
11/23/09

1

Scaling Cache Coherence

Zeljko Zilic
McConnell Engineering Building
Room 546

Nov-23-09 ECSE 420
Parallel Computing

Scalable CC - Context

° ° °

Scalable network

CA

P

$

Switch

M

Switch Switch

Realizing Pgm Models
through net transaction
protocols
 - efficient node-to-net interface
 - interprets transactions

Caches naturally replicate
data
 - coherence through bus
snooping protocols
 - consistency

Scalable Networks
 - many simultaneous
transactions

Scalable
distributed
memory

Need cache coherence protocols that scale!
 - In general, no broadcast or single point of order

11/23/09

2

Nov-23-09 ECSE 420
Parallel Computing

Generic Solution: Directories

  Maintain state vector explicitly
  Associated with memory block (cache line)
  Records state of block in each cache

  On miss, communicate with directory
  Determine location of cached copies
  Determine action to take
  Conduct protocol to maintain coherence

P1

Cache

Memory

Scalable Interconnection Network

Comm.
Assist

P1

Cache

Comm
Assist

Directory MemoryDirectory

Nov-23-09 ECSE 420
Parallel Computing

Cache Coherent System Must:

  Provide set of states, state transition diagram, and actions
  Manage coherence protocol

  (0) Determine when to invoke coherence protocol
  (a) Find info about state of block in other caches to determine

action
  Whether need to communicate with other cached copies

  (b) Locate the other copies
  (c) Communicate with those copies (inval/update)

  (0) is done the same way on all systems
  State of the line is maintained in the cache
  Protocol is invoked if an “access fault” occurs on the line

  Different approaches distinguished by (a) to (c)

11/23/09

3

Nov-23-09 ECSE 420
Parallel Computing

Bus-based Coherence

  All of (a), (b), (c) done through broadcast on bus
  Faulting processor sends out a “search”
  Others respond to the search probe and take necessary action

  Could do it in scalable network too
  Broadcast to all processors, and let them respond

  Conceptually simple, but broadcast doesn’t scale with p
  On bus, bus bandwidth doesn’t scale
  Nn scalable network, every fault leads to at least p network

transactions

  Scalable coherence:
  Can have same cache states and state transition diagram
  Different mechanisms to manage protocol

Nov-23-09 ECSE 420
Parallel Computing

A Try: Hierarchical Snooping
  Extend snooping approach: hierarchy of broadcast media

  Tree of buses or rings (KSR-1)
  Processors are in the bus- or ring-based multiprocessors at leaves
  Parents and children connected by two-way snoopy interfaces

  Snoop both buses and propagate relevant transactions
  Main memory may be centralized at root or distributed among leaves

  Issues (a) - (c) handled similarly to bus, but not full broadcast
  Faulting processor sends out “search” bus transaction on its bus
  Propagates up and down hierarchy based on snoop results

  Problems:
  High latency: multiple levels, and snoop/lookup at every level
  Bandwidth bottleneck at root

  Not popular today

11/23/09

4

Nov-23-09 ECSE 420
Parallel Computing

Scalable Approach: Directories

  Every memory block has associated directory
information
  Keeps track of copies of cached blocks and their states
  On a miss, find directory entry, look it up, and

communicate only with the nodes that have copies if
necessary

  In scalable networks, communication with directory
and copies is through network transactions

  Many alternatives for organizing directory
information

Nov-23-09 ECSE 420
Parallel Computing

Basic Operation of Directory

• k processors.
• With each cache-block in memory: k

presence-bits, 1 dirty-bit
• With each cache-block in cache: 1

valid bit, and 1 dirty (owner) bit • ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:

• If dirty-bit OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit ON then { recall line from dirty proc (cache state to

shared); update memory; turn dirty-bit OFF; turn p[i] ON; supply
recalled data to i;}

• Write to main memory by processor i:

• If dirty-bit OFF then { supply data to i; send invalidations to all
caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }

• ...

