Pipelining:
Instruction Level Parallelism

and Its Exploitation

(Chapter 2 and Appendix G)

Slides: D. Patterson, W. Gross, V. Hayward, T. Arbel

2

Instruction Level Parallelism

• Pipelining overlaps the execution of instructions
• This potential overlap among instructions is called

Instruction Level Parallelism (ILP)
• In this topic we look at techniques to increase the

amount of ILP
• First, we will look at what limits ILP and how much

we can actually expect to extract
• Then we will exploit the available ILP
• Two main techniques:

– Hardware (market winner: Intel Pentium series)
– Software (special niche markets, Intel Itanium, DSPs)

3

Recall from Pipelining Review

• Pipeline CPI = Ideal pipeline CPI + Structural
Stalls + Data Hazard Stalls + Control Stalls

– Ideal pipeline CPI: measure of the maximum performance
attainable by the implementation

– Structural hazards: HW cannot support this combination of
instructions

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps)

4

Technique Reduces
Forwarding Potential data hazard stalls

Delayed branches and simple
branch scheduling

Control hazard stalls

Dynamic scheduling Data hazard stalls
Branch prediction Control stalls

Issuing multiple instructions
per cycle

Ideal CPI

Speculation Data and control stalls
Dynamic memory disambiguation Data hazard stalls involving

memory
Loop unrolling Control hazard stalls

Basic compiler pipeline
scheduling

Data hazard stalls

Compiler dependence analysis
and software pipelining

Ideal CPI and data hazard stalls

5

Instruction-Level Parallelism (ILP)
• Basic Block (BB) ILP is quite small

– BB: a straight-line code sequence with no branches in except
to the entry and no branches out except at the exit

– average dynamic branch frequency 15% to 25%
=> 4 to 7 instructions execute between a pair of branches

– Plus instructions in BB likely to depend on each other
• To obtain substantial performance enhancements,

we must exploit ILP across multiple basic blocks
• Simplest: loop-level parallelism to exploit

parallelism among iterations of a loop
– Vector is one way
– If not vector, then either dynamic via branch prediction or

static via loop unrolling by compiler

6

• InstrJ is data dependent on InstrI
InstrJ tries to read operand before InstrI writes it

• or InstrJ is data dependent on InstrK which is
dependent on InstrI

• Caused by a “True Dependence” (compiler term)
• If true dependence caused a hazard in the pipeline,

called a Read After Write (RAW) hazard

Data Dependence and Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

7

• Dependences are a property of programs
• Presence of dependence indicates potential for a

hazard, but actual hazard and length of any stall
is a property of the pipeline

• Importance of the data dependencies
1) indicates the possibility of a hazard
2) determines order in which results must be

calculated
3) sets an upper bound on how much parallelism can

possibly be exploited
• Today looking at HW schemes to avoid hazard

Data Dependence and Hazards

8

• Name dependence: when 2 instructions use same
register or memory location, called a name, but no
flow of data between the instructions associated
with that name; 2 versions of name dependence

• InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

• If anti-dependence caused a hazard in the
pipeline, called a Write After Read (WAR) hazard

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Name Dependence #1:
Anti-dependence

9

Name Dependence #2:
Output dependence

• InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

• If anti-dependence caused a hazard in the pipeline,
called a Write After Write (WAW) hazard

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

10

ILP and Data Hazards

• HW/SW must preserve program order:
order instructions would execute in if executed
sequentially 1 at a time as determined by original
source program

• HW/SW goal: exploit parallelism by preserving
program order only where it affects the outcome
of the program

• Instructions involved in a name dependence can
execute simultaneously if name used in instructions
is changed so instructions do not conflict

– Register renaming resolves name dependence for regs
– Either by compiler or by HW

11

Control Dependencies
• Every instruction is control dependent on

some set of branches, and, in general,
these control dependencies must be
preserved to preserve program order
if p1 {
S1;

};
if p2 {
S2;

}
• S1 is control dependent on p1, and S2 is

control dependent on p2 but not on p1.

12

Control Dependence Ignored

• Control dependence need not be preserved
– willing to execute instructions that should not have been

executed, thereby violating the control dependences, if can do
so without affecting correctness of the program

• Instead, 2 properties critical to program
correctness are exception behavior and data flow

13

Exception Behavior

• Preserving exception behavior => any
changes in instruction execution order must
not change how exceptions are raised in
program (=> no new exceptions)

• Example:
DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0(R2)

L1:

• Problem with moving LW before BEQZ?

14

Data Flow
• Data flow: actual flow of data values among

instructions that produce results and those that
consume them

– branches make flow dynamic, determine which instruction is
supplier of data

• Example:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R5,R6
L: …
OR R7,R1,R8

• OR depends on DADDU or DSUBU?
Must preserve data flow on execution

15

Basic Compiler Techniques for
Exposing ILP

16

Basic Compiler Scheduling

• The idea: keep the pipeline full
– Avoid stalls due to hazards

• Scheduling
– find a sequence of instructions that can be overlapped

in the pipeline

• We will look at scheduling in the compiler.
The hardware then executes the scheduled
code in-order

• How do we achieve our goal of keeping the
pipeline full ?

17

Basic Compiler Scheduling

• A dependent instruction must be separated
from the source instruction by a distance in
clock cycles equal to the pipeline latency of
the source instruction

• For example, in a pipeline with forwarding
– latency of the EX stage (ALU) is 0.
– The data memory latency is 1

• A compiler’s ability to perform this
scheduling depends on:

– The amount of ILP in the program
– The latencies of the functional units

18

Basic Compiler Scheduling

• Assume the classic 5-stage integer pipeline
• Integer ALU latency is 0 CC
• Integer load latency is 1 CC
• Branch delay is 1 CC
• Fully pipelined FUs (assume no structural hazards)
• Assume the following FP latencies (averages):

Producer Consumer Latency (CCs)

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

Load double Store double 0

19

Loop Example

• Adding a scalar to a vector (loop is parallel
since the body of each iteration is
independent)

for (i = 1000; i > 0; i=i–1)
x[i] = x[i] + s;

Loop: L.D F0,0(R1) ;F0=array element
ADD.D F4,F0,F2 ;add scalar from F2
S.D F4,0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer 8 bytes
BNE R1,R2,Loop ;branch R1!=R2

20

Loop Example

• Ignore delayed branches
• Unscheduled code: 9 clock cycles

1 Loop: L.D F0,0(R1)
2 stall
3 ADD.D F4,F0,F2
4 stall
5 stall
6 S.D F4,0(R1)
7 DADDUI R1,R1,#-8
8 stall
9 BNE R1,R2,Loop

21

Loop Example
• Scheduled code: 7 cycles
• Not trivial: S.D. depends on DAADUI. Swap

them but change address

1 Loop: L.D F0,0(R1)
2 DADDUI R1,R1,#-8
3 ADD.D F4,F0,F2
4 stall
5 stall
6 S.D F4,8(R1) ; altered
7 BNE R1,R2,Loop ; delayed branch

22

Loop Example

• 1 branch delay slot
• Unscheduled code: 10 clock cycles

1 Loop: L.D F0,0(R1)
2 stall
3 ADD.D F4,F0,F2
4 stall
5 stall
6 S.D F4,0(R1)
7 DADDUI R1,R1,#-8
8 stall
9 BNE R1,R2,Loop
10 stall

23

Loop Example

• Scheduled code: 6 cycles
• Problem: only doing work on the array

element in 3/6 cycles. Other 3 are for loop
overhead

1 Loop: L.D F0,0(R1)
2 DADDUI R1,R1,#-8
3 ADD.D F4,F0,F2
4 stall
5 BNE R1,R2,Loop ; delayed branch
6 S.D F4,8(R1) ; altered

24

Loop Unrolling

• Unroll the loop
– Replicate the body of the loop many times
– Adjust the loop termination code

• Eliminating the branch allows instructions
from different iterations to be scheduled
together

– In this case we can eliminate the data stall

25

Unroll Loop Four Times
(straightforward way)

Rewrite loop to
minimize stalls?

