ECSE425 Computer Architecture and Organization
Assignment 1 Solutions

Linda Wang
Fall 2008

Question 1: 1C Cost Model (10%)

When o = 2, the die area is g x lem? = 1.5cm?. Other parameters given in the question are:
WaferDiameter = 21cm?, DefectDensity = 0.6 per cm?, and WaferYield = 1. Thedieyield isthen

06x15

—2
)) — 0.4756,

DieYield =1 x (1—1—

and the number of dies per wafer is

1x 105 mx21
25 2x15

So when o, = 2, the number of working chipswe can get is | 192.82 x 0.4756] = 91.
When oo = 4, the die area is?1 x 1cm? = 0.75cm?. Calculationsfor the die yield and number of
dies per wafer use the same formulas as before. We get

DiesPerWafer = = 192.82.

DieYield=0.6528 and DiesPerWafer = 407.95.
So when o = 4, the number of working chips we can get is |407.95 x 0.6528| = 266.

Question 2: Amdahl’sLaw (15%)

Approach #1: Use CPU time equations. The equations for the CPU times before and after adding
the enhancements are

CPUtimeg 4 = 1Cqig < CPlgg X CCqlgs
CPUtimenaw = ICnhaw < CPlnaew x CCnaw.-

We see from the question that
ICold =1Cnew and CCq g = CCnew,

so we only need to find the old and new CPI’s in order to determine the speedup. The CPI’'s of
each type of instruction are:

Type Frequency CPlqq CPlnew

Load 0.25 1+050x1=15 1+025x1=125
Branch 0.10 2 1+0.35x1=135
Other 0.65 1 1

So the overdl CPl’'s before and after enhancement are

CPlgg=15x0.25+2x0.10+1x 0.65= 1.225,
CPlnew = 1.25%x0.25+1.35x 0.10+ 1 x 0.65 = 1.0975.
The speedup is
CPUtimeg| 4 1225

eedup — — = _
PP = CPUtimenaw ~ 1.0975

=1.116.

Approach #2: Use Amdahl’s Law. Let f_ denote the fraction of CPU time that load instruc-
tions take up before enhancement. Similarly, let fg denote the fraction of CPU time that branch
instructions take up before enhancement. We see from the previous cal cul ations that

1.5x0.25 2x0.10

Also, the speedups of loads and branches after the enhancement are

= 0.1633.

5 2
Speedup, = 125~ =12 and speedupg = 13~ = 1.4815.
So using Amdahl’s Law, the overall speedup is
Speedup = 11 1fL fB =1.116.
(1= 1~ o) *+ Syeedup, * speedup,

Question 3: CPI (15%)
(a) The CPI'sfor theinstructions are

CPIALU =1+0.06x40= 34,

CP'Ioad =2+40.06 x 40+ 0.10 x 40= 8.4,
CPlgore = 1+ 0.06 x 40+ 0.10 x 40 = 7.4,
CPI branch = 240.06 x 40=4.4.

(b) The CPI for the overall machineis
CPl = 0.4 x CPlp| | +0.3x CPljggq + 0.1 x CPlgtore + 0.2 x CPlpranch = 5.5.
(c) Theideal CPI without cache missesis
CPligegd =04%x1+03x2+0.1x14+02x2=15.

So the machine without any cache missesis 2 e 5 = 3.67 times faster.

2

Question 4. Tradeoffs (15%)

The equations for the CPU time before and after adding the enhancement are

CPUtimeg g = 1Cqig < CPlgg X CCqlgs
CPUtimenaw = ICnew < CPInaw x CCnaw.

In order for the enhancement to be worthwhile, we must have CPUtimeg 4 > CPUtimenew. We
know the following from the question:

CChew =XxCCqg and IChew = ICq)g-

Also, from the previous question, we know that the CPI before enhancement is CPl 5y = 5.5. The
goal isto find the maximum value of x that would make the enhancement worthwhile.

After the enhancement, the new instructions replaced half of the branches (while the total
instruction count remains the same). So the new instruction mix and the CPI for each instruction
type are:

Type Frequency Clock Cycles CPI
ALU ops 0.40 1 34
L oads 0.30 2 8.4
Stores 0.10 1 7.4
Branches 0.10 2 4.4
New Instr 0.10 1 1+0.06x40=34

The new overall CPl isthen
CPlnew =0.40x 3.4+0.30x84+0.10x 744+ 0.10x 4.4+ 0.10x 3.4=5.4.
In order to have improvement, we must have

1Co1d X CPloid X CCig > 1Cq g X CPlnaw x X x CCqy|q
55 > 54xXx
x < 1.019.

Therefore the clock cycle time cannot increase more than 1.019 times.

Question 5: More Tradeoffs (15%)
(a) The question states that CPl;ygq = 2. Therea CPI is
CPlygg = 2+ 0.40 % 0.02 x 30+ 0.025 x 30 = 2.99.

The ideal and the real machines have the same IC and CC values. So the speedup of the ideal
machineis simply 23° = 1.495.

(b) The CPI before enhancement is CPl)4 = 2.99. Furthermore, we know that
IChew = (1—0.30 x 0.4O)|C0|d =0.88ICyg and CCpew = 1.05CCgg.

The fraction of loads/stores after the enhancement is 273x24% — 0.318. Therefore the CPI after
enhancement is
CPlnay =2+0.318 x 0.02 x 30+ 0.025 x 30 = 2.94.

So the speedup after enhancement is

CPUtimegg 1Colg % 2.99 x CCqig 11
CPUtimenew 0.88ICq g x 294 x 1.05CCqq

Since this speedup is greater than one, the enhancement is worth being implemented.