11/23/09

5

Nov-23-09 ECSE 420
Parallel Computing

Basic Directory Transactions
P

A M/D

C

P

A M/D

C

P

A M/D

C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2 .

3 .

4a.

4 b.

P

A M/D

C
P

A M/D

C

P

A M/D

C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1 .

2 .

P

A M/D

C

Inval. req.
to sharer

Inval. ack

Inval. ack

3a. 3 b.

4a. 4 b.

Requestor

Node with
dirty copy

Directory node
for block

Requestor

Directory node

Sharer Sharer

(a) Read miss to a block in dirty state (b) Write miss to a block with two sharers

Nov-23-09 ECSE 420
Parallel Computing

A Popular Middle Ground

  Two-level “hierarchy”
  Individual nodes are multiprocessors, connected non-

hiearchically
  e.g. mesh of SMPs

  Coherence across nodes is directory-based
  Directory keeps track of nodes, not individual processors

  Coherence within nodes is snooping or directory
  Orthogonal, but needs a good interface of functionality

  Examples:
  Convex Exemplar: directory-directory
  Sequent, Data General, HAL: directory-snoopy

  SMP on a chip?

11/23/09

6

Nov-23-09 ECSE 420
Parallel Computing

Example Two-level Hierarchies

P

C

Snooping

B1

B2

P

C

P

C
B1

P

C

Main
Mem

Main
Mem

Adapter
Snooping
Adapter

P

C
B1

Bus (or Ring)

P

C

P

C
B1

P

C

Main
Mem

Main
Mem

Network

Assist Assist

Network2

P

C

AM/D

Network1

P

C

AM/D

Directory adapter

P

C

AM/D

Network1

P

C

AM/D

Directory adapter

P

C

AM/D

Network1

P

C

AM/D

Dir/Snoopy adapter

P

C

AM/D

Network1

P

C

AM/D

Dir/Snoopy adapter

(a) Snooping-snooping (b) Snooping-directory

Dir. Dir.

(c) Directory-directory (d) Directory-snooping

Nov-23-09 ECSE 420
Parallel Computing

Advantages of Multiprocessor Nodes

  Potential for cost and performance advantages
  Amortization of node fixed costs over multiple processors

  applies even if processors simply packaged together but not
coherent

  Can use commodity SMPs
  Less nodes for directory to keep track of
  Much communication may be contained within node (cheaper)
  Nodes prefetch data for each other (fewer “remote” misses)
  Combining of requests (like hierarchical, only two-level)
  Can even share caches (overlapping of working sets)
  Benefits depend on sharing pattern (and mapping)

  Good for widely read-shared: e.g. tree data in Barnes-Hut
  Good for nearest-neighbor, if properly mapped
  Not so good for all-to-all communication

11/23/09

7

Nov-23-09 ECSE 420
Parallel Computing

Disadvantages of Coherent MP Nodes
  Bandwidth shared among nodes

  all-to-all example
  Applies to coherent or not

  Bus increases latency to local memory
  With coherence, typically wait for local snoop results

before sending remote requests
  Snoopy bus at remote node increases delays there too,

increasing latency and reducing bandwidth
  May hurt performance if sharing patterns don’t comply

Nov-23-09 ECSE 420
Parallel Computing

Outline

  Today:
  Overview of directory-based approaches
  Inherent program characteristics
  Correctness, including serialization and

consistency

  Next: Implementation case study
  NUMAchine

11/23/09

8

Nov-23-09 ECSE 420
Parallel Computing

Scaling Issues
  Memory and directory bandwidth

  Centralized directory is bandwidth bottleneck, just like
centralized memory

  How to maintain directory information in distributed way?