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1) ;drop DADDUI & BNE
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D F8,-8(R1) ;drop DADDUI & BNE
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D F12,-16(R1 ;drop DADDUI & BNE
10 L.D F14,-24(R1)
11 ADD.D F16,F14,F2
12 S.D F16,-24(R1)
13 DADDUI R1,R1,#-32 ;alter to 4*8
14 BNE R1,R2,LOOP

14 + 4x(1+2) + 2= 28 clock cycles, or 7 per iteration
Assumes R1 is multiple of 32 (# loops a multiple of 4)

1 cycle stall
2 cycles stall

1 cycle stall

26

Textbook example

• The textbook on page 77-78 does the same
example, but without branch delay

• 27 clock cycles (6.75 cycles per iteration)
• Work through it to understand the

difference of one clock cycle

27

Unrolled Loop Detail

• Do not usually know upper bound of loop
• Suppose it is n, and we would like to unroll

the loop to make k copies of the body
• Instead of a single unrolled loop, we

generate a pair of consecutive loops:
– 1st executes (n mod k) times and has a body that is

the original loop
– 2nd is the unrolled body surrounded by an outer loop

that iterates (n/k) times
– For large values of n, most of the execution time will

be spent in the unrolled loop

28

Unrolled Loop That Minimizes Stalls

• What assumptions
made when moved
code?

– OK to move store past
DADDUI even though
changes register

– OK to move loads before
stores: get right data?

– When is it safe for
compiler to do such
changes?

1 Loop:L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D F4,0(R1)
10 S.D F8,-8(R1)
11 DADDUI R1,R1,#-32
12 S.D F12,-16(R1)
13 BNE R1,R2,LOOP
14 S.D F16,8(R1) ; 8-32 = -24

14 clock cycles, or 3.5 per iteration
(textbook without branch delay has a
different schedule but also is able to do it
in 14 cycles – work through it)

29

Compiler Perspectives on Code Movement
• Compiler concerned about dependencies in program
• Whether or not a HW hazard depends on pipeline
• Try to schedule to avoid hazards that cause

performance losses
• (True) Data dependencies (RAW if a hazard for HW)

– Instruction i produces a result used by instruction j, or
– Instruction j is data dependent on instruction k, and instruction k

is data dependent on instruction i.

• If dependent, can’t execute in parallel
• Easy to determine for registers (fixed names)
• Hard for memory (“memory disambiguation” problem):

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

30

Where are the name dependencies?

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1) ;drop DADDUI & BNE
4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D F4,-8(R1) ;drop DADDUI & BNE
7 L.D F0,-16(R1)
8 ADD.D F4,F0,F2
9 S.D F4,-16(R1) ;drop DADDUI & BNE
10 L.D F0,-24(R1)
11 ADD.D F4,F0,F2
12 S.D F4,-24(R1)
13 DADDUI R1,R1,#-32 ;alter to 4*8
14 BNE R1,R2,LOOP
15 NOP

How can remove them?

31

Where are the name dependencies?

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1) ;drop DADDUI & BNE
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D F8,-8(R1) ;drop DADDUI & BNE
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D F12,-16(R1) ;drop DADDUI & BNE
10 L.D F14,-24(R1)
11 ADD.D F16,F14,F2
12 S.D F16,-24(R1)
13 DADDUI R1,R1,#-32 ;alter to 4*8
14 BNE R1,R2,LOOP
15 NOP

“register renaming”

32

Compiler Perspectives on Code
Movement

• Name dependencies are hard to discover for memory
Accesses

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

• Our example required compiler to know that if R1
doesn’t change then:

0(R1) ≠ -8(R1) ≠ -16(R1) ≠ -24(R1)

There were no dependencies between some loads and
stores so they could be moved by each other

33

Steps Compiler Performed to Unroll
• Check OK to move the S.D after DADDUI and

BNEZ, and find amount to adjust S.D offset
• Determine unrolling the loop would be useful by

finding that the loop iterations were independent
• Rename registers to avoid name dependencies
• Eliminate extra test and branch instructions and

adjust the loop termination and iteration code
• Determine loads and stores in unrolled loop can be

interchanged by observing that the loads and
stores from different iterations are independent

– requires analyzing memory addresses and finding that they do
not refer to the same address.

• Schedule the code, preserving any dependences
needed to yield same result as the original code

34

Drawbacks

• Code length (an issue for embedded
processors)

• Uses lots of registers
– “Register pressure”
– Could be a problem with aggressive unrolling and

scheduling

35

Reducing branch costs with
Branch prediction

36

Branch Prediction

• The fundamental problem:
– There is a delay between the cycle which we find out if

the instruction is a branch, what it’s target is, whether
it is taken or not,…..and the cycle from which we need
to fetch the next instruction.

• One way to get around this is to guessguess
whether a branch is taken or not taken…if
we are correct then there could potentially
be no penalty.

• We suffer a penalty if the guess was wrong

37

Looking Ahead…

• To lower the IDEAL CPI, we will consider
machines that can ISSUE more than one
instruction in a clock cycle...

– “multiple issue” (Superscalar and VLIW)

38

Case for Branch Prediction when
Issue N instructions per clock cycle

1. Branches will arrive up to n times faster in
an n-issue processor

2. Amdahl’s Law => relative impact of the
control stalls will be larger with the lower
potential CPI in an n-issue processor

39

Static Branch Prediction

• We saw this idea earlier
– Delayed branches

40

Static Branch Prediction Strategies

• Predict-taken
– Midprediction rate = untaken branch frequency
– SPEC: 34% misprediction (9% to 59%)

• Predict based on branch direction
– E.g. predict forward-going branches as not taken and

backwards-going branches as taken

• Collect profile information by running the
program a few times. Recompile with this
profile information.
– Studies have showed that even when the data changes

the profile is pretty accurate

41

Static Branch Prediction

• Static branch prediction is useful when:
1.Branch delays are exposed by architecture
2.Assisting dynamic predictors (IA-64)
3.Determining which code paths are more frequent (for

code scheduling)

42

The case for dynamic branch
prediction

• The performance of branch prediction rests
on how accurate our predictions are.

• We have seen a compiler scheme for filling
the branch delay (static branch prediction).

• Analyze each branch and try to fill the
delay slot with an instruction from the
branch target or the fall through.

• The problem is… it is very hard to predict
the direction of branches in the
compiler…we really need to consider the
dynamic branch behaviour.

43

Dynamic Branch Prediction

• IDEA: predict the outcome of a branch
based on its past behaviour

Branch address

<m> LSBs

Small memory (branch prediction buffer)

2m predictors

44

7 Branch Prediction Schemes

1. 1-bit Branch-Prediction Buffer
2. 2-bit Branch-Prediction Buffer
3. Correlating Branch Prediction Buffer
4. Tournament Branch Predictor
5. Branch Target Buffer
6. Integrated Instruction Fetch Units
7. Return Address Predictors

45

Dynamic Branch Prediction

Fetch new instruction as early as possible,
possibly at the next clock cycle

Make prediction

Look up last target address
or recompute it

Address of next instruction

Proceed with branch execution

Prediction
correct?

