
ECSE425 Computer Architecture and Organization
Assignment 1 Solutions

Linda Wang

 Fall 2008

Question 1: IC Cost Model (10%)

When α = 2, the die area is 3
2 × 1cm2 = 1.5cm2. Other parameters given in the question are:

WaferDiameter = 21cm2, DefectDensity = 0.6 per cm2, and WaferYield = 1. The die yield is then

DieYield = 1×
(

1+
0.6×1.5

2

)−2

= 0.4756,

and the number of dies per wafer is

DiesPerWafer =
π×10.52

2.5
− π×21√

2×1.5
= 192.82.

So when α = 2, the number of working chips we can get is �192.82×0.4756�= 91.
When α = 4, the die area is 3

4 ×1cm2 = 0.75cm2. Calculations for the die yield and number of
dies per wafer use the same formulas as before. We get

DieYield = 0.6528 and DiesPerWafer = 407.95.

So when α = 4, the number of working chips we can get is �407.95×0.6528�= 266.

Question 2: Amdahl’s Law (15%)

Approach #1: Use CPU time equations. The equations for the CPU times before and after adding
the enhancements are

CPUtimeold = ICold ×CPIold×CCold,

CPUtimenew = ICnew×CPInew×CCnew.

We see from the question that

ICold = ICnew and CCold = CCnew,

so we only need to find the old and new CPI’s in order to determine the speedup. The CPI’s of
each type of instruction are:

1

Type Frequency CPIold CPInew
Load 0.25 1+0.50×1 = 1.5 1+0.25×1 = 1.25
Branch 0.10 2 1+0.35×1 = 1.35
Other 0.65 1 1

So the overall CPI’s before and after enhancement are

CPIold = 1.5×0.25+2×0.10+1×0.65 = 1.225,

CPInew = 1.25×0.25+1.35×0.10+1×0.65 = 1.0975.

The speedup is

speedup =
CPUtimeold
CPUtimenew

=
1.225

1.0975
= 1.116.

Approach #2: Use Amdahl’s Law. Let fL denote the fraction of CPU time that load instruc-
tions take up before enhancement. Similarly, let fB denote the fraction of CPU time that branch
instructions take up before enhancement. We see from the previous calculations that

fL =
1.5×0.25

1.225
= 0.3061 and fB =

2×0.10
1.225

= 0.1633.

Also, the speedups of loads and branches after the enhancement are

speedupL =
1.5

1.25
= 1.2 and speedupB =

2
1.35

= 1.4815.

So using Amdahl’s Law, the overall speedup is

speedup =
1

(1− fL − fB)+ fL

speedupL
+ fB

speedupB

= 1.116.

Question 3: CPI (15%)

(a) The CPI’s for the instructions are

CPIALU = 1+0.06×40 = 3.4,

CPIload = 2+0.06×40+0.10×40 = 8.4,

CPIstore = 1+0.06×40+0.10×40 = 7.4,

CPIbranch = 2+0.06×40 = 4.4.

(b) The CPI for the overall machine is

CPI = 0.4×CPIALU +0.3×CPIload +0.1×CPIstore +0.2×CPIbranch = 5.5.

(c) The ideal CPI without cache misses is

CPIideal = 0.4×1+0.3×2+0.1×1+0.2×2 = 1.5.

So the machine without any cache misses is 5.5
1.5 = 3.67 times faster.

2

Question 4: Tradeoffs (15%)

The equations for the CPU time before and after adding the enhancement are

CPUtimeold = ICold×CPIold×CCold,

CPUtimenew = ICnew×CPInew×CCnew.

In order for the enhancement to be worthwhile, we must have CPUtimeold > CPUtimenew. We
know the following from the question:

CCnew = x×CCold and ICnew = ICold.

Also, from the previous question, we know that the CPI before enhancement is CPIold = 5.5. The
goal is to find the maximum value of x that would make the enhancement worthwhile.

After the enhancement, the new instructions replaced half of the branches (while the total
instruction count remains the same). So the new instruction mix and the CPI for each instruction
type are:

Type Frequency Clock Cycles CPI

ALU ops 0.40 1 3.4
Loads 0.30 2 8.4
Stores 0.10 1 7.4
Branches 0.10 2 4.4
New Instr 0.10 1 1+0.06×40 = 3.4

The new overall CPI is then

CPInew = 0.40×3.4+0.30×8.4+0.10×7.4+0.10×4.4+0.10×3.4 = 5.4.

In order to have improvement, we must have

ICold×CPIold×CCold > ICold×CPInew× x×CCold
5.5 > 5.4× x

x < 1.019.

Therefore the clock cycle time cannot increase more than 1.019 times.

Question 5: More Tradeoffs (15%)

(a) The question states that CPIideal = 2. The real CPI is

CPIreal = 2+0.40×0.02×30+0.025×30 = 2.99.

The ideal and the real machines have the same IC and CC values. So the speedup of the ideal
machine is simply 2.99

2 = 1.495.

3

(b) The CPI before enhancement is CPIold = 2.99. Furthermore, we know that

ICnew = (1−0.30×0.40)ICold = 0.88ICold and CCnew = 1.05CCold.

The fraction of loads/stores after the enhancement is 0.70×0.40
0.88 = 0.318. Therefore the CPI after

enhancement is
CPInew = 2+0.318×0.02×30+0.025×30 = 2.94.

So the speedup after enhancement is

CPUtimeold
CPUtimenew

=
ICold×2.99×CCold

0.88ICold×2.94×1.05CCold
= 1.1.

Since this speedup is greater than one, the enhancement is worth being implemented.

