

ECSE420 - Parallel Computing

Fall 2009

Multi Thread Performance
Analysis of a Brute-Force
Sudoku Solver

Simon Foucher G07

THE GAME

Sudoku is a popular puzzle game similar to crosswords, but using numbers. The Sudoku grid is a
square, divided in subsquares containing as many elements as the length of the row of the main square.
Which such a partition, every element in the Sudoku board has 3 constraints: row, column and sub
square. The constraint stipulates that a number, ranging from 1 to the size of a subsquare, an only be
places once in a row, a column and a sub square.

 There are many strategies one can use to solve Sudoku puzzles, and solutions might not be
unique, or might not even exist! The difficulty rating of a board is relative to the number of indices
provided. A standard Sudoku board contains 81 places, and is subdivided into 9 subsquares each
containing 9 elements.

APPROACH

 When solved by a computer, one of the most complete approaches to solving a Sudoku is using
brute force. This provides 2 advantages over algorithmic solvers: first, it can confirm if there are no
solutions, and second, if there are many solutions, the computer can easily output a complete list of
them. In this work we have developed a multi-threaded brute force Sudoku solver. To standardize the
approach, the same board has been used throughout the development. The puzzle is rated as
“Extremely difficult” and has been taken from:

http://en.wikipedia.org/wiki/Algorithmics_of_sudoku

Figure 1: the Sudoku puzzle used for gathering the performance data.

 The experiment will consist in repeatedly solving this puzzle using the same algorithm with a varying
number of threads to observe the variation in performance obtained.

ALGORITHM

 The algorithm uses recursive calls on a test-and-backtrack approach. All the cells of the board
will be visited.

1. Upon arriving, if the cell is not empty, it is skipped. Otherwise, a temporary value is assigned
from 1 to 9. In figure 2, we can observe that the first cell (0,0) got skipped and that the value of
‘1’ has been assigned to the next cell (0,1)

Figure2: Testing the legality of a ‘1’ at the position (0,1

2. Afterwards, a test is performed to see if the attempted value is allowed there. By scanning the 3
dimensions of neighbors, the new value is compared to all the elements contained in its row, its
column and its sub square. If the same element is encountered, the next value is tested and the
algorithm repeats the test. If all the values have been exhausted, the algorithm backtracks to
the previous cell.

3. This process is repeated until the program finds an element that could potentially exist at that
location

Figure 3: ‘3’ is the first ‘legal’ value we can leave at position (0,1) before moving on to the next position

4. Once this condition is satisfied, the function is recursively called to the next location. To
optimize the software, when the function is called a second time, the first element it looks at is

the previous element incremented by 1. For example here, there since we just guessed ‘3 to be
at location (0,1), the algorithm will guess ‘4’ the next location

5. Once the depth of the recursion reaches 81, we know that all the cells have been visited, so if
no solution was found, we backtrack one cell and keep trying all the possibilities on that one by
recalling the recursion.

6. This keeps happening until all the possibilities have been tried out. If no solution was bound in
the mean time, an error message is printed on the board (for the purpose of this experiment,
we know that there is a solution so it is always found sooner or later)

OPTIMIZING BRUTE FORCE

 By definition, a brute force algorithm is the least optimal solution to a problem, but guarantees
results. The time required to solve the puzzle greatly depends on where the search is conducted, and
which elements are visited first. It is even possible, although unlikely to take O(1) time if the first try is
the right answer.

 It might have been tempting to try and optimize the solver by testing various starting positions
and various start number, but this optimization would have only been valid for this particular puzzle. We
felt that the best approach was to randomize the start location, as well as the start guess. In order to
implement this, we used circular loops to scan the rows, columns and tested values. To keep track of
how ‘deep’ we got in the algorithm, we incremented an index at every function call that made the
function exit when it reached 81 (the maximum depth of the grid).

 This approach also gives us great versatility with regards to multithreading environment. By
starting at a random location, the solving function can be called by many threads and generate good ‘far
apart’ starting states for each thread. This added feature gives the user to freely add threads without
having to modify anything in the algorithm for the new threads to pick up a work load.