Do nothing
Update prediction

Cancel wrong instructions

Not taken Taken

No Yes

Performance = ƒ(accuracy, cost of misprediction)

46

1-bit Predictors

• Branch History Table: Lower bits of PC address
index table of 1-bit values

– Says whether or not branch taken last time
– No address check (saves HW, but may not be right branch)
– Adequate performance for numerical code with many loops

• Problem: in a loop, 1-bit BHT will cause
2 mispredictions

– End of loop case, when it exits instead of looping as before
– First time through loop on next time through code, when it

predicts exit instead of looping
– Only 80% accuracy even if loop 90% of the time

47

Example
• Loop with 10 iterations. First 9 are taken

and then the last is not.

• Mispredict 2 times for every 10 instructions
• 80% prediction accuracy
• (mispredict at twice the rate of branch not

taken…should be able to at least match the
taken branch frequency for highly regular
loops)

…TTT N TTTTTTTTT N TTT…

mispredictions

48

1-bit predictors

• Prediction is wrong whenever there is a
transition in the branching pattern.

• Example
– NTNTNT
– 1-bit predictor is never correct ! (0%)
– Tossing a coin (no prediction at all) gives 50%

• However, real code has bias
• A branch taken several times is likely to be

taken again
• Solution: keep more “memory” than is

possible by just one bit…try two bits

49

2-bit predictors

• Count the number of ‘taken’ (not taken)
outcomes

• Two taken (not taken) in a row predict
“taken” (not taken)

• A single not taken (taken) branch will not
affect the prediction – there need to be
two in a row to affect the prediction

• In general, with n prediction bits, it takes
2n-1 mispredictions before the predictor
changes its mind

50

Examples

• …NNNNN TNTNTN TTTTTT…

• 50 % prediction accuracy

• …TTTN TTTTTTTTT N TTT…

• 90% prediction accuracy

51

2-Bit Branch Prediction

• A branch that strongly favours taken or not taken
will be mispredicted less often than with a 1-bit
predictor

52

Counter Implementation

T

T

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
Taken

11 10

01 00
T

NT

T

NT

NT

53

Accuracy of 2-bit predictors

• 99-100% on heavy matrix code
• 80 – 90% on integer code (e.g. gcc)
• Statistics show virtualy no gain in accuracy

with more states and buffers of more than
1K entries.

• However, there are some cases where we
can do better…

54

Correlating Branch Predictors

• Why is the performance of integer code so low?
• We assumed that different branches’ behaviour was

not correlated..
• But, they often are…

If (a == 2)
a =0

If(b == 2)
b= 0

If (a != b)
…

• A simple predictor that considers only one branch
can’t capture this behaviour

55

Correlating Branch Predictors

• Idea: taken/not taken of recently executed
branches is related to behavior of next
branch (as well as the history of that
branch behavior)

• Simple predictor: keep a history of 1
branch and each predictor is 1-bit (1,1)

56

Example without Correlation
• E.g.

B1: If (d == 0)
d = 1

B2: If (d == 1)
…

Try a 1-bit predictor

Branch Pred outcome update

d=2 B1 N N N

B2 N N N

d=0 B1 N T T

B2 N T T

d=2 B1 T N N

B2 T N N

d=0 B1 N T T

B2 N T T

57

Simple Correlating Predictor

58

Correlating Branches

Behavior of recent
branches selects
between, say, 4
predictions of next
branch, updating just
that prediction

• (2,2) predictor: 2-bit
global, 2-bit local

• General: (m,n) uses
behaviour of the last
m branches to choose
from 2m predictors
each of which is an
n-bit predictor

Branch address (4 bits)

2-bits per branch
local predictors

PredictionPrediction

2-bit global
branch history

(01 = not taken then taken)

59

0%
1%

5%
6% 6%

11%

4%

6%
5%

1%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

Accuracy of Different Schemes

0%

18%

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

60

BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch
– Got branch history of wrong branch when index the

table

• 4096 entry table programs vary from 1%
misprediction (nasa7, tomcatv) to 18%
(eqntott), with spice at 9% and gcc at 12%

• For SPEC92,
4096 about as good as infinite table

61

Tournament Predictors

• Motivation for correlating branch predictors is
2-bit predictor failed on important branches;
by adding global information, performance
improved

• Tournament predictors: use 2 predictors, 1
based on global information and 1 based on
local information, and combine with a selector

• Hopes to select right predictor for right
branch

• Pentium 4 and Power5 – 30K bits tournament
predictors

62

Tournament Predictor in Alpha 21264
• 4K 2-bit counters to choose from among a global

predictor and a local predictor
• Global predictor also has 4K entries and is indexed by

the history of the last 12 branches; each entry in the
global predictor is a standard 2-bit predictor

– 12-bit pattern: ith bit 0 => ith prior branch not taken;
ith bit 1 => ith prior branch taken;

• Local predictor consists of a 2-level predictor:
– Top level a local history table consisting of 1024 10-bit

entries; each 10-bit entry corresponds to the most recent
10 branch outcomes for the entry. 10-bit history allows
patterns 10 branches to be discovered and predicted.

– Next level Selected entry from the local history table is
used to index a table of 1K entries consisting a 3-bit
saturating counters, which provide the local prediction

• Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)

63

% of predictions from local predictor
in Tournament Prediction Scheme

98%
100%

94%
90%

55%
76%

72%
63%

37%
69%

0% 20% 40% 60% 80% 100%

nasa7

matrix300

tomcatv

doduc

spice

fpppp

gcc

espresso

eqntott

li

64

94%

96%

98%

98%

97%

100%

70%

82%

77%

82%

84%

99%

88%

86%

88%

86%

95%

99%

0% 20% 40% 60% 80% 100%

gcc

espresso

li

fpppp

doduc

tomcatv

Branch prediction accuracy

Profile-based
2-bit counter
Tournament

Accuracy of Branch Prediction

• Profile: branch profile from last execution
(static in that in encoded in instruction, but profile)

65

Accuracy v. Size (SPEC89)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Total predictor size (Kbits)

Local

Correlating

Tournament

66

Dynamic Branch Prediction Summary
• Prediction becoming important part of scalar

execution
• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches correlated

with next branch.
– Either different branches
– Or different executions of same branches

• Tournament Predictor: more resources to
competitive solutions and pick between them

67

Dynamic Scheduling

68

Advantages of Dynamic
Scheduling

• Handles cases when dependences unknown at
compile time

– (e.g., because they may involve a memory reference)

• It simplifies the compiler
• Allows code that compiled for one pipeline

to run efficiently on a different pipeline
• Hardware speculation, a technique with

significant performance advantages, that
builds on dynamic scheduling

 2002, 2003 V. Hayward, T. Arbel, W. Gross, Department of Electrical and Computer Engineering, McGill University,
Textbook Figures  Elsevier Science 1990, 1996, 2003

F0

F4F2
÷

F8
+
F10

F14
-
F12

F0

F4F2
÷

F10

+
F6

F14
-
F8F8

F6
*
F10Ant.Dep.

Output Dep.

The limiting factor for standard pipelines is in-order execution: a stalling
instruction stalls all subsequent instructions, hence magnifying the problem.

Example:

DIV.D F0, F2, F4
ADD.D F10, F0, F8
SUB.D F12, F8, F14 // could execute

// out of order

However out-of-order execution has new consequences:

DIV.D F0, F2, F4 // possibility of
ADD.D F6, F0, F8 // out of order
SUB.D F8, F10, F14 // creates name
MUL.D F6, F10, F8 // dependencies

 2002, 2003 V. Hayward, T. Arbel, W. Gross, Department of Electrical and Computer Engineering, McGill University,
Textbook Figures  Elsevier Science 1990, 1996, 2003

F0

F4F2
÷

F10

+
F6

F14
-

F12F8

F16
*
F10

But using more registers can systematically eliminate name dependencies:

DIV.D F0, F2, F4 // possibility of
ADD.D F6, F0, F8 // out of order
SUB.D F12, F10, F14 // creates name
MUL.D F16, F10, F12 // dependencies

It is evident that this has to be managed systematically as the number of registers
is limited. The solution is called register renaming which involves making a
hardware copy of a register only when needed.

