ECSE420 - Parallel Computing

Multi Thread Performance Analysis of a Brute-Force Sudoku Solver

Simon Foucher G07

Fall 2009

THE GAME

Sudoku is a popular puzzle game similar to crosswords, but using numbers. The Sudoku grid is a square, divided in subsquares containing as many elements as the length of the row of the main square. Which such a partition, every element in the Sudoku board has 3 constraints: row, column and sub square. The constraint stipulates that a number, ranging from 1 to the size of a subsquare, an only be places once in a row, a column and a sub square.

There are many strategies one can use to solve Sudoku puzzles, and solutions might not be unique, or might not even exist! The difficulty rating of a board is relative to the number of indices provided. A standard Sudoku board contains 81 places, and is subdivided into 9 subsquares each containing 9 elements.

APPROACH

When solved by a computer, one of the most complete approaches to solving a Sudoku is using brute force. This provides 2 advantages over algorithmic solvers: first, it can confirm if there are no solutions, and second, if there are many solutions, the computer can easily output a complete list of them. In this work we have developed a multi-threaded brute force Sudoku solver. To standardize the approach, the same board has been used throughout the development. The puzzle is rated as "Extremely difficult" and has been taken from:
http://en.wikipedia.org/wiki/Algorithmics_of_sudoku

```
| 1 * * | * * * | * * 2 |
| * 9 * | 4 * * | * 5 * |
| * * 6 | * * * | 7 * * |
| * 5 * | 9 * 3 | * * * |
| * * * | * 7 * | * * * |
| * * * | 8 5 * | * 4 * |
| 7 * * | * * * | 6 * * |
| * 3 * | * * 9 | * 8 * |
| * * 2 | * * * | * * * |
```

Figure 1: the Sudoku puzzle used for gathering the performance data.
The experiment will consist in repeatedly solving this puzzle using the same algorithm with a varying number of threads to observe the variation in performance obtained.

The algorithm uses recursive calls on a test-and-backtrack approach. All the cells of the board will be visited.

1. Upon arriving, if the cell is not empty, it is skipped. Otherwise, a temporary value is assigned from 1 to 9 . In figure 2 , we can observe that the first cell $(0,0)$ got skipped and that the value of ' 1 ' has been assigned to the next cell $(0,1)$
```
1 1 * | * * * | * * 2
| * 9* | 4** | * 5 * |
| * * 6 | * * * | 7 * * |
* 5 * | 9 * 3 | * * * |
| * * * | * 7 * | * * * 
|*** | 8 5* | * 4* |
--
| 7 * * | * * * | 6 * * |
| * 3 * | * * 9 | * 8 * |
| * * 2 | * * * | * * * |
```

Figure2: Testing the legality of a ' 1 ' at the position (0,1
2. Afterwards, a test is performed to see if the attempted value is allowed there. By scanning the 3 dimensions of neighbors, the new value is compared to all the elements contained in its row, its column and its sub square. If the same element is encountered, the next value is tested and the algorithm repeats the test. If all the values have been exhausted, the algorithm backtracks to the previous cell.
3. This process is repeated until the program finds an element that could potentially exist at that location

Figure 3: ' 3 ' is the first 'legal' value we can leave at position $(0,1)$ before moving on to the next position
4. Once this condition is satisfied, the function is recursively called to the next location. To optimize the software, when the function is called a second time, the first element it looks at is
the previous element incremented by 1. For example here, there since we just guessed ' 3 to be at location $(0,1)$, the algorithm will guess ' 4 ' the next location
5. Once the depth of the recursion reaches 81, we know that all the cells have been visited, so if no solution was found, we backtrack one cell and keep trying all the possibilities on that one by recalling the recursion.
6. This keeps happening until all the possibilities have been tried out. If no solution was bound in the mean time, an error message is printed on the board (for the purpose of this experiment, we know that there is a solution so it is always found sooner or later)

OPTIMIZING BRUTE FORCE

By definition, a brute force algorithm is the least optimal solution to a problem, but guarantees results. The time required to solve the puzzle greatly depends on where the search is conducted, and which elements are visited first. It is even possible, although unlikely to take $\mathrm{O}(1)$ time if the first try is the right answer.

It might have been tempting to try and optimize the solver by testing various starting positions and various start number, but this optimization would have only been valid for this particular puzzle. We felt that the best approach was to randomize the start location, as well as the start guess. In order to implement this, we used circular loops to scan the rows, columns and tested values. To keep track of how 'deep' we got in the algorithm, we incremented an index at every function call that made the function exit when it reached 81 (the maximum depth of the grid).