  Performance characteristics
  Traffic: no. of network transactions each time protocol is

invoked
  Latency = no. of network transactions in critical path

  Directory storage requirements
  Number of presence bits grows as the number of processors

  How directory is organized affects all these, performance
at a target scale, as well as coherence management

Nov-23-09 ECSE 420
Parallel Computing

Insight into Directory Requirements

  If most misses involve O(P) transactions,
might as well broadcast!

=> Study Inherent program characteristics:
  Frequency of write misses?
  How many sharers on a write miss
  How these scale

  Also provides insight into how to organize
and store directory information

11/23/09

9

Nov-23-09 ECSE 420
Parallel Computing

Cache Invalidation Patterns
LU Invalidation Patterns

8.75

91.22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7

8
to

 1
1

12
 t

o
15

16
 t

o
19

20
 t

o
23

24
 t

o
27

28
 t

o
31

32
 t

o
35

36
 t

o
39

40
 t

o
43

44
 t

o
47

48
 t

o
51

52
 t

o
55

56
 t

o
59

60
 t

o
63

of invalidations

%

of

sh
ar

ed

w
rit

es

Ocean Invalidation Patterns

0

80.98

15.06

3.04 0.49 0.34 0.03 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0.02
0

10

20
30
40
50
60
70
80
90

0 1 2 3 4 5 6 7

8
to

 1
1

12
 t

o
15

16
 t

o
19

20
 t

o
23

24
 t

o
27

28
 t

o
31

32
 t

o
35

36
 t

o
39

40
 t

o
43

44
 t

o
47

48
 t

o
51

52
 t

o
55

56
 t

o
59

60
 t

o
63

of invalidations

%

of

sh
ar

ed

w
rit

es

Nov-23-09 ECSE 420
Parallel Computing

Cache Invalidation Patterns
Barnes-Hut Invalidation Patterns

1.27

48.35

22.87

10.56

5.33
2.87 1.88 1.4 2.5 1.06 0.61 0.24 0.28 0.2 0.06 0.1 0.07 0 0 0 0 0.33

0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6 7

8
to

 1
1

12
 t

o
15

16
 t

o
19

20
 t

o
23

24
 t

o
27

28
 t

o
31

32
 t

o
35

36
 t

o
39

40
 t

o
43

44
 t

o
47

48
 t

o
51

52
 t

o
55

56
 t

o
59

60
 t

o
63

of invalidations

%

of

sh
ar

ed

w
rit

es

Radiosity Invalidation Patterns

6.68

58.35

12.04

4.16 2.24 1.59 1.16 0.97 3.28 2.2 1.74 1.46 0.92 0.45 0.37 0.31 0.28 0.26 0.24 0.19 0.19 0.91
0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

8
to

 1
1

12
 t

o
15

16
 t

o
19

20
 t

o
23

24
 t

o
27

28
 t

o
31

32
 t

o
35

36
 t

o
39

40
 t

o
43

44
 t

o
47

48
 t

o
51

52
 t

o
55

56
 t

o
59

60
 t

o
63

of invalidations

%

of

sh
ar

ed

w
rit

es

11/23/09

10

Nov-23-09 ECSE 420
Parallel Computing

Sharing Patterns Summary
  Generally, few sharers at a write, scales slowly with P

  Code and read-only objects (e.g, scene data in Raytrace)
  No problems as rarely written

  Migratory objects (e.g., cost array cells in LocusRoute)
  Even as # of PEs scale, only 1-2 invalidations

  Mostly-read objects (e.g., root of tree in Barnes)
  Invalidations are large but infrequent, so little impact on performance

  Frequently read/written objects (e.g., task queues)
  Invalidations usually remain small, though frequent

  Synchronization objects
  Low-contention locks result in small invalidations
  High-contention locks need special support (SW trees, queueing locks)

  Implies directories very useful in containing traffic
  If organized properly, traffic and latency shouldn’t scale too badly

  Suggests techniques to reduce storage overhead

Nov-23-09 ECSE 420
Parallel Computing

Organizing Directories

Centralized Distributed

Hierarchical Flat

Memory-based Cache-based

Directory Schemes

How to find source of
directory information

How to locate copies

11/23/09

11

Nov-23-09 ECSE 420
Parallel Computing

How to Find Directory Information

  Centralized memory and directory - easy:
go to it
  But not scalable

  Distributed memory and directory
  Flat schemes

  Directory distributed with memory: at the home
  Location based on address (hashing): network

xaction sent directly to home
  Hierarchical schemes

  ??