 2002, 2003 V. Hayward, T. Arbel, W. Gross, Department of Electrical and Computer Engineering, McGill University,
Textbook Figures  Elsevier Science 1990, 1996, 2003

Register renaming:
Eliminates WAR and WAW hazards by renaming destination registers.

 DIV.D F0, F2, F4
 ADD.D F6, F0, F8 // may finish later than MUL.D (WAW)
 S.D F6, 0(R1)
 SUB.D F8, F10, F14 // anti-dependence with ADD.D (WAR)
 MUL.D F6, F10, F8 // output dependence with ADD.D

 Register renaming:
 Temp registers: S, T

 DIV.D F0, F2, F4
 ADD.D S, F0, F8 // S replaces F6
 S.D S, 0(R1)
 SUB.D T, F10, F14 // T replaces F8
 MUL.D F6, F10, T

Also need to replace any subsequent uses of F8 with T. This can be tricky since
there may be branches between uses of F8.

 2002, 2003 V. Hayward, T. Arbel, W. Gross, Department of Electrical and Computer Engineering, McGill University,
Textbook Figures  Elsevier Science 1990, 1996, 2003

There is a dynamic scheduling scheme which can do register renaming across
branches!

Tomasulo’s Algorithm – hardware for out-of-order execution

Basic ideas:

1. Track dependencies: allow execution as soon as operands are available.
2. Register renaming to eliminate WAR and WAW hazards.

69

HW Schemes: Instruction Parallelism

• Key idea: Allow instructions behind stall to proceed
DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

• Enables out-of-order execution
and allows out-of-order completion

• Will distinguish when an instruction begins
execution and when it completes execution;
between 2 times, the instruction is in execution

• In a dynamically scheduled pipeline, all instructions
pass through issue stage in order (in-order issue)

70

Dynamic Scheduling Step 1
• Simple pipeline had 1 stage to check both

structural and data hazards: Instruction
Decode (ID), also called Instruction Issue

• Split the ID pipe stage of simple 5-stage
pipeline into 2 stages:

• Issue—Decode instructions, check for
structural hazards

• Read operands—Wait until no data hazards,
then read operands

71

A Dynamic Algorithm:
Tomasulo’s Algorithm

• For IBM 360/91 (before caches!)
• Goal: High Performance without special compilers
• Small number of floating point registers (4 in 360)

prevented interesting compiler scheduling of operations
– This led Tomasulo to try to figure out how to get more effective

registers — renaming in hardware!

• Why Study 1966 Computer?
• The descendants of this have flourished!

– Alpha 21264, HP 8000, MIPS 10000, Pentium III, PowerPC 604, …

72

Tomasulo Algorithm

• Control & buffers distributed with Function Units (FU)
– FU buffers called “reservation stations”; have pending

operands
• Registers in instructions replaced by values or pointers

to reservation stations(RS); called register renaming ;
– avoids WAR, WAW hazards
– More reservation stations than registers, so can do

optimizations compilers can’t
• Results to FU from RS, not through registers, over

Common Data Bus that broadcasts results to all FUs
• Load and Stores treated as FUs with RSs as well
• Integer instructions can go past branches, allowing

FP ops beyond basic block in FP queue

73

Tomasulo Organization

74

75

Dynamic Scheduling

• Handles cases when dependences unknown at
compile time

– (e.g., because they may involve a memory reference)

• It simplifies the compiler
• Allows code that compiled for one pipeline

to run efficiently on a different pipeline
• Hardware speculation, a technique with

significant performance advantages, that
builds on dynamic scheduling

76

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or –)
Vj, Vk: Value of Source operands

– Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source
registers (value to be written)

– Note: Qj,Qk=0 => ready
– Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

Register result status—Indicates which functional
unit will write each register, if one exists. Blank
when no pending instructions that will write that
register.

77

Three Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
If reservation station free (no structural hazard),
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)
When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting units;
mark reservation station available

• Normal data bus: data + destination (“go to” bus)
• Common data bus: data + source (“come from” bus)

– 64 bits of data + 4 bits of Functional Unit source address
– Write if matches expected Functional Unit (produces result)
– Does the broadcast

• Example speed:
3 clocks for Fl .pt. +,-; 10 for * ; 40 clks for /

78

Tomasulo Example
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 Load1 No
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

0 FU

Clock cycle
counter

FU count
down

Instruction stream

3 Load/Buffers

3 FP Adder R.S.
2 FP Mult R.S.

79

Tomasulo Example Cycle 1
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

1 FU Load1

80

Tomasulo Example Cycle 2
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

2 FU Load2 Load1

Note: Can have multiple loads outstanding

81

Tomasulo Example Cycle 3
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in
Reservation Stations; MULT issued

• Load1 completing; what is waiting for Load1?

82

Tomasulo Example Cycle 4
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 Yes SUBD M(A1) Load2
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

4 FU Mult1 Load2 M(A1) Add1

• Load2 completing; what is waiting for Load2?

83

Tomasulo Example Cycle 5
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

2 Add1 Yes SUBD M(A1) M(A2)
Add2 No
Add3 No

10 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

5 FU Mult1 M(A2) M(A1) Add1 Mult2

• Timer starts down for Add1, Mult1

84

Tomasulo Example Cycle 6
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

1 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1
Add3 No

9 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

6 FU Mult1 M(A2) Add2 Add1 Mult2

• Issue ADDD here despite name dependency on F6?

85

Tomasulo Example Cycle 7
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

0 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1
Add3 No

8 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

7 FU Mult1 M(A2) Add2 Add1 Mult2

• Add1 (SUBD) completing; what is waiting for it?

86

Tomasulo Example Cycle 8
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
2 Add2 Yes ADDD (M-M) M(A2)

Add3 No
7 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

8 FU Mult1 M(A2) Add2 (M-M) Mult2

87

Tomasulo Example Cycle 9
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
1 Add2 Yes ADDD (M-M) M(A2)

Add3 No
6 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

9 FU Mult1 M(A2) Add2 (M-M) Mult2

88

Tomasulo Example Cycle 10
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
0 Add2 Yes ADDD (M-M) M(A2)

Add3 No
5 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

10 FU Mult1 M(A2) Add2 (M-M) Mult2

• Add2 (ADDD) completing; what is waiting for it?

89

Tomasulo Example Cycle 11
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

4 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

11 FU Mult1 M(A2) (M-M+M(M-M) Mult2

• Write result of ADDD here?
• All quick instructions complete in this cycle!

90

Tomasulo Example Cycle 12
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

3 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

12 FU Mult1 M(A2) (M-M+M(M-M) Mult2

91

Tomasulo Example Cycle 13
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

2 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

13 FU Mult1 M(A2) (M-M+M(M-M) Mult2

92

Tomasulo Example Cycle 14
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

1 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

14 FU Mult1 M(A2) (M-M+M(M-M) Mult2

93

Tomasulo Example Cycle 15
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

0 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

15 FU Mult1 M(A2) (M-M+M(M-M) Mult2

• Mult1 (MULTD) completing; what is waiting for it?

94

Tomasulo Example Cycle 16
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

40 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

16 FU M*F4 M(A2) (M-M+M(M-M) Mult2

• Just waiting for Mult2 (DIVD) to complete

95

Faster than light computation
(skip a couple of cycles)

96

Tomasulo Example Cycle 55
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

1 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

55 FU M*F4 M(A2) (M-M+M(M-M) Mult2

97

Tomasulo Example Cycle 56
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5 56
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

0 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

56 FU M*F4 M(A2) (M-M+M(M-M) Mult2

• Mult2 (DIVD) is completing; what is waiting for it?