MULTI-THREADING AND SYNCHRONIZATION

 Since the challenge is to test a very large possibility space, the use of parallel computing can
greatly aid. For this particular problem, we used many threads to run a subset of the problem. Java was
chosen as a platform because of its ease of implementation of multithreading environments. The main
class takes care of creating threads, and every thread takes on a portion of the puzzle. As soon as one of
them solves the problem, it prints out the solution and the time it took to solve it.

 To handle synchronization, we used a global variable called ‘finished’. When the main function
starts, if sets ‘finished’ to false. As the threads try to solve the puzzle, they look at this variable and exit if
it is true, otherwise continue to try and solve. As soon as a thread solves the puzzle, it sets the variable
to true, which forces all the other threads out of their solving function. Meanwhile, in the main function,
after all the threads have been initialized, the program falls into a while(!finished) loop. As soon as the
barrier is crossed, we know that a thread has solved the puzzle, so all the threads are destroyed.

EXPERIMENT

 Since, in general, we do not have a priori information on the best starting location for a brute
force scan; we felt the need to test various scenarios to make sure that the data collected was a good
reflection of reality. Therefore, in order to gather a comparative idea of various times to solve, rather
than the particular value for this puzzle, many runs of the same test were performed. We also tested for
many different numbers of threads.

 The tests were conducted on an Inter Dual core processor @1.4GHz, managed by the Windows
7 platform.

RESULTS

 First we ran some tests on a single thread to see how long it took on average to solve the puzzle. Here are
the results we found.

Figure 4: Individual results of a single threaded application solving the puzzle. On the x axis, we can see how long it took, and on the right,
we can see the trial number.

 These results justified the assumption made that the time it takes to fully solve a Sudoku puzzle
on a brute force approach is greatly relative to the starting location. We can observe a few instances
where it took 3-4 full seconds to solve, these represents where statistically we picked the worst possible
starting point and the solution was one of the last ones we tested. As the other extreme, we can
observe some instances where the puzzle was solved in a matter of milliseconds. These instances occur
when the solution is one of the first ones to be found.

 Afterwards, we ran the application with a varying number of threads working on solving the
puzzle, from 1 to 10, and got the following results, which are similar to the original results we got. For
any given number of threads, 500 tests were performed to ensure that the data gathered was
statistically significant. (The number of different starting positions is 9x9 with 9 possible starting values,
giving 729 possible initial states for the system.)

0 1000 2000 3000 4000 5000

1
23
45
67
89

111
133
155
177
199
221

Single Thread (ave:290ms)

Inside 1 290 Time (ms)

Figure 5: Combined results of all the tests performed with a varying number of threads. On the x axis, we can observe the time to solve, in
ms.

Figure 6: Average time to solve when using a variation of number of threads. On the x axis we can see the number of threads used, and on
the y axis we can see the average time to solve in ms.

 These are interesting results, which require a few explanations. First, as expected by running the
code on a dual core processor, we can see that there is a sharp decrease in the average time required to
solve the puzzle when going from a single threaded application to using 2 threads. This can intuitively be
explained because of the fact that 2 processors can easily handle 2 threads without too much overhead.

When adding a 3rd and 4th thread, we can see that the average time to solve increased almost as
far up as the original time it took for a single threaded application. This is caused by the added overhead
brought by managing the extra threads without bringing too many benefits.

0 2000 4000 6000 8000

1
19
37
55
73
91

109
127
145
163
181
199
217
235

Series10

Series9

Series8

Series7

Series6

Series5

Series4

Series3

Series2

Series1

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

Ti
m

e
to

 so
lv

e
(m

s)

Afterwards, we observe a gradual decrease in the time to solve as the number of processors
keeps increasing, until it bottoms out at 100ms. This continuous decrease is most probably due to the
random nature of the starting position and starting number. As we can observe in figure 4, when
comparing the performance we got from different starting locations, the data is mostly gathered in very
low solving times (<200ms), with a few high peaks (>1s), which drive the average up. Since the vast
majority of the starting positions can yield a fast answer on a brute force approach, by adding threads
starting at random locations, we increase the chance that at least one of them starts in that location. If
this is the case, as soon as this thread reaches the solution, all the other ones will be stopped anyways.

Finally, as the number of threads keeps increasing, we can observe a slight increase in the
average time to solve. This average shows a weak asymptote at around 100ms, with a slight positive
slope, indicating that the added threads do induce some extra overhead.