Nov-23-09 ECSE 420
Parallel Computing

How Hierarchical Directories Work

  Directory is a hierarchical data structure
  Leafs are processing nodes, internal nodes just directory
  Logical hierarchy, not necessarily physical

  (can be embedded in general network)

processing nodes

level-1 directory

level-2 directory

(Tracks which of its children
processing nodes have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
processor caches and directory.)(Tracks which of its children

level-1 directories have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
level-1 directories and level-2 directory.)

11/23/09

12

Nov-23-09 ECSE 420
Parallel Computing

Find Directory Info (cont)
  Distributed memory and directory

  Flat schemes
  Hash

  Hierarchical schemes
  Node’s directory entry for a block says whether

each subtree caches the block
  To find directory info, send “search” message

up to parent
  Routes itself through directory lookups

  Like hiearchical snooping, but point-to-point
messages between children and parents

Nov-23-09 ECSE 420
Parallel Computing

How Is Location of Copies Stored?

  Hierarchical Schemes
  Through the hierarchy
  Each directory has presence bits child subtrees and dirty bit

  Flat Schemes
  Vary a lot
  Different storage overheads and performance characteristics

  Memory-based schemes
  Info about copies stored all at the home with the memory block
  Dash, Alewife , SGI Origin, Flash

  Cache-based schemes
  Info about copies distributed among copies themselves

  Each copy points to next

  Scalable Coherent Interface (SCI: IEEE standard)

11/23/09

13

Nov-23-09 ECSE 420
Parallel Computing

Flat, Memory-based Schemes

  Info about copies colocated with block at the home
  Performance Scaling

  Traffic on a write: proportional to # sharers
  Latency on write: can issue invalidations to sharers in

parallel

  Storage overhead
  Simplest representation: full bit vector, i.e. one

presence bit per node
  Storage overhead doesn’t scale well with P; 64-byte

line implies
  64 nodes: 12.7% ovhd.
  256 nodes: 50% ovhd.; 1024 nodes: 200% ovhd.

  For M memory blocks in memory, storage overhead is
proportional to P*M

P

M

Nov-23-09 ECSE 420
Parallel Computing

P

M

Reducing Storage Overhead
  Optimizations for full bit vector schemes

  Increase cache block size (reduces storage overhead
proportionally)

  Use multiprocessor nodes (bit per mp node, not per
processor)

  Still scales as P*M, but reasonable for all but very large
machines
  256-procs, 4 per cluster, 128B line: 6.25% ovhd.

  Reducing “width”
  Addressing the P term?

  Reducing “height”
  Addressing the M term?

11/23/09

14

Nov-23-09 ECSE 420
Parallel Computing

Storage Reductions
  Width observation:

  Most blocks cached by only few nodes
  Don’t have a bit per node, but entry contains a few pointers to

sharing nodes
  P=1024 => 10 bit ptrs, can use 100 pointers and still save space
  Sharing patterns indicate a few pointers should suffice (five or so)
  Need an overflow strategy when there are more sharers

  Height observation:
  Number of memory blocks >> number of cache blocks
  Most directory entries are useless at any given time
  Organize directory as a cache, rather than having one entry per

memory block

Nov-23-09 ECSE 420
Parallel Computing

P

Cache

P

Cache

P

Cache

Main Memory
(Home)

Node 0 Node 1 Node 2

Flat, Cache-based Schemes
  How they work:

  Home only holds pointer to rest of directory info
  Distributed linked list of copies, weaves through caches

  Cache tag has pointer, points to next cache with a copy
  On read, add yourself to head of the list (comm. needed)
  On write, propagate chain of invals down the list

  Scalable Coherent Interface
  Doubly linked list
  IEEE Standard

11/23/09

15

Nov-23-09 ECSE 420
Parallel Computing

Scaling Properties (Cache-based)
  Traffic on write: proportional to number of sharers
  Latency on write: proportional to number of sharers!