98

Tomasulo Example Cycle 57
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5 56 57
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

56 FU M*F4 M(A2) (M-M+M(M-M) Result

• Once again: In-order issue, out-of-order execution
and out-of-order completion.

99

Tomasulo Drawbacks

• Complexity
– delays of 360/91, MIPS 10000, Alpha 21264,

IBM PPC 620 in CA:AQA 2/e, but not in silicon!
• Many associative stores (CDB) at high speed
• Performance limited by Common Data Bus

– Each CDB must go to multiple functional units
⇒high capacitance, high wiring density

– Number of functional units that can complete per cycle
limited to one!

» Multiple CDBs ⇒ more FU logic for parallel assoc stores
• Non-precise interrupts!

– We will address this later

100

Tomasulo Loop Example
Loop:LD F0 0 R1

MULTD F4 F0 F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

• This time assume Multiply takes 4 clocks
• Assume 1st load takes 8 clocks

(L1 cache miss), 2nd load takes 1 clock (hit)
• To be clear, will show clocks for SUBI, BNEZ

– Reality: integer instructions ahead of Fl. Pt. Instructions

• Show 2 iterations

101

Loop Example
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 Load1 No
1 MULTD F4 F0 F2 Load2 No
1 SD F4 0 R1 Load3 No
2 LD F0 0 R1 Store1 No
2 MULTD F4 F0 F2 Store2 No
2 SD F4 0 R1 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 No SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

0 80 Fu

Added Store Buffers

Value of Register used for address, iteration control

Instruction Loop

Iter-
ation
Count

102

Loop Example Cycle 1
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80

Load2 No
Load3 No
Store1 No
Store2 No
Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 No SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

1 80 Fu Load1

103

Loop Example Cycle 2
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No

Load3 No
Store1 No
Store2 No
Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

2 80 Fu Load1 Mult1

104

Loop Example Cycle 3
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1
Store2 No
Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

3 80 Fu Load1 Mult1

• Implicit renaming sets up data flow graph

105

Loop Example Cycle 4
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1
Store2 No
Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

4 80 Fu Load1 Mult1

• Dispatching SUBI Instruction (not in FP queue)

106

Loop Example Cycle 5
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1
Store2 No
Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

5 72 Fu Load1 Mult1

• And, BNEZ instruction (not in FP queue)

107

Loop Example Cycle 6
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1

Store2 No
Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

6 72 Fu Load2 Mult1

• Notice that F0 never sees Load from location 80

108

Loop Example Cycle 7
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 No

Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

7 72 Fu Load2 Mult2

• Register file completely detached from computation
• First and Second iteration completely overlapped

109

Loop Example Cycle 8
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

8 72 Fu Load2 Mult2

110

Loop Example Cycle 9
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

9 72 Fu Load2 Mult2

• Load1 completing: who is waiting?
• Note: Dispatching SUBI

111

Loop Example Cycle 10
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 10 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

4 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

10 64 Fu Load2 Mult2

• Load2 completing: who is waiting?
• Note: Dispatching BNEZ

112

Loop Example Cycle 11
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

3 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
4 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

11 64 Fu Load3 Mult2

• Next load in sequence

113

Loop Example Cycle 12
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

2 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
3 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

12 64 Fu Load3 Mult2

• Why not issue third multiply?

114

Loop Example Cycle 13
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

1 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
2 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

13 64 Fu Load3 Mult2

• Why not issue third store?

115

Loop Example Cycle 14
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

0 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
1 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

14 64 Fu Load3 Mult2

• Mult1 completing. Who is waiting?

116

Loop Example Cycle 15
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 No SUBI R1 R1 #8

0 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

15 64 Fu Load3 Mult2

• Mult2 completing. Who is waiting?

117

Loop Example Cycle 16
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

4 Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

16 64 Fu Load3 Mult1

118

Loop Example Cycle 17
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

17 64 Fu Load3 Mult1

119

Loop Example Cycle 18
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 18 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

18 64 Fu Load3 Mult1

120

Loop Example Cycle 19
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 18 19 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 No
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 19 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

19 56 Fu Load3 Mult1

121

Loop Example Cycle 20
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 Yes 56
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 18 19 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 No
2 MULTD F4 F0 F2 7 15 16 Store2 No
2 SD F4 0 R1 8 19 20 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

20 56 Fu Load1 Mult1

• Once again: In-order issue, out-of-order execution
and out-of-order completion.

122

Why can Tomasulo overlap iterations
of loops?

• Register renaming
– Multiple iterations use different physical destinations for

registers (dynamic loop unrolling).

• Reservation stations
– Permit instruction issue to advance past integer control flow

operations
– Also buffer old values of registers - totally avoiding the WAR

stall that we saw in the scoreboard.

• Other perspective: Tomasulo building data flow
dependency graph on the fly.

123

Tomasulo’s scheme offers 2 major
advantages

(1) the distribution of the hazard detection logic
– distributed reservation stations and the CDB
– If multiple instructions waiting on single result, & each

instruction has other operand, then instructions can be
released simultaneously by broadcast on CDB

– If a centralized register file were used, the units
would have to read their results from the registers
when register buses are available.

(2) the elimination of stalls for WAW and WAR
hazards

124

Dynamic Memory Disambiguation

• WAR and WAW hazards are eliminated by
Tomasulo’s algorithm by register renaming

• Easy to do since the names are exposed
• What about if two instructions share the

same memory address ?

E.g. L.D. F1, 40(R6)
S.D F4, 64(R3)

• What if 40(R6) = 64(R3) ???

125

Dynamic Memory Disambiguation

L.D. F1, 40(R6)
S.D F4, 64(R3)

• If the load and store are executed out-of-
order… WAR hazard

S.D F4, 64(R3)
L.D. F1, 40(R6)

• RAW hazard

126

Dynamic Memory Disambiguation

• Loads/Stores have to wait until any
uncompleted Stores/Loads sharing the same
effective address that precede that
instruction in program order complete

• To detect these hazards, we need to know
the effective address of any earlier memory
operation

• Solution: perform the EA calculations in
program order

127

Computing EAs in Program Order

• E.g. Consider a load
• When the load completes EA calculation,

check the address fields of all the active
store buffers

• If the load address matches any active
store buffer entry, then do not send the
load to the load buffer until the conflicting
store completes

• Stores are similar except must check both
load and store buffers

128

Review Tomasulo
• Reservations stations: implicit register renaming to

larger set of registers + buffering source operands
– Prevents registers as bottleneck
– Avoids WAR, WAW hazards
– Allows loop unrolling in HW

• Not limited to basic blocks
(integer units gets ahead, beyond branches)

• Today, helps cache misses as well
– Don’t stall for L1 Data cache miss (insufficient ILP for L2 miss?)

• Lasting Contributions
– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Pentium III, 4; PowerPC
604; MIPS R10000; HP-PA 8000; Alpha 21264

129

Speculation

130

Dynamic Scheduling with Hardware
Speculation

• What is speculation? (or speculative
execution)

• Let’s consider dynamic scheduling (Tomasulo)
with hardware branch prediction

• Make a branch prediction and execute the
program as if the guess was correct

– The speculatively executed sequence of instructions
probably includes other branches (which need to be
predicted).

– This is especially true in multiple-issue processors
(possibly one branch per clock cycle)

• Need the ability to undo the effects of an
incorrectly speculated sequence

131

Dynamic Scheduling with Hardware
Speculation

• Dynamic scheduling without speculation only
partially overlaps basic blocks

– It requires that a branch be resolved before executing
instructions in the successor basic block

• Speculation allows us to overcome control
dependencies (data flow execution)

• To implement speculation we will modify
Tomasulo’s algorithm

132

Hardware Speculation

• What is needed to speculatively execute a
stream of instructions?