APPENDIX I: SOURCE CODE USED

The code consists of a single java file and was developed using the IDE Eclipse, and has been inspired by
an algorithm proposed by Bob Carpenter on the following web
page: http://www.colloquial.com/games/sudoku/java_sudoku.html.

package sudokuSolver;
import java.util.Random;

// Class taking care of solving the Sudoku

public class solver extends Thread {

 static boolean finished;

 // This method is called when a thread starts running
 // It will call the recursive solver and output the data
 public void run() {
 int[][] board = setUpBoard(1); // Set up the board (option to select different puzzles)
 int i, j, value; // Start position (i,j) and start value will be
randomly selected
 long start, end;
 Random generator = new Random(System.currentTimeMillis());
 //printBoard(board);

 board = setUpBoard(1);
 i = generator.nextInt(8);
 j = generator.nextInt(8);
 value = generator.nextInt(8)+1;

 start = System.currentTimeMillis();
 if (solve(i, j, board, 0, value)) ; // solves in place
 //printBoard(board);
 else
 System.out.println("No answers for this puzzle!");

 end = System.currentTimeMillis();

 if(!finished){
 finished = true;
 System.out.print((end - start)+"\n");
 }

 }

 public static void main(String[] args) {

 // 1 threads thread
 System.out.println("\n\n1\nTime (ms)");
 for(int k = 0; k < 400; k++){

 finished = false;
 Thread thread1 = new solver();

 thread1.start();
 while(!finished);

 thread1.stop();

 }

 // 2 threads thread
 System.out.println("\n\n2\nTime (ms)");
 for(int k = 0; k < 400; k++){
 finished = false;
 Thread thread1 = new solver();
 Thread thread2 = new solver();

 thread1.start();
 thread2.start();

 while(!finished);

http://www.colloquial.com/games/sudoku/java_sudoku.html�

 thread1.stop();
 thread1= null;
 thread2.stop();
 thread2 = null;
 }

 // 3 threads thread
 System.out.println("\n\n3\nTime (ms)");
 for(int k = 0; k < 400; k++){
 finished = false;
 Thread thread1 = new solver();
 Thread thread2 = new solver();
 Thread thread3 = new solver();

 thread1.start();
 thread2.start();
 thread3.start();

 while(!finished);

 thread1.stop();
 thread1= null;
 thread2.stop();
 thread2 = null;
 thread3.stop();
 thread3= null;

 }

 // 4 threads thread
 System.out.println("\n\n4\nTime (ms)");
 for(int k = 0; k < 400; k++){
 finished = false;
 Thread thread1 = new solver();
 Thread thread2 = new solver();
 Thread thread3 = new solver();
 Thread thread4 = new solver();

 thread1.start();
 thread2.start();
 thread3.start();
 thread4.start();

 while(!finished);

 thread1.stop();
 thread1= null;
 thread2.stop();
 thread2 = null;
 thread3.stop();
 thread3= null;
 thread4.stop();
 thread4 = null;
 }

 // 5 threads thread
 System.out.println("\n\n5\nTime (ms)");
 for(int k = 0; k < 400; k++){

 finished = false;
 Thread thread1 = new solver();
 Thread thread2 = new solver();
 Thread thread3 = new solver();
 Thread thread4 = new solver();
 Thread thread5 = new solver();

 thread1.start();
 thread2.start();
 thread3.start();
 thread4.start();
 thread5.start();

 while(!finished);

 thread1.stop();
 thread1= null;
 thread2.stop();
 thread2 = null;
 thread3.stop();
 thread3= null;
 thread4.stop();
 thread4 = null;
 thread5.stop();
 thread5 = null;

 }

 // 6 threads thread
 System.out.println("\n\n6\nTime (ms)");
 for(int k = 0; k < 400; k++){
 finished = false;
 Thread thread1 = new solver();
 Thread thread2 = new solver();
 Thread thread3 = new solver();
 Thread thread4 = new solver();
 Thread thread5 = new solver();
 Thread thread6 = new solver();

 thread1.start();
 thread2.start();
 thread3.start();
 thread4.start();
 thread5.start();
 thread6.start();

 while(!finished);

 thread1.stop();
 thread1= null;
 thread2.stop();
 thread2 = null;
 thread3.stop();
 thread3= null;
 thread4.stop();
 thread4 = null;
 thread5.stop();
 thread5 = null;
 thread6.stop();
 thread6 = null;
 }