  Don’t know identity of next sharer until reach current one
  Also assist processing at each node along the way
  (even reads involve more than one other assist: home and

first sharer on list)

  Storage overhead: quite good scaling along both axes
  Only one head ptr per memory block

  Rest is all prop to cache size

  Very complex!!!

Nov-23-09 ECSE 420
Parallel Computing

Summary of Directory Schemes
  Flat Schemes:
  Issue (a): finding source of directory data

  Go to home, based on address

  Issue (b): finding out where the copies are
  Memory-based: all info is in directory at home
  Cache-based: home has pointer to first element of distributed linked list

  Issue (c): communicating with those copies
  Memory-based: point-to-point messages (perhaps coarser on overflow)

  Can be multicast or overlapped
  Cache-based: part of point-to-point linked list traversal to find them

  Serialized

  Hierarchical Schemes:
  All three issues through sending messages up and down tree
  No single explict list of sharers
  Only direct communication is between parents and children

11/23/09

16

Nov-23-09 ECSE 420
Parallel Computing

Summary of Directory Schemes
  Directories offer scalable coherence on general networks

  No need for broadcast media

  Many possibilities for organizing directory and managing
protocols

  Hierarchical directories not used much
  High latency, many network transactions, and bandwidth

bottleneck at root

  Both memory-based and cache-based flat schemes are
alive
  For memory-based, full bit vector suffices for moderate scale

  Measured in nodes visible to directory protocol, not
processors

Nov-23-09 ECSE 420
Parallel Computing

Issues for Directory Protocols

  Correctness
  Performance
  Complexity and dealing with errors

Discuss major correctness and performance issues that
a protocol must address

Then delve into memory- and cache-based protocols,
tradeoffs in how they might address (case studies)

Complexity will become apparent through this

11/23/09

17

Nov-23-09 ECSE 420
Parallel Computing

Correctness
  Ensure basics of coherence at state transition level

  Relevant lines are updated/invalidated/fetched
  Correct state transitions and actions happen

  Ensure ordering and serialization constraints are met
  For coherence (single location)
  For consistency (multiple locations): assume sequential

consistency

  Avoid deadlock, livelock, starvation
  Problems:

  Multiple copies AND multiple paths through network (distributed
pathways)

  Unlike bus and non cache-coherent (each had only one)
  Large latency makes optimizations attractive

  Increase concurrency, complicate correctness

Nov-23-09 ECSE 420
Parallel Computing

Coherence: Serialization to a
Location

  Need entity that sees op’s from many procs
  Bus:

  Multiple copies, but serialization by bus imposed order

  Scalable MP without coherence:
  Main memory module determined order

  Scalable MP with cache coherence
  Home memory good candidate

  All relevant ops go home first

  But multiple copies
  Valid copy of data may not be in main memory
  Reaching main memory in one order does not mean will reach

valid copy in that order
  Serialized in one place doesn’t mean serialized wrt all copies

11/23/09

18

Nov-23-09 ECSE 420
Parallel Computing

Basic Serialization Solution

  Use additional ‘busy’ or ‘pending’
directory states

  Indicate that operation is in progress,
further operations on location must
be delayed
  buffer at home
  buffer at requestor
  NACK and retry
  forward to dirty node

Nov-23-09 ECSE 420
Parallel Computing

Sequential Consistency
  Bus-based:

  Write completion: wait till gets on bus
  Write atomicity: bus plus buffer ordering provides