• We must avoid updating the state of the
processor until we know for sure that an
instruction should have been executed (we
then say that it is no longer speculative)

• Registers must not be written until an
instruction is no longer speculative

– Rely on forwarding results among instructions
– The values forwarded might not be correct.

133

Instruction Commit

• When we finally know that an instruction is
no longer speculative then we allow it to
write to the register file or memory

• This extra pipeline stage is called
instruction commit

• Key idea: allow instructions to execute out-
of-order but to commit in-order

– Need to prevent any irrecoverable action (state
update, or exception) until the instruction commits

• Instructions may finish execution
considerably before they are ready to
commit

134

Reorder Buffer

• Need a reorder buffer to hold the results
of instructions that have finished execution
but have not yet commited

• The ROB also passes results between
instructions

– Register file is updated only when the instruction
commits

– Takes over the role of register renaming from the
reservation stations (still need them as buffers
between instruction issue and execution)

– ROB performs the same functionality as the store
buffers and it replaces them

135

136

Four Steps of Speculative Tomasulo
Algorithm

1. Issue—get instruction from Op Queue
– If reservation station and reorder buffer slot free, issue

instr & send operands & reorder buffer no. for destination
2. Execution—operate on operands (EX)

– When both operands ready then execute; if not ready,
watch CDB for result; when both in reservation station,
execute; checks RAW

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result
When instr. at head of reorder buffer & result present,
update register with result (or store to memory) and remove
instr from reorder buffer. Mispredicted branch flushes
reorder buffer

137

Reorder Buffer
Entry Busy Instruction State Dest Value
1 no L.D. F6,34(R2) commit F6 Mem[34+Regs[R2]]
2 yes MUL.D F0,F6,F4 Write result F0 #1 x Regs[F4]
3 yes DIV.D F10,F0,F6 Execute F10

ROB

Reservation stations
Name Busy Op Vj Vk Qj Qk Dest A
Mult1 no MUL.D Mem[34+Regs[R2]] Regs[F4] #2
Mult2 yes DIV.D Mem[34+Regs[R2]] #2 #3

Field F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

no

Reorder # 2 3

Busy yes no no no no no no no no yes

FP Register Status

138

What about Precise Interrupts?

• Tomasulo had:

In-order issue, out-of-order execution, and
out-of-order completion

• Need to “fix” the out-of-order completion
aspect so that we can find precise
breakpoint in instruction stream.

139

Relationship between precise
interrupts and specultation:

• Speculation is a form of guessing.
• Important for branch prediction:

– Need to “take our best shot” at predicting branch direction.
• If we speculate and are wrong, need to back up and

restart execution to point at which we predicted
incorrectly:

– Need to “fix” the out-of-order completion aspect so that we can
find precise breakpoint in instruction stream.

• What about precise exceptions?
– Need to “fix” the out-of-order completion aspect so that we can

find precise breakpoint in instruction stream.

• Technique for both precise interrupts/exceptions
and speculation: in-order completion or commit

140

141

Multiple-Issue Processors

142

Getting CPI < 1:
Issuing Multiple Instructions/Cycle

• Basic idea: parallel pipelines.
– Allow the fetching, issuing, and completion of more than one

instruction every clock cycle

• Superscalar: varying no. instructions/cycle (1 to 8),
scheduled by compiler or by HW (Tomasulo)

– IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium III/4

• Very Long Instruction Words (VLIW):
fixed number of instructions (4-16) scheduled by
the compiler; put ops into wide templates (TBD)

– Intel Architecture-64 (IA-64) 64-bit address
» Renamed: “Explicitly Parallel Instruction Computer (EPIC)”

– Will discuss in next chapter

143

Multiple-Issue Processors
Common
Name

Issue
Structure

Hazard
detection

Scheduling Distinguishing
Characteristic

Examples

Superscalar
(static)

Dynamic Hardware Static In-order
execution

MIPS, ARM
(mainly
embedded)

Superscalar
(dynamic)

Dynamic Hardware Dynamic Some out-of-
order
execution (no
speculation)

none
presently

Superscalar
(speculative)

Dynamic Hardware Dynamic with
speculation

Out-of-order
execution with
speculation

Pentium 4,
MIPS R12K,
IBM Power
5

VLIW Static Mostly
Software

Static All hazards
determined
and indicated
by compiler
(often
implicitly)

C6X

EPIC Mostly static Mostly
software

Mostly static Explicit
dependences
marked by
compiler

Itanium

144

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Superscalar MIPS: 2 instructions, 1 FP & 1 integer
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot

145

Remember the Unrolled Loop…

1 Loop:L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D F4,0(R1)
10 S.D F8,-8(R1)
11 DADDUI R1,R1,#-32
12 S.D F12,-16(R1)
13 BNE R1,R2,LOOP
14 S.D F16,8(R1) ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

146

• Consider a simple statically scheduled 2-issue MIPS

2.4 cc per iteration

147

Multiple Issue Issues

• issue packet: group of instructions from fetch unit that
could potentially issue in 1 clock

– If instruction causes structural hazard or a data hazard either due
to earlier instruction in execution or to earlier instruction in issue
packet, then instruction does not issue

– 0 to N instruction issues per clock cycle, for N-issue

• Performing issue checks in 1 cycle could limit clock cycle
time: O(n2-n) comparisons

– => issue stage usually split and pipelined
– 1st stage decides how many instructions from within this packet can

issue, 2nd stage examines hazards among selected instructions and
those already been issued

– => higher branch penalties => prediction accuracy important
• While Integer/FP split is simple for the HW, get CPI of

0.5 only for programs with:
– Exactly 50% FP operations AND No hazards

148

Static Multiple Issue: VLIW

• Recall superscalar multiple-issue processors:
– Decide how many instructions to issue on-the-fly

• Statically scheduled superscalar:
– HW to check for dependencies between instructions in

a packet and between instructions in a packet and ones
already in the pipeline

• What if we do the dependence checking in
the compiler?

– Format an instruction packet with either no
dependencies or at least indicate if they are present

– Simpler hardware

149

VLIW

• Very long instruction word (VLIW)
• Idea has been around for a long time
• 64 to 128 bit packets
• Drawback: they can be inflexible.

– Requires recompilation for different versions of the
hardware

• Latest versions use software to assist
hardware decisions (EPIC IA-64)

150

The VLIW Idea

• Multiple, independent FUs
• Find independent operations and package

them together into a very long instruction
word

• Eliminates the expensive hardware that does
this in a superscalar

• Superscalar processors are especially
expensive for wide issue widths (e.g > 4) so
VLIW machines tend to focus on issue
widths of > 4

151

VLIW

• E.g. 5-issue VLIW
– 1 integer (incl. branch)
– 2 FP
– 2 memory ref.

• Code must have enough parallelism to fill
the operation slots and keep the FUs busy

• Find this parallelism by loop unrolling and
scheduling

152

VLIW Example

•9 cycles

•23 operations

•2.5 operations / cycle

•Efficiency (percent of available slots used) = 60%

•Large number of registers used !

153

VLIW Issues

• Increased code size
– Need to aggressively unroll loops
– Waste bits whenever instructions are not full
– Use clever encoding or compression

• Limitations of lock-step operation
– No hazard detection h/w
– A stall in one FU must stall the whole processor (can’t predict

cache stalls)
– Recent processors relax this and use h/w to allow

unsynchronized execution
• Binary code compatibility

– Different pipeline organizations require different code (i.e.
more FUs)

– One solution: object code translation (Crusoe: rapidly
developing)

– Another solution: relax this approach (IA-64)

154

155

12

156

High Performance Instruction
Delivery

• Delivering instructions becomes bottleneck,
especially in multiple-issue processors

• Have to go beyond simple branch prediction
• Classic 5-stage pipeline: branch target

address and branch direction (outcome) are
known early (in ID)

– 1 cycle branch delay
• Predictors don’t give much benefit for this

pipeline unless they can give the prediction
in the IF stage

• Seems impossible: don’t even know the
instruction yet!