This approach also gives us great versatility with regards to multithreading environment. By starting at a random location, the solving function can be called by many threads and generate good 'far apart' starting states for each thread. This added feature gives the user to freely add threads without having to modify anything in the algorithm for the new threads to pick up a work load.

MULTI-THREADING AND SYNCHRONIZATION

Since the challenge is to test a very large possibility space, the use of parallel computing can greatly aid. For this particular problem, we used many threads to run a subset of the problem. Java was chosen as a platform because of its ease of implementation of multithreading environments. The main class takes care of creating threads, and every thread takes on a portion of the puzzle. As soon as one of them solves the problem, it prints out the solution and the time it took to solve it.

To handle synchronization, we used a global variable called 'finished'. When the main function starts, if sets 'finished' to false. As the threads try to solve the puzzle, they look at this variable and exit if it is true, otherwise continue to try and solve. As soon as a thread solves the puzzle, it sets the variable to true, which forces all the other threads out of their solving function. Meanwhile, in the main function, after all the threads have been initialized, the program falls into a while(!finished) loop. As soon as the barrier is crossed, we know that a thread has solved the puzzle, so all the threads are destroyed.

EXPERIMENT

Since, in general, we do not have a priori information on the best starting location for a brute force scan; we felt the need to test various scenarios to make sure that the data collected was a good reflection of reality. Therefore, in order to gather a comparative idea of various times to solve, rather than the particular value for this puzzle, many runs of the same test were performed. We also tested for many different numbers of threads.

The tests were conducted on an Inter Dual core processor @1.4GHz, managed by the Windows 7 platform.

RESULTS

First we ran some tests on a single thread to see how long it took on average to solve the puzzle. Here are the results we found.

Single Thread (ave:290ms)

Figure 4: Individual results of a single threaded application solving the puzzle. On the x axis, we can see how long it took, and on the right, we can see the trial number.

These results justified the assumption made that the time it takes to fully solve a Sudoku puzzle on a brute force approach is greatly relative to the starting location. We can observe a few instances where it took 3-4 full seconds to solve, these represents where statistically we picked the worst possible starting point and the solution was one of the last ones we tested. As the other extreme, we can observe some instances where the puzzle was solved in a matter of milliseconds. These instances occur when the solution is one of the first ones to be found.

Afterwards, we ran the application with a varying number of threads working on solving the puzzle, from 1 to 10 , and got the following results, which are similar to the original results we got. For any given number of threads, 500 tests were performed to ensure that the data gathered was statistically significant. (The number of different starting positions is 9×9 with 9 possible starting values, giving 729 possible initial states for the system.)

Figure 5: Combined results of all the tests performed with a varying number of threads. On the x axis, we can observe the time to solve, in ms.

Figure 6: Average time to solve when using a variation of number of threads. On the x axis we can see the number of threads used, and on the y axis we can see the average time to solve in ms.

These are interesting results, which require a few explanations. First, as expected by running the code on a dual core processor, we can see that there is a sharp decrease in the average time required to solve the puzzle when going from a single threaded application to using 2 threads. This can intuitively be explained because of the fact that 2 processors can easily handle 2 threads without too much overhead.

When adding a $3^{\text {rd }}$ and $4^{\text {th }}$ thread, we can see that the average time to solve increased almost as far up as the original time it took for a single threaded application. This is caused by the added overhead brought by managing the extra threads without bringing too many benefits.

Afterwards, we observe a gradual decrease in the time to solve as the number of processors keeps increasing, until it bottoms out at 100 ms . This continuous decrease is most probably due to the random nature of the starting position and starting number. As we can observe in figure 4, when comparing the performance we got from different starting locations, the data is mostly gathered in very low solving times (<200ms), with a few high peaks (>1s), which drive the average up. Since the vast majority of the starting positions can yield a fast answer on a brute force approach, by adding threads starting at random locations, we increase the chance that at least one of them starts in that location. If this is the case, as soon as this thread reaches the solution, all the other ones will be stopped anyways.

Finally, as the number of threads keeps increasing, we can observe a slight increase in the average time to solve. This average shows a weak asymptote at around 100 ms , with a slight positive slope, indicating that the added threads do induce some extra overhead.