Question 6: Performance (30%)

(a) Program listing

/***
* ECSE425 Assignment 1, Question 6
*
* NAME: progA.c
* BY: Linda Wang
* DATE: January 2004
**/

#include<stdlib.h>
#include<time.h>
#include<math.h>

#define N 4000
#define PI 3.1416

double a[N][N];

int main ()
{
int i, j;

srand ((unsigned) time(NULL));

/* fill a with values in range [-PI, +PI] */
for (i=0; i<N; i++)
for (j=0; j<N; j++)
a[i][j] = (2.0*rand()/RAND_MAX - 1.0) * PI;

/* replace elements in a by their cosines */

4

for (i=0; i<N; i++)
for (j=0; j<N; j++)
a[i][j] = cos(a[i][j]);

return 0;
}

/***
* ECSE425 Assignment 1, Question 6
*
* NAME: progB.c
* BY: Linda Wang
* DATE: January 2004
**/

#include<stdlib.h>
#include<time.h>
#include<math.h>

#define N 500
#define PI 3.1416

double a[N][N], b[N][N], c[N][N];

int main ()
{
double temp;
int i, j, k;

srand ((unsigned) time(NULL));

/* fill a and b with values in range [-PI, +PI], */
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
a[i][j] = (2.0*rand()/RAND_MAX - 1.0) * PI;
b[i][j] = (2.0*rand()/RAND_MAX - 1.0) * PI;

}
}

/* replace elements in a and by their cosines */
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
a[i][j] = cos (a[i][j]);
b[i][j] = cos (b[i][j]);

}
}

5

/* take the transpose of b */
for (i=0; i<N; i++) {
for (j=0; j<(N-i); j++) {
temp = b[i][j];
b[i][j] = b[j][i];
b[j][i] = temp;

}
}

/* calculate c = ab */
for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
c[i][j] += a[i][k] * b[k][j];

return 0;
}

6

(b) Tabulated execution times

The programs were run under Cygwin release version 1.5.5-1 with gcc compiler version 3.2.

Table of CPU times in sec (N=4000 for progA, N=500 for progB)
--

| progA_noopt | progB_noopt | progA_opt | progB_opt
Run # |--------------+--------------+--------------+--------------

| user system | user system | user system | user system
------+--------------+--------------+--------------+--------------
1 | 3.615 0.080 | 3.414 0.030 | 3.505 0.080 | 2.183 0.030
2 | 3.615 0.080 | 3.414 0.030 | 3.525 0.070 | 2.173 0.020
3 | 3.605 0.110 | 3.394 0.050 | 3.505 0.080 | 2.183 0.010
4 | 3.625 0.070 | 3.414 0.040 | 3.495 0.100 | 2.173 0.020
5 | 3.665 0.050 | 3.404 0.020 | 3.515 0.070 | 2.163 0.020
6 | 3.675 0.070 | 3.484 0.020 | 3.484 0.080 | 2.203 0.030
7 | 3.585 0.090 | 3.414 0.020 | 3.535 0.050 | 2.193 0.020
8 | 3.655 0.080 | 3.424 0.020 | 3.505 0.070 | 2.153 0.020
9 | 3.565 0.110 | 3.434 0.030 | 3.494 0.070 | 2.173 0.030
10 | 3.645 0.080 | 3.424 0.040 | 3.505 0.080 | 2.153 0.030

------+--------------+--------------+--------------+--------------
mean | 3.625 0.082 | 3.422 0.030 | 3.507 0.075 | 2.175 0.023
s.d. | 0.013 0.008 | 0.022 0.007 | 0.008 0.009 | 0.015 0.007
--

Optimization did not improve system CPU time nearly as much as it improved user CPU time.
This is because system CPU time is spent in the operating system, so it is not as dependent on
complier optimization.

(c) Performance comparison using weighted arithmetic means

On a machine without optimizating complier available, the weighted arithmetic mean of programs
A and B’s user CPU times is

wA ×3.625+wB ×3.422,

where

wA =
1

1+ 3.625
3.422

= 0.486 and wB =
1

1+ 3.422
3.625

= 0.514.

So the weighted arithmetic mean is 3.520 sec. (The formula for calculating the weights is on p. 37
of the textbook.)

On a machine with optimizating complier available, the weighted arithmetic mean of programs
A and B’s user CPU times is

wA ×3.507+wB ×2.175,

where

wA =
1

1+ 3.507
2.175

= 0.383 and wB =
1

1+ 2.175
3.507

= 0.617.

So the weighted arithmetic mean is 2.685 sec.

7

Comparing the two weighted arithmetic means, we can see that the speedup in using an opti-
mizing compiler is 3.520

2.685 = 1.31.

(c) Performance comparison using MFLOPS ratings

To compute MFLOPS ratings, first we need to estimate the number of floating point operations in
both programs (note that we are only counting floating point operations here, so integer operations
such as i++ are not included):

Number of floating point operations
progA (N = 4000) progB (N = 500)

add/sub 16,000,000 125,500,000
mult/div 48,000,000 126,500,000
trig 16,000,000 500,000
total (native) 80,000,000 252,500,000
total (normalized) 336,000,000 635,500,000

The native MFLOPS ratings are

MFLOPSnative, noopt =
80000000+252500000

3.625+3.422
×10−6 = 47.18,

MFLOPSnative, opt =
80000000+252500000

3.507+2.175
×10−6 = 58.52.

The normalized MFLOPS ratings are

MFLOPSnormalized, noopt =
336000000+635500000

3.625+3.422
×10−6 = 137.86,

MFLOPSnormalized, opt =
336000000+635500000

3.507+2.175
×10−6 = 170.98.

8