157

Branch Target Buffer

•Table look up can be done in hardware for small tables
• Usually, only store predicted taken branches in BTB

158

Branch Target Buffer

159

Branch Folding

• Next step in this idea is to store the target
instruction (instead of just it’s address)

• Works perfectly for jumps (unconditional
branches) – eliminates them completely
(negative penalty!)

160

Integrated Instruction Fetch Units

• Fetching instructions becomes the
bottleneck in multiple-issue processors

• Integrated instruction fetch/prediction unit
• Instruction prefetch

– Fetch ahead several instructions (Chapter 5)

161

Return Address Predictors

• For the procedure call instruction, the
return PC is typically stored in a stack in
memory

• Instead of loading the return address from
memory, some processors provide for a
small buffer of the 8-16 most recent
return addresses

• Just the knowledge of the PC of a return
instruction provides the return address
directly without decoding.

162

Advanced Software
Approaches

(Appendix G.1,G.2,G.3)
Omit material in G.3 after

software pipelining

163

Advanced Compiler Support

• We will study techniques used by modern
compilers such as gcc

• Dependencies: true and name
• This concept also applies to high-level code
• Compilers can detect parallelism in high-

level code that hardware would be blind to

for (i = 1000; i > 0;i=i-1)
x[i] = x[i] + s

164

Loop-Carried Dependencies

for (i = 1000; i > 0;i=i-1)
x[i] = x[i] + s

• If data accesses in an iteration depend on
data values produced in earlier iterations we
say there is a loop-carried dependence

• This is a parallel loop since there are no
loop-carried dependencies.

– Except for the “induction variable” i, but this can be
recognized and eliminated (e.g. loop unrolling)

165

Detecting and Exposing Loop-Level
Parallelism

• Inspect the code to detect name and data
dependencies

• Name dependencies can be eliminated by
using more storage (“software renaming”)

– Left with a chain of data dependencies

• If the data dependency chain can be
broken, then the loop has some parallelism

• If all data dependencies are within one
iteration, the loop is parallel

166

Loop-Carried Dependencies

• Dependencies can exist between statements in a
block or across blocks

• Example: recurrences
– A variable is defined based on the value of that variable in an

earlier iteration

e.g.

for (i=0;i<=100;++i)
y[i] = y[i-5] + y[i]

Carries a dependency with a dependence distance of 5

167

Finding Dependencies in Loops

• Need to analyze memory references to look
for ones that refer to the same addresses

• Difficult in the general case

e.g. X[Y[i]]

168

Finding Dependencies in Loops

• Consider finding dependencies in the case
when the array indices are “affine”

• An affine index has the form ai + b where i
is the loop index and a and b are constants

• To detect a dependence, we need to
determine if two affine array indices are
equal. i.e

ai + b = cj + d

169

GCD Test

• A sufficient test to test for the absence of
a dependency is the GCD test:

• for references ai + b and cj + d, if a
loop dependency exists, then GCD(c,a)
divides (d-b)

– x divides y if y/x is an integer and there is no
remainder

• Therefore, do the GCD test. If GCD(c,a)
does not divide d-b then there is no
dependency.

– However, the case exists where GCD(c,a) divides d-b
and there is still no dependency. (because the loop
bounds are not considered)

170

Examples of GCD Test

for(i=1;i<=100;++1)
x[2i+3] = x[2i] + 1.0

• GCD(2,2) does not divide -3
– No dependency is possible

for(i=1;i<=100;++1)
x[2i+3] = x[2i+1] + 1.0

• 2 divides -2
– dependency is possible

• In general, deciding if a dependency definitely exists
requires an algorithm with an exponential number of steps
(“NP-complete”) and is not practical

– A few important sub cases are implemented in modern compilers

171

• In addition to detecting the presence of
dependencies, compilers want to classify the type of
dependencies

• E.g. Find the dependencies in:

for(i=1;i<=100;i=i+1){
Y[i] = X[i] / c /* S1 */
X[i] = X[i] + c /* S2 */
Z[i] = Y[i] + c /* S3 */
Y[i] = c – Y[i] /* S4 */

}

Classifying Dependencies

True dependence

Antidependence

Output dependence

172

Example cont’d

for (i=1;i<100;i=i+1){
/* Y renamed to T to remove o.d. */
T[i] = X[i] / c;
/* X renamed to U to remove a.d. */
U[i] = X[i] + c;
/* Y renamed to T to remove a.d. */
Z[i] = T[i] + c;
Y[i] = c – T[i];

}

• Second statement is now independent
• Third and fourth only dependent on first

173

Compiler Loop-Level Transformations
• Transform this loop to make it parallel

for (i=1; i < 100; i++) {
a[i] = b[i] + c[i]; /* S1 */
b[i] = a[i] + d[i]; /* S2 */
a[i+1] = a[i] + e[i]; /* S3 */

}

174

for (i=1; i < 100; i++) {
a[i] = b[i] + c[i]; /* S1 */
b[i] = a[i] + d[i]; /* S2 */
a[i+1] = a[i] + e[i]; /* S3 */

}

Dependence Analysis

Output dependency
(loop-carried)

Antidependency
(not loop-carried)

true data dependency
(not loop-carried)

true data dependency
(loop-carried)

175

Dependence Analysis

a[1] = b[1] + c[1]; /* S1 */
b[1] = a[1] + d[1]; /* S2 */
a[2] = a[1] + e[1]; /* S3 */
a[2] = b[2] + c[2]; /* S1 */
b[2] = a[2] + d[2]; /* S2 */
a[3] = a[2] + e[2]; /* S3 */
a[3] = b[3] + c[3]; /* S1 */
b[3] = a[3] + d[3]; /* S2 */
a[4] = a[3] + e[3]; /* S3 */

…

• S3 does no useful work as its result is
overwritten by S1 (except on last iteration)

176

Remove S3

for (i=1; i < 100; i++) {
a[i] = b[i] + c[i]; /* S1 */
U[i] = a[i] + d[i]; /* S2 */

}
a[100] = a[99] + e[99];

• Remove antidependence by software
renaming

• No loop carried dependencies (parallel loop)

177

Another Example of LLP

for (i=1; i < 100; i++) {
a[i] = a[i] + b[i]; /* S1 */
b[i+1] = c[i] + d[i]; /* S2 */

}

• No dependence from S1 to S2
• Can this loop be made parallel?
• No cycles in the dependencies, so yes!