The code consists of a single java file and was developed using the IDE Eclipse, and has been inspired by an algorithm proposed by Bob Carpenter on the following web
page: http://www.colloquial.com/games/sudoku/java sudoku.html.

```
package sudokuSolver;
import java.util.Random;
// Class taking care of solving the Sudoku
public class solver extends Thread {
    static boolean finished;
    // This method is called when a thread starts running
    // It will call the recursive solver and output the data
    public void run() {
                int i, j, value;
randomly selected
                long start, end;
                Random generator = new Random(System.currentTimeMillis());
                //printBoard(board)
                    board = setUpBoard(1);
                    = generator.nextInt(8)
                    j = generator.nextInt(8);
                    value = generator.nextInt(8)+1;
                    start = System.currentTimeMillis();
                    f (solve(i, j, board, 0, value)) ; // solves in place
                                    //printBoard(board);
                    else
                                    System.out.println("No answers for this puzzle!");
                                    end = System.currentTimeMillis();
                                    f(!finished){
                                    finished = true;
                                    System.out.print((end - start)+"\n");
                    }
                            }
public static void main(String[] args) \{
```

 \(\operatorname{int}[][]\) board = setUpBoard(1); \(\quad / /\) Set up the board (option to select different puzzles)
    ```
// }1\mathrm{ threads thread
System.out.println("\n\n1\nTime (ms)");
for(int k = 0; k < 400; k++){
                    finished = false;
                    Thread thread1 = new solver();
                    thread1.start();
                    while(!finished)
                    thread1.stop();
            }
                // 2 threads thread
                System.out.println("\n\n2\nTime (ms)");
                for(int k = 0; k < 400; k++){
                    finished = false;
                    Thread thread1 = new solver();
                            Thread thread2 = new solver();
                            thread1.start();
                    thread2.start();
                    while(!finished);
```