 // 7 threads thread
 System.out.println("\n\n7\nTime (ms)");
 for(int k = 0; k < 400; k++){
 finished = false;
 Thread thread1 = new solver();
 Thread thread2 = new solver();
 Thread thread3 = new solver();
 Thread thread4 = new solver();
 Thread thread5 = new solver();
 Thread thread6 = new solver();
 Thread thread7 = new solver();

 thread1.start();
 thread2.start();
 thread3.start();
 thread4.start();
 thread5.start();
 thread6.start();
 thread7.start();

 while(!finished);

 thread1.stop();
 thread1= null;
 thread2.stop();
 thread2 = null;
 thread3.stop();
 thread3= null;
 thread4.stop();
 thread4 = null;
 thread5.stop();
 thread5 = null;
 thread6.stop();
 thread6 = null;
 thread7.stop();
 thread7 = null;
 }

 // 8 threads thread
 System.out.println("\n\n8\nTime (ms)");
 for(int k = 0; k < 400; k++){
 finished = false;
 Thread thread1 = new solver();
 Thread thread2 = new solver();
 Thread thread3 = new solver();
 Thread thread4 = new solver();
 Thread thread5 = new solver();
 Thread thread6 = new solver();
 Thread thread7 = new solver();
 Thread thread8 = new solver();

 thread1.start();

 thread2.start();
 thread3.start();
 thread4.start();
 thread5.start();
 thread6.start();
 thread7.start();
 thread8.start();

 while(!finished);

 thread1.stop();
 thread1= null;
 thread2.stop();
 thread2 = null;
 thread3.stop();
 thread3= null;
 thread4.stop();
 thread4 = null;
 thread5.stop();
 thread5 = null;
 thread6.stop();
 thread6 = null;
 thread7.stop();
 thread7 = null;
 thread8.stop();
 thread8 = null;

 }

 // 9threads thread
 System.out.println("\n\n9\nTime (ms)");
 for(int k = 0; k < 400; k++){
 finished = false;
 Thread thread1 = new solver();
 Thread thread2 = new solver();
 Thread thread3 = new solver();
 Thread thread4 = new solver();
 Thread thread5 = new solver();
 Thread thread6 = new solver();
 Thread thread7 = new solver();
 Thread thread8 = new solver();
 Thread thread9 = new solver();

 thread1.start();
 thread2.start();
 thread3.start();
 thread4.start();
 thread5.start();
 thread6.start();
 thread7.start();
 thread8.start();
 thread9.start();

 while(!finished);

 thread1.stop();
 thread1= null;
 thread2.stop();
 thread2 = null;
 thread3.stop();
 thread3= null;
 thread4.stop();
 thread4 = null;
 thread5.stop();
 thread5 = null;
 thread6.stop();
 thread6 = null;
 thread7.stop();
 thread7 = null;
 thread8.stop();
 thread8 = null;
 thread9.stop();
 thread9 = null;

 }

 // 10 threads thread
 System.out.println("\n\n10\nTime (ms)");
 for(int k = 0; k < 400; k++){
 finished = false;
 Thread thread1 = new solver();
 Thread thread2 = new solver();
 Thread thread3 = new solver();
 Thread thread4 = new solver();
 Thread thread5 = new solver();
 Thread thread6 = new solver();
 Thread thread7 = new solver();
 Thread thread8 = new solver();

 Thread thread9 = new solver();
 Thread thread10 = new solver();

 thread1.start();
 thread2.start();
 thread3.start();
 thread4.start();
 thread5.start();
 thread6.start();
 thread7.start();
 thread8.start();
 thread9.start();
 thread10.start();

 while(!finished);

 thread1.stop();
 thread1= null;
 thread2.stop();
 thread2 = null;
 thread3.stop();
 thread3= null;
 thread4.stop();
 thread4 = null;
 thread5.stop();
 thread5 = null;
 thread6.stop();
 thread6 = null;
 thread7.stop();
 thread7 = null;
 thread8.stop();
 thread8 = null;
 thread9.stop();
 thread9 = null;
 thread10.stop();
 thread10 = null;