True Dep (loop carried)

178

Transformed Parallel Loop

a[1] = a[1] + b[1]
for (i=1; i <= 99; i++) {
b[i+1] = c[i] + d[i];
a[i+1] = a[i+1] + b[i+1];
}
b[101] = c[100] + d[100]

179

Algebraic Optimization of
Recurrences

• E.g. sum = sum + x;

• Unroll a loop with this recurrence 5 times
sum = sum + x1 + x2 + x3 + x4 + x5;
– 5 dependent operations

• Algebraic optimization

sum = ((sum + x1) + (x2 + x3)) + (x4 + x5)

– 3 dependent operations

180

Arithmetic Techniques

• Transformations based on associative and
commutative properties of arithmetic

– not true for limited range and precision, so be careful…
– Compilers usually will not do these unless explicitly

enabled

181

Back Substitution

• E.g. replace

DADDUI R1,R2,#4 /* a = b + 4 */
DADDUI R1,R1,#4 /* a = a + 4 */

with

DADDUI R1,R2,#8 /* a = b + 8 */

182

Tree Height Reduction

183

Software Pipelining

• The general idea of these optimizations is
to uncover long sequences of statements
without control statements

• Reorganize loops to interleave instructions
from different iterations

– This is the software counterpart to what Tomasulo’s
algorithm does in hardware

• Dependent instructions within a single loop
iteration are then separated from one
another by an entire loop body

– Increases possibilities of scheduling without stalls

184

Software Pipelining

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

185

Software Pipelining Example

Loop: L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)
DADDUI R1,R1,#-8
BNE R1,R2,LOOP

• 10 cycles

186

Step 1: Symbolic Loop Unrolling

ITER i L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

ITER i+1 L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

ITER i+2 L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

187

Step 2: Select Instructions from
Different Iterations

ITER i L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

ITER i+1 L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

ITER i+2 L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

188

Step 3. Combine into loop and add
init and cleanup code

INIT CODE

Loop: S.D. F4,16(R1) ;stores into M[i]
ADD.D F4,F0,F2 ;adds to M[i-1]
L.D F0,0(R1) ;loads M[i-2]
DADDUI R1,R1,#-8
BNE R1,R2,LOOP

CLEAN UP CODE

• 5 clock cycles (assuming DAADUI scheduled before the
ADD.D and the L.D is scheduled in the branch delay slot)

189

Software Pipelining

• Advantage: yields shorter code than loop
unrolling and uses fewer registers

• Software pipelining is crucial for VLIW
processors

– The above example could be compiled into one
instruction

• Often, both software pipelining and loop
unrolling are used

	ECSE 425 – Topic 4
	Instruction Level Parallelism
	Recall from Pipelining Review
	Instruction-Level Parallelism (ILP)
	Data Dependence and Hazards
	Data Dependence and Hazards
	Name Dependence #1: �Anti-dependence
	Name Dependence #2: � Output dependence
	ILP and Data Hazards
	Control Dependencies
	Control Dependence Ignored
	Exception Behavior
	Data Flow
	Basic Compiler Scheduling
	Basic Compiler Scheduling
	Basic Compiler Scheduling
	Loop Example
	Loop Example
	Loop Example
	Loop Example
	Loop Example
	Loop Unrolling
	Unroll Loop Four Times (straightforward way)
	Textbook example
	Unrolled Loop Detail
	Unrolled Loop That Minimizes Stalls
	Compiler Perspectives on Code Movement
	Where are the name dependencies?
	Where are the name dependencies?
	Compiler Perspectives on Code Movement
	Steps Compiler Performed to Unroll
	Drawbacks
	Branch Prediction
	Looking Ahead…
	Case for Branch Prediction when �Issue N instructions per clock cycle
	Static Branch Prediction
	Static Branch Prediction Strategies
	Static Branch Prediction
	The case for dynamic branch prediction
	Dynamic Branch Prediction
	7 Branch Prediction Schemes
	Dynamic Branch Prediction
	1-bit Predictors
	Example
	1-bit predictors
	2-bit predictors
	Examples
	2-Bit Branch Prediction
	Counter Implementation
	Accuracy of 2-bit predictors
	Correlating Branch Predictors	
	Correlating Branch Predictors
	Example without Correlation
	Simple Correlating Predictor
	Correlating Branches
	Accuracy of Different Schemes�
	BHT Accuracy
	Tournament Predictors
	Tournament Predictor in Alpha 21264
	% of predictions from local predictor in Tournament Prediction Scheme
	Accuracy of Branch Prediction
	Accuracy v. Size (SPEC89)
	Dynamic Branch Prediction Summary
	Advantages of Dynamic Scheduling
	HW Schemes: Instruction Parallelism
	Dynamic Scheduling Step 1
	A Dynamic Algorithm: �Tomasulo’s Algorithm
	Tomasulo Algorithm
	Tomasulo Organization
	Dynamic Scheduling
	Reservation Station Components
	Three Stages of Tomasulo Algorithm
	Tomasulo Example
	Tomasulo Example Cycle 1
	Tomasulo Example Cycle 2
	Tomasulo Example Cycle 3
	Tomasulo Example Cycle 4
	Tomasulo Example Cycle 5
	Tomasulo Example Cycle 6
	Tomasulo Example Cycle 7
	Tomasulo Example Cycle 8
	Tomasulo Example Cycle 9
	Tomasulo Example Cycle 10
	Tomasulo Example Cycle 11
	Tomasulo Example Cycle 12
	Tomasulo Example Cycle 13
	Tomasulo Example Cycle 14
	Tomasulo Example Cycle 15
	Tomasulo Example Cycle 16
	Faster than light computation�(skip a couple of cycles)
	Tomasulo Example Cycle 55
	Tomasulo Example Cycle 56
	Tomasulo Example Cycle 57
	Tomasulo Drawbacks
	Tomasulo Loop Example
	Loop Example
	Loop Example Cycle 1
	Loop Example Cycle 2
	Loop Example Cycle 3
	Loop Example Cycle 4
	Loop Example Cycle 5
	Loop Example Cycle 6
	Loop Example Cycle 7
	Loop Example Cycle 8
	Loop Example Cycle 9
	Loop Example Cycle 10
	Loop Example Cycle 11
	Loop Example Cycle 12
	Loop Example Cycle 13
	Loop Example Cycle 14
	Loop Example Cycle 15
	Loop Example Cycle 16
	Loop Example Cycle 17
	Loop Example Cycle 18
	Loop Example Cycle 19
	Loop Example Cycle 20
	Why can Tomasulo overlap iterations of loops?
	Tomasulo’s scheme offers 2 major advantages
	Dynamic Memory Disambiguation
	Dynamic Memory Disambiguation
	Dynamic Memory Disambiguation
	Computing EAs in Program Order
	Review Tomasulo
	Dynamic Scheduling with Hardware Speculation
	Dynamic Scheduling with Hardware Speculation
	Hardware Speculation
	Instruction Commit
	Reorder Buffer
	Four Steps of Speculative Tomasulo Algorithm
	Reorder Buffer
	What about Precise Interrupts?
	Relationship between precise interrupts and specultation:
	Getting CPI < 1: �Issuing Multiple Instructions/Cycle
	Multiple-Issue Processors
	Getting CPI < 1: Issuing�Multiple Instructions/Cycle
	Remember the Unrolled Loop…
	Multiple Issue Issues
	Static Multiple Issue: VLIW
	VLIW
	The VLIW Idea
	VLIW
	VLIW Example
	VLIW Issues
	High Performance Instruction Delivery
	Branch Target Buffer
	Branch Target Buffer
	Branch Folding
	Integrated Instruction Fetch Units
	Return Address Predictors
	Advanced Compiler Support
	Loop-Carried Dependencies
	Detecting and Exposing Loop-Level Parallelism
	Loop-Carried Dependencies
	Finding Dependencies in Loops
	Finding Dependencies in Loops
	GCD Test
	Examples of GCD Test
	Classifying Dependencies
	Example cont’d
	Compiler Loop-Level Transformations
	Dependence Analysis
	Dependence Analysis
	Remove S3
	Another Example of LLP
	Transformed Parallel Loop
	Algebraic Optimization of Recurrences
	Arithmetic Techniques
	Back Substitution
	Tree Height Reduction
	Software Pipelining
	Software Pipelining
	Software Pipelining Example
	Step 1: Symbolic Loop Unrolling
	Step 2: Select Instructions from Different Iterations
	Step 3. Combine into loop and add init and cleanup code
	Software Pipelining