Question 6: Performance (30%)

(a) Program listing
/***

* ECSE425 Assignment 1, Question 6

*
* NAME: progA.c

* BY: Linda Wang

* DATE: January 2004
*

***/

#include<stdlib.h>
#include<time.h>
#include<math.h>

#define N 4000
#define PI 3.1416

double a[N] [N];
int main ()
{
int i, J;
srand ((unsigned) time (NULL)) ;
/* £ill a with values in range [-PI, +PI] */
for (i=0; 1i<N; i++)
for (j=0; j<N; Jj++)

alil [J] = (2.0*rand()/RAND _MAX - 1.0) * PI;

/* replace elements in a by their cosines */

4

for (i=0; i<N; i++)
for (j=0; j<N; Jj++)
alil [§j] = cos(alil [j]);

return O;

}

/***

* ECSE425 Assignment 1, Question 6

*
* NAME: progB.c

* BY: Linda Wang

* DATE: January 2004
*

***/

#include<stdlib.h>
#include<time.h>
#include<math.h>

#define N 500
#define PI 3.1416

double a[N] [N], bI[N] [N], cI[N] [N];

int main ()

{
double temp;
int i, j, k;

srand ((unsigned) time (NULL)) ;

/* £fill a and b with values in range [-PI,
for (i=0; 1i<N; i++) {
for (§=0; j<N; j++) {
alil [j] = (2.0*rand()/RAND_MAX - 1.0)
b[i] []] (2.0*rand () /RAND MAX - 1.0)
}
}

/* replace elements in a and by their cosines */

for (i=0; i<N; i++) {
for (j=0; F<N; j++) {
alil [J] = cos (alil [j1);
b[i] [j] = cos (b[il[j]);
}
}

+PI],

* PI;
* PI;

*/

/* take the transpose of b */
for (i=0; 1i<N; i++) {
for (§=0; j<(N-i); j++) {
temp = b[i] [j];
b[i] [J]1 = bl[j][i];
b[j] [i] = temp;
}
}

/* calculate ¢ = ab */
for (i=0; 1<N; i++)
for (§=0; J<N; j++)
for (k=0; k<N; k++)

c[i] [§]1 += alil k] * blk] []];

return O;

(b) Tabulated execution times

The programs were run under Cygwin release version 1.5.5-1 with gcc compiler version 3.2.

Table of CPU times in sec (N=4000 for progZA, N=500 for progB)

| progA noopt | progB noopt | progA opt | progB opt
Run # |-------------- e e e
| user system | user system | user system | user system
—————— e e e e il il
1 | 3.615 0.080 | 3.414 0.030 | 3.505 0.080 | 2.183 0.030
2 | 3.615 0.080 | 3.414 0.030 | 3.525 0.070 | 2.173 0.020
3 | 3.605 0.110 | 3.394 0.050 | 3.505 0.080 | 2.183 0.010
4 | 3.625 0.070 | 3.414 0.040 | 3.495 0.100 | 2.173 0.020
5 | 3.665 0.050 | 3.404 0.020 | 3.515 0.070 | 2.163 0.020
6 | 3.675 0.070 | 3.484 0.020 | 3.484 0.080 | 2.203 0.030
7 | 3.585 0.090 | 3.414 0.020 | 3.535 0.050 | 2.193 0.020
8 | 3.655 0.080 | 3.424 0.020 | 3.505 0.070 | 2.153 0.020
9 | 3.565 0.110 | 3.434 0.030 | 3.494 0.070 | 2.173 0.030
10 | 3.645 0.080 | 3.424 0.040 | 3.505 0.080 | 2.153 0.030
—————— B e e e Ml el
mean | 3.625 0.082 | 422 0.030 | 3.507 0.075 | 2.175 0.023
s.d. | 0.013 0.008 | 022 0.007 | 0.008 0.009 | 0.015 0.007

Optimization did not improve system CPU time nearly as much asit improved user CPU time.
This is because system CPU time is spent in the operating system, so it is not as dependent on
complier optimization.

(c) Performance comparison using weighted arithmetic means

On a machine without optimizating complier available, the weighted arithmetic mean of programs
A and B’suser CPU timesis

Wa X 3.625+ wp x 3.422,
where 1
3.422 3.625

So the weighted arithmetic mean is 3.520 sec. (The formulafor calculating the weightsison p. 37
of the textbook.)
On amachine with optimizating complier available, the weighted arithmetic mean of programs
A and B’suser CPU timesis
Wa x 3.507 +wpg x 2.175,

where
1 q 1
2.175 3.507

So the weighted arithmetic mean is 2.685 sec.

Comparing the two weighted arithmetic means, we can see that the speedup in using an opti-

mizing compiler is 3220 — 1.31.

(c) Perfor mance comparison using MFLOPSratings

To compute MFLOPS ratings, first we need to estimate the number of floating point operationsin
both programs (note that we are only counting floating point operations here, so integer operations
such as i ++ are not included):

Number of floating point operations
progA (N =4000) progB (N =500)

add/sub 16,000,000 125,500,000
mult/div 48,000,000 126,500,000
trig 16,000,000 500,000
total (native) 80,000,000 252,500,000
total (normalized) 336,000,000 635,500,000
The native MFLOPS ratings are
_ 80000000 + 252500000 e
M FLOPSnatlve, noopt = 36051342 x 1077 =47.18,
80000000 + 252500000 6
MFLOPS = 10"° =58.52.
OPShative, opt 350712475 0 =985

The normalized MFLOPS ratings are

336000000 + 635500000 6
336000000 + 635500000 _6