 }

 }

 static int[][] setUpBoard(int puzzleChoise) {

 // Set up a new board, all formatted to 0
 int[][] newBoard = new int[9][9]; // default 0 vals
 int i,j, n=0;

 // Puzzles are entered in standard format
 int[] puzzle = {1,0,0,0,0,0,0,0,2,0,9,0,4,0,0,0,5,0,0,0,6,0,0,0,7,0,0,0,5,0,9,0,3,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,8,5,0,0,4,0,7,0,0,0,0,0,6,0,0,0,3,0,0,0,9,0,8,0,0,0,2,0,0,0,0,0,0};

 for(i = 0; i < 9; i++)
 for(j= 0; j < 9; j++)
 newBoard[i][j] = puzzle[n++];

 // printBoard(newBoard);

 return newBoard;

 }

 static boolean solve(int row, int col, int[][] board,int xTimes, int startV) {
 // Return true if we have reached the depth of the recursion
 if(xTimes == 81) return true;
 if(finished) return true;

 // Do a loop of rows and columns
 if (++col == 9){
 col = 0;
 if(++row == 9)
 row = 0;
 }

 if (board[row][col] != 0){ // skip filled cells
 return solve(row ,col, board, xTimes+1, startV);
 }

 // The code can only get here if the cell was 0
 for (int val = 1; val <= 9; ++val) {
 if(++startV == 10) startV = 1;

 // first check of the value is allowed here
 if (allowedHere(row,col,startV,board)) {
 board[row][col] = startV; // If allowed, record it and run recursively
 if(solve(row ,col, board, xTimes+1, startV))
 return true;
 }
 }

 board[row][col] = 0; // reset on backtrack
 return false;
 }

 static boolean allowedHere(int row, int col, int value, int[][] board) {
 int i;

 // scan 9 neighboring possibilities
 for(i = 0; i < 9; i++){
 // look at colums in this row
 if(board[row][i] == value)
 return false;
 // look at rows in this column
 if(board[i][col] == value)
 return false;
 // look at sub square
 if (board[row/3*3+i%3][col/3*3+i/3] == value)
 return false;
 }
 return true; // no violations, so it's legal
 }

 static void printBoard(int[][] boardToPrint) {
 int i, j;

 for (i = 0; i < 9; i++) {
 if(i%3 == 0)
 System.out.println(" -----------------------");

 for (j = 0; j < 9; j++) {
 if (j%3 == 0) System.out.print("| ");
 if(boardToPrint[i][j] == 0)
 System.out.print("* ");
 else
 System.out.print(Integer.toString(boardToPrint[i][j])+ " ");
 }
 System.out.println("|");
 }
 System.out.println(" -----------------------");
 }
}

APPENDIX II: RAW DATA

Here is the raw data gathered by the experiment. This first row, in bold, indicated the number of threads used in
the test run. The second column is the average time it took to solve the puzzle whiles the experiment. The
following columns are the individual time data harvested by repeatedly performing the test.

Note: due to the random nature of the data collected, repeating the experiment should yield a similar average, but
different individual values.