```
    thread1.stop();
    hread1= null;
    thread2.stop();
    thread2.stop();
}
// 3 threads thread
System.out.println("\n\n3\nTime (ms)")
for(int k=0; k < 400; k++){
    finished = false;
    Thread thread1 = new solver();
    hread thread2 = new solver();
    Thread thread3 = new solver();
    thread1.start();
    thread2.start()
    thread3.start();
    while(!finished);
    thread1.stop();
    thread1= null;
    thread2.stop();
    thread2 = null;
    thread3.stop();
    thread3= null;
}
// 4 threads thread
System.out.println("\n\n4\nTime (ms)");
for(int k=0; k < 400; k++){
    finished = false;
    Thread thread1 = new solver();
    Thread thread2 = new solver();
    Thread thread3 = new solver();
    Thread thread4 = new solver()
    thread1.start();
    hread2.start();
    thread3.start();
    thread4.start();
    while(!finished);
    thread1.stop();
    hread1= null;
    thread2.stop();
    thread2 = null;
    hread3.stop();
    hread3= null;
    thread4.stop();
    thread4 = null;
}
// 5 threads thread
System.out.println("\n\n5\nTime (ms)");
for(int k = 0; k < 400; k++) \{
finished = false;
Thread thread1 = new solver();
Thread thread2 \(=\) new solver();
Thread thread3 = new solver();
Thread thread4 = new solver()
Thread thread5 = new solver();
thread1.start();
thread2.start();
thread3.start();
hread4 start();
thread5.start();
while(!finished);
thread1.stop();
thread1= null;
thread2.stop();
thread2 = null;
thread3.stop();
thread3= null;
thread4.stop();
thread4 = null;
thread5.stop();
thread5 = null;
```

// 6 threads thread
System.out.println("\n\n6\nTime (ms)")
for(int k $=0 ; k<400 ; k++$)
finished = false;
Thread thread1 $=$ new solver();
Thread thread2 = new solver();
Thread thread3 = new solver();
Thread thread4 = new solver();
Thread thread5 = new solver();
Thread thread6 = new solver()
thread1.start();
thread2.start();
thread3.start();
thread4.start()
thread5.start();
thread6.start();
while(!finished);
thread1.stop();
thread1= null;
thread2.stop();
thread2 = null;
thread3.stop();
thread3= null;
thread4.stop();
thread4 = null;
thread5.stop();
thread5 = null;
thread6.stop();
thread6 = null;
\}
// 7 threads thread
System.out.println("\n\n7\nTime (ms)");
for(int k $=0 ; k<400 ; k++)\{$
finished = false;
Thread thread1 = new solver();
Thread thread2 = new solver();
Thread thread3 = new solver();
Thread thread4 = new solver();
Thread thread5 $=$ new solver();
Thread thread6 $=$ new solver();
Thread thread7 = new solver();
thread1.start();
thread2.start();
thread3.start();
thread4.start();
thread5.start();
thread6.start();
thread7.start();
while(!finished);
thread1.stop();
thread1= null;
thread2.stop();
thread2 = null;
thread3.stop();
thread3 = null;
thread4.stop();
thread4 = null;
thread5.stop();
thread5 = null;
thread6.stop();
thread6 = null;
thread7.stop();
thread7 = null;
\}
// 8 threads thread
System.out.println("\n\n8\nTime (ms)");
for(int k = 0; k < 400; k++) \{
finished = false;
Thread thread1 = new solver();
Thread thread2 = new solver();
Thread thread3 $=$ new solver()
Thread thread4 = new solver();
Thread thread5 = new solver();
Thread thread6 = new solver();
Thread thread7 $=$ new solver();
Thread thread8 = new solver();
thread1.start();

> thread2.start();
> hread3.start();
> thread4.start();
> thread5.start();
> thread6.start();
> thread7.start()
> thread8.start();
> while(!finished);
> thread1.stop();
> thread1= null;
> thread2.stop();
> thread2 = null;
> thread3.stop();
> thread3= null;
> thread4.stop();
> thread4 = null;
> thread5.stop();
> thread5 = null;
> thread6.stop();
> thread6 = null;
> hread7.stop();
> thread7 = null;
> thread8.stop();
> thread8 = null;
> Thread thread1 = new solver();
> Thread thread2 = new solver();
> Thread thread3 = new solver();
> Thread thread4 = new solver();
> Thread thread5 = new solver();
> Thread thread6 = new solver();
> Thread thread7 $=$ new solver();
> Thread thread8 $=$ new solver();
> Thread thread9 = new solver()
> thread1.start();
> thread2.start();
> thread3.start();
> thread4.start()
> thread5.start();
> thread6.start();
> thread7.start();
> thread8.start();
> thread9.start()
> while(!finished);
> thread1.stop();
> hread1 = null;
> thread2.stop()
> thread2 = null;
> thread3.stop();
> thread3= null;
> thread4.stop();
> thread4 = null;
> thread5.stop();
> thread5 = null;
> thread6.stop();
> thread6 = null;
> thread7.stop();
> thread7 = null;
> thread8.stop();
> thread8 = null;
> thread9.stop();
> thread9 = null;
> \}
> // 10 threads thread
> System.out.println("\n\n10\nTime (ms)");
> for(int k=0; k < 400; k++) \{
> finished = false;
> Thread thread1 $=$ new solver();
> Thread thread2 = new solver() Thread thread3 = new solver();
> Thread thread4 = new solver();
> Thread thread5 = new solver();
> Thread thread6 = new solver()
> Thread thread7 $=$ new solver();
> Thread thread8 = new solver()

Thread thread9 = new solver();
Thread thread10 = new solver();

> thread1.start();
> thread2.start();
> thread3.start(); thread4.start(); thread5.start(); thread6.start(); thread7.start(); thread8.start(); thread9.start(); thread10.start();
while(!finished);
thread1.stop();
thread1= null;
thread2.stop();
thread2 = null;
thread3.stop()
thread3= null;
thread4.stop();
thread4 = null;
thread5.stop();
thread5 = null;
thread6.stop();
thread6 = null;
thread7.stop();
thread7 = null; thread8.stop();
thread8 = null; thread9.stop(); thread9 = null; thread10.stop(); thread10 = null;
\}
\}
static int[][] setUpBoard(int puzzleChoise)
// Set up a new board, all formatted to 0 int[][] newBoard = new int[9][9]; // default 0 vals int $\mathrm{i}, \mathrm{j}, \mathrm{n}=0$;
// Puzzles are entered in standard format
int[] puzzle $=\{1,0,0,0,0,0,0,0,2,0,9,0,4,0,0,0,5,0,0,0,6,0,0,0,7,0,0,0,5,0,9,0,3,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,8,5,0,0,4,0,7,0,0,0,0,0,6,0,0,0,3,0,0,0,9,0,8,0,0,0,2,0,0,0,0,0,0\} ;$
for ($\mathrm{i}=0 ; \mathrm{i}<9 ; \mathrm{i}++$)
for(j=0; j < 9 ; j++)
newBoard[i][j] = puzzle[n++]
// printBoard(newBoard);
return newBoard
\}
static boolean solve(int row, int col, int[][] board, int xTimes, int startV) \{
// Return true if we have reached the depth of the recursion if(xTimes == 81) return true;
if(finished) return true;