  Non-coherent scalable case
  Write completion: needed to wait for explicit ack from

memory
  Write atomicity: easy due to single copy

  With multiple copies and distributed network paths
  Write completion: need explicit acks from copies

themselves
  Writes are not easily atomic
  ... in addition to issues with bus-based and non-coherent

11/23/09

19

Nov-23-09 ECSE 420
Parallel Computing

Write Atomicity Problem

Interconnection Network

Cache

Mem

P1

Cache

Mem

P2

Cache

Mem

P3

A=1; while (A==0) ;
B=1; while (B==0) ;

print A;

A=1

A=1

B=1delay

A:0->1 A:0
B:0->1

Nov-23-09 ECSE 420
Parallel Computing

Basic Solution

  In invalidation-based scheme, block
owner (mem to $) provides
appearance of atomicity by waiting
for all invalidations to be ack’d before
allowing access to new value.

  Much harder in update schemes!

11/23/09

20

Nov-23-09 ECSE 420
Parallel Computing

Deadlock, Livelock, Starvation
  Request-response protocol
  Similar issues to those discussed earlier

  A node may receive too many messages
  Flow control can cause deadlock
  Separate request and reply networks with request-reply

protocol
  Or NACKs, but potential livelock and traffic problems

  New problem: protocols often are not strict request-reply
  e.g. rd-excl generates inval requests (which generate ack

replies)
  Other cases to reduce latency and allow concurrency

  Must address livelock and starvation too
  Will see how protocols address these correctness issues

Nov-23-09 ECSE 420
Parallel Computing

Performance

  Latency
  Protocol optimizations to reduce network

transactions in critical path
  Overlap activities or make them faster

  Throughput
  Reduce number of protocol operations

per invocation
  Care about how these scale with the

number of nodes

11/23/09

21

Nov-23-09 ECSE 420
Parallel Computing

Protocol Enhancements for Latency
  Forwarding messages: memory-based protocols

L H R
1: req

2:reply

3:intervention

4a:revise

4b:response

L H R

1: req 2:intervention

3:response4:reply

L H R

1: req 2:intervention

3b:response

3a:revise

(a) Strict request-reply (a) Intervention forwarding

(a) Reply forwarding

Intervention is like a req,
but issued in reaction to
req. and sent to cache,
rather than memory.

Nov-23-09 ECSE 420
Parallel Computing

Other Latency Optimizations

  Throw hardware at critical path
  SRAM for directory (sparse or cache)
  Bit per block in SRAM to tell if protocol should be

invoked

  Overlap activities in critical path
  Multiple invalidations at a time in memory-based
  Overlap invalidations and acks in cache-based
  Lookups of directory and memory, or lookup

with transaction
  Speculative protocol operations

11/23/09

22

Nov-23-09 ECSE 420
Parallel Computing

Increasing Throughput
  Reduce the number of transactions per operation

  invals, acks, replacement hints
  All incur bandwidth and assist occupancy

  Reduce assist occupancy or overhead of protocol
processing
  Transactions small and frequent, so occupancy very

important

  Pipeline the assist (protocol processing)
  Many ways to reduce latency also increase

throughput
  e.g. forwarding to dirty node, throwing hardware at

critical path...

Nov-23-09 ECSE 420
Parallel Computing

Complexity

  Cache coherence protocols are complex
  Choice of approach

  Conceptual and protocol design versus implementation

  Tradeoffs within an approach
  Performance enhancements often add complexity,

complicate correctness
  More concurrency, potential race conditions
  Not strict request-reply

  Many subtle corner cases
  BUT, increasing understanding/adoption makes job easier
  Automatic verification is important but hard

11/23/09

23

Nov-23-09 ECSE 420
Parallel Computing

Summary

  In directory protocol there is substantial
implementation complexity below the
logical state diagram
  Directory vs cache states
  Transient states
  Race conditions
  Conditional actions
  Speculation

  Real systems reflect interplay of design
issues at several levels