1 2 3 4 5 6 7 8 9 10
290 158 242 292 190 105 133 96 113 109

Time (ms)
1124 15 31 265 15 15 16 16 16 16
15 15 16 47 16 15 15 15 15 15
78 16 94 16 15 16 47 31 16 16
78 16 78 16 15 15 16 15 16 15
375 15 31 16 32 16 16 31 31 19
15 16 31 124 1515 172 16 31 281 702
31 15 62 15 15 15 31 16 140 172
16 15 156 31 16 16 16 16 31 16
16 78 32 16 15 16 15 15 125 15
46 16 63 16 16 15 16 16 15 47
47 16 3167 218 31 16 15 31 15 31
78 63 17 218 31 31 16 16 15 31
78 1357 16 11 16 32 31 15 31 203
31 1030 15 17 16 15 15 16 250 468
62 48 16 795 15 15 1 16 93 17
47 63 15 17 15 16 16 16 78 31
328 62 32 795 31 16 15 16 141 16
15 47 15 1950 16 15 16 15 16 16
78 62 78 16 16 62 15 32 78 15
47 47 187 16 15 16 31 15 16 203
63 156 78 15 16 16 16 16 15 203
31 62 156 17 16 16 16 32 31 15
47 62 670 16 1030 16 15 15 18 1451
15 1108 1077 16 15 16 16 15 15 177
156 1616 16 1616 79 15 16 15 32 16
47 110 32 15 16 32 3214 16 218 16
47 484 32 15 31 31 3214 15 16 31
47 15 15 141 16 140 15 16 16 31
46 63 32 16 16 16 203 16 16 31
32 93 16 47 125 15 31 15 16 31
62 93 15 16 31 16 31 31 15 31
47 47 16 16 16 16 140 15 32 31
47 16 15 31 31 15 47 16 15 31
62 31 16 31 15 16 47 15 15 31
47 16 16 390 125 15 47 15 15 21
47 16 15 561 93 16 47 31 16 132
46 15 16 444 32 281 140 328 15 16
63 15 1341 93 16 1982 32 47 16 15
47 93 265 203 16 312 312 15 15 16
1341 15 265 125 15 16 31 16 15 63
1685 16 249 531 31 16 31 16 16 156
15 16 31 16 15 16 31 140 15 3264
32 281 31 15 15 15 218 31 31 15
78 15 1529 15 31 15 16 31 16 15
156 16 16 16 16 266 31 31 16 32
16 16 16 109 15 281 15 31 31 32
406 15 16 15 500 1888 16 125 16 16
15 16 15 16 1451 32 31 125 15 15
16 16 16 16 499 16 31 31 32 31
15 15 16 327 16 31 16 47 15 15
16 16 110 2075 16 16 31 327 1529 31
140 16 936 2075 16 15 16 327 6 16
31 16 78 16 31 16 16 140 15 31
16 31 47 218 17 109 16 218 156 16
31 203 78 15 16 624 15 93 109 15
63 718 1.93E+02 234 31 421 16 47 15 16
47 687 15 15 15 219 15 109 15 16
156 577 16 16 16 15 16 31 7 16
1029 718 15 16 15 47 16 15 31 16
47 687 951 16 16 15 15 16 16 31
47 577 391 187 15 171 16 15 31 15
47 16 391 343 16 16 15 15 16 2262
16 31 125 377 63 16 16 16 31 15
109 16 32 16 15 15 16 16 31 32
47 15 250 1217 421 141 16 16 172 16
46 16 31 2 203 15 16 15 16 16
47 15 1061 64 171 16 62 16 109 15