```
// Do a loop of rows and column
if (++col == 9){
```

 \(\mathrm{col}=0\)
 if(++row \(==9\))
 \}
if (board[row][col] != 0)\{ // skip filled cells
return solve(row ,col, board, xTimes+1, startV);
\}
// The code can only get here if the cell was 0
for (int val $=1$; val <=9; ++val) \{
if(++startV == 10) startV = 1;
// first check of the value is allowed here
if (allowedHere(row,col,startV,board)) \{
board[row][col] = startV; // If allowed, record it and run recursively if(solve(row ,col, board, xTimes+1, startV)) return true;
\}
\}
board[row][col] $=0$; // reset on backtrack
return false;
\}
static boolean allowedHere(int row, int col, int value, int[][] board) \{
int i ;
// scan 9 neighboring possibilities for $(\mathrm{i}=0 ; \mathrm{i}<9$; $\mathrm{i}++$) $\{$
// look at colums in this row
if(board[row][i] == value) return false;
// look at rows in this column
if(board[i][col] == value)
return false;
// look at sub square
if (board[row/3*3+i\%3][col/3*3+i/3] == value) return false;
$\}$
true; $/ /$
return true; // no violations, so it's legal
\}
static void printBoard(int[][] boardToPrint) \{
int i, j;
for $(i=0 ; i<9 ; i++)\{$
if ($i \% 3=0$)
System.out.println(" -----------------------" $) ;$
for ($\mathrm{j}=0 ; \mathrm{j}<9$; $\mathrm{j}++$) $\{$
if ($j \% 3=0$) System.out.print(" | ");
if(boardToPrint $[i][j]==0$)
System.out.print("* ");
else
System.out.print(Integer.toString(boardToPrint[i][j])+ " ")
\}
System.out.println("|");
\} ${ }^{\text {Syst }}$
System.out.println(" --------------------------")
\}
\}

APPENDIX II: RAW DATA

Here is the raw data gathered by the experiment. This first row, in bold, indicated the number of threads used in the test run. The second column is the average time it took to solve the puzzle whiles the experiment. The following columns are the individual time data harvested by repeatedly performing the test.

Note: due to the random nature of the data collected, repeating the experiment should yield a similar average, but different individual values.

| 187 | 280 | 79 | 904 | 125 | 1616 | 78 | 156 | 15 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 375 | 16 | 78 | 170 | 3089 | 78 | 16 | 406 | 15 | 31 |
| 125 | 16 | 94 | 203 | 47 | 78 | 156 | 15 | 15 | 15 |
| 124 | 31 | 78 | 1341 | 16 | 31 | 32 | 16 | 16 | 16 |
| 78 | 16 | 140 | 31 | 16 | 111 | 16 | 16 | 15 | 16 |
| 125 | 171 | 31 | 345 | 16 | 16 | 78 | 15 | 16 | 47 |
| 125 | 31 | 93 | 16 | 15 | 16 | 47 | 16 | 15 | 31 |
| 16 | 47 | 93 | 1186 | 32 | 16 | 47 | 16 | 15 | 16 |
| 78 | 64 | 156 | 15 | 31 | 16 | 125 | 1763 | 16 | 15 |
| 1185 | 46 | 2168 | 15 | 16 | 15 | 109 | 15 | 16 | 15 |
| 124 | 47 | 48 | 16 | 156 | 16 | 31 | 31 | 47 | 16 |
| 390 | 62 | 62 | 1515 | 390 | 16 | 31 | 172 | 31 | 16 |
| 15 | 78 | 62 | 16 | 889 | 15 | 187 | 171 | 16 | 63 |
| 327 | 47 | 32 | 124 | 889 | 16 | 16 | 16 | 15 | 31 |
| 171 | 62 | 31 | 359 | 16 | 31 | 31 | 31 | 16 | 15 |
| 203 | 47 | 15 | 254 | 31 | 31 | 15 | 64 | 530 | 16 |
| 187 | 31 | 16 | 16 | 125 | 140 | 31 | 327 | 15 | 196 |
| 47 | 16 | 16 | 3123 | 156 | 31 | 374 | 16 | 1045 | 31 |
| 47 | 171 | 15 | 15 | 2980 | 203 | 16 | 156 | 16 | 218 |
| 47 | 48 | 16 | 15 | 187 | 78 | 78 | 406 | 16 | 62 |
| 111 | 47 | 16 | 31 | 187 | 16 | 16 | 15 | 16 | 15 |
| 93 | 16 | 16 | 343 | 2200 | 31 | 31 | 16 | 15 | 178 |
| 111 | 15 | 32 | 125 | 31 | 1616 | 32 | 16 | 16 | 79 |
| 93 | 16 | 32 | 16 | 125 | 78 | 16 | 15 | 15 | 31 |
| 16 | 15 | 32 | 15 | 3089 | 78 | 15 | 16 | 31 | 203 |
| 15 | 15 | 15 | 231 | 47 | 31 | 16 | 16 | 15 | 15 |