63 32 15 15 171 16 31 15 203 15
62 15 15 172 780 16 16 15 93 16
47 16 16 15 16 47 16 16 16 16
47 1653 78 312 62 31 15 16 31 16
62 250 78 94 62 31 15 15 31 15
16 484 78 16 47 78 32 15 433 32
31 16 16 94 16 78 343 15 1872 17
15 31 78 93 31 31 359 16 2 15
33 16 297 78 31 16 78 16 16 16
16 16 436 163 109 124 78 31 15 15
15 16 436 78 156 31 172 16 16 16
15 15 187 32 109 47 203 15 16 436
15 16 1029 78 78 16 561 16 16 16
203 78 125 78 16 125 156 15 31 15
1045 15 125 78 15 16 31 16 16 31
546 16 3074 93 16 93 514 16 16 16
47 16 1607 31 31 234 141 15 15 15
811 15 1607 93 16 16 546 16 16 31
671 16 140 31 15 16 16 15 16 312
1170 15 32 109 32 15 16 16 16 94
16 31 188 31 15 16 172 16 1 140
32 16 171 62 3120 15 16 15 15 31
16 31 63 15 31 15 171 10 16 31
218 109 62 24 47 16 171 10 15 31
1217 171 31 33 16 16 16 15 15 16
438 33 31 33 16 16 16 16 16 31
31 811 109 109 15 62 827 452 15 16
1763 62 109 15 16 406 16 234 16 16
281 1045 94 2028 15 31 16 203 15 15
1311 281 312 16 187 78 15 608 32 15
2215 281 140 58 16 47 15 16 15 15
31 1747 16 47 16 78 31 15 16 16
1763 1108 936 32 156 31 16 31 16 15
281 343 94 32 499 125 16 15 15 15
1311 343 31 31 593 982 15 16 16 31
2215 125 109 640 16 982 16 16 31 16
343 343 16 640 63 15 32 16 46 31
47 125 16 1872 16 32 234 15 31 16
47 125 468 640 16 15 561 15 16 31
47 16 125 1872 32 31 1420 31 31 31
62 15 78 125 15 31 16 1731 16 16
47 16 624 73 16 16 718 733 31 15
2995 109 187 15 16 16 110 62 31 62
63 173 844 16 16 125 15 15 16 31
125 125 156 15 16 31 16 31 15 16
31 125 140 16 16 31 31 31 219 32
343 16 16 31 47 31 15 15 15 15
4134 16 16 31 15 16 16 453 218 15
2512 15 94 16 16 110 281 172 47 16
460 16 250 15 15 78 1529 1248 203 16
460 15 250 16 16 47 15 31 158 16
460 47 16 160 31 16 15 31 31 15
460 281 172 1616 15 47 15 17 31 16
46 265 47 15 16 16 15 171 249 16
16 1077 48 15 15 16 437 359 32 15
156 142 31 16 16 16 15 359 31 16
15 1139 78 16 16 15 296 670 15 1498
16 94 62 15 16 16 16 31 32 193
15 15 32 15 15 15 219 15 31 31
32 31 109 16 32 280 15 15 15 31
15 78 16 327 16 406 16 15 32 171
16 140 46 3089 31 15 234 16 2636 468
15 16 110 1332 15 31 16 15 2636 16
16 32 297 16 2325 16 47 16 889 16
16 141 109 31 1248 15 156 32 31 16
686 16 109 343 16 16 16 32 31 16
1170 16 312 16 16 109 47 16 156 15
31 78 109 15 15 187 16 31 16 296
125 47 109 32 16 32 31 687 78 296
46 16 312 15 31 31 16 32 390 31
16 78 172 15 64 31 15 172 16 164
16 47 172 16 94 141 47 78 16 842
15 15 172 62 140 187 173 31 15 15
16 63 592 62 15 31 31 16 16 33
15 15 187 16 15 47 15 16 11 15
16 47 1264 15 156 31 94 31 1515 15
16 62 94 16 265 47 62 15 16 16
15 32 2293 16 844 31 94 15 16 16
16 31 16 16 125 828 62 1763 15 16
15 31 125 15 780 16 94 15 16 47
17 47 78 15 31 31 62 31 15 15
31 46 140 47 140 31 546 172 31 16
16 47 951 16 156 31 32 171 15 47
15 31 171 16 2980 31 16 16 62 421
2278 47 140 15 187 203 15 31 15 905
1045 47 219 32 187 78 16 64 16 218
655 297 93 1467 2200 16 15 15 15 16
172 282 47 486 31 31 16 16 16 109

187 280 79 904 125 1616 78 156 15 16
375 16 78 170 3089 78 16 406 15 31
125 16 94 203 47 78 156 15 15 15
124 31 78 1341 16 31 32 16 16 16
78 16 140 31 16 111 16 16 15 16
125 171 31 345 16 16 78 15 16 47
125 31 93 16 15 16 47 16 15 31
16 47 93 1186 32 16 47 16 15 16
78 64 156 15 31 16 125 1763 16 15
1185 46 2168 15 16 15 109 15 16 15
124 47 48 16 156 16 31 31 47 16
390 62 62 1515 390 16 31 172 31 16
15 78 62 16 889 15 187 171 16 63
327 47 32 124 889 16 16 16 15 31
171 62 31 359 16 31 31 31 16 15
203 47 15 254 31 31 15 64 530 16
187 31 16 125 140 31 327 15 196 31
47 16 16 3123 156 31 374 16 1045 31
47 171 15 15 2980 203 16 156 16 218
47 48 16 15 187 78 78 406 16 62
111 47 16 31 187 16 16 15 16 15
93 16 16 343 2200 31 31 16 15 178
111 15 32 125 31 1616 32 16 16 79
93 16 32 16 125 78 16 15 15 31
16 15 32 15 3089 78 15 16 31 203
15 15 15 231 47 31 16 16 15 15

	The game
	Approach
	Algorithm
	Optimizing brute force
	Multi-Threading and synchronization
	Experiment
	REsults
	Appendix I: source code used
	Appendix II: Raw data

