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Realizing Pgm Models 
through net transaction 
protocols 
  - efficient node-to-net interface 
  - interprets transactions 

Caches naturally replicate 
data 
  - coherence through bus 
snooping protocols 
  - consistency 

Scalable Networks 
  - many simultaneous 
transactions 

Scalable 
distributed 
memory 

Need cache coherence protocols that scale! 
   - In general, no broadcast or single point of order 
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Generic Solution: Directories 

  Maintain state vector explicitly  
  Associated with memory block (cache line) 
  Records state of block in each cache 

  On miss, communicate with directory 
  Determine location of cached copies 
  Determine action to take 
  Conduct protocol to maintain coherence 
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Cache

Memory

Scalable Interconnection Network

Comm.
Assist

P1

Cache

Comm
Assist

Directory MemoryDirectory
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Cache Coherent System Must: 

  Provide set of states, state transition diagram, and actions 
  Manage coherence protocol 

  (0)  Determine when to invoke coherence protocol 
  (a)  Find info about state of block in other caches to determine 

action 
  Whether need to communicate with other cached copies 

  (b)  Locate  the other copies 
  (c)  Communicate with those copies  (inval/update) 

  (0) is done the same way on all systems 
  State of the line is maintained in the cache 
  Protocol is invoked if an “access fault” occurs on the line 

  Different approaches distinguished by (a) to (c) 
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Bus-based Coherence 

  All of (a), (b), (c) done through broadcast on bus 
  Faulting processor sends out a “search”  
  Others respond to the search probe and take necessary action 

  Could do it in scalable network too 
  Broadcast to all processors, and let them respond 

  Conceptually simple, but broadcast doesn’t scale with p 
  On bus, bus bandwidth doesn’t scale 
  Nn scalable network, every fault leads to at least  p network 

transactions 

  Scalable coherence: 
  Can have same cache states and state transition diagram 
  Different mechanisms to manage protocol 
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A Try: Hierarchical Snooping 
  Extend snooping approach: hierarchy of broadcast media 

  Tree of buses or rings (KSR-1) 
  Processors are in the bus- or ring-based multiprocessors at leaves 
  Parents and children connected by two-way snoopy interfaces 

  Snoop both buses and propagate relevant transactions 
  Main memory may be centralized at root or distributed among leaves 

  Issues (a) - (c) handled similarly to bus, but not full broadcast  
  Faulting processor sends out “search” bus transaction on its bus 
  Propagates up and down hierarchy based on snoop results 

  Problems:  
  High latency: multiple levels, and snoop/lookup at every level 
  Bandwidth bottleneck at root 

  Not popular today 
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Scalable Approach: Directories 

   Every memory block has associated directory 
information 
  Keeps track of copies of cached blocks and their states 
  On a miss, find directory entry, look it up, and 

communicate only with the nodes that have copies if 
necessary 

  In scalable networks, communication with directory 
and copies is through network transactions 

  Many alternatives for organizing directory 
information 
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Basic Operation of Directory 

•  k processors.   
•  With each cache-block in memory: k  

presence-bits, 1 dirty-bit 
•  With each cache-block in cache:    1 

valid bit, and 1 dirty (owner) bit • ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i: 

• If dirty-bit OFF then { read from main memory; turn p[i] ON; } 
• if dirty-bit ON   then { recall line from dirty proc (cache state to 

shared); update memory; turn dirty-bit OFF; turn p[i] ON; supply 
recalled data to i;} 

• Write to main memory by processor i: 

• If dirty-bit OFF then { supply data to i; send invalidations to all 
caches that have the block; turn dirty-bit ON; turn p[i] ON; ... } 

• ... 
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Basic Directory Transactions 
P
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Read request
to directory

Reply with
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Read req.
to owner

Data
Reply

Revision message
to directory
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2 .

3 .

4a.

4 b.

P
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RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1 .

2 .

P

A M/D

C

Inval. req.
to sharer

Inval. ack
 

Inval. ack
 

3a. 3 b.

4a. 4 b.

Requestor

Node with
dirty copy

Directory node
for block

Requestor

Directory node

Sharer Sharer

(a) Read miss to a block in dirty state (b) Write miss to a block with two sharers
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A Popular Middle Ground 

  Two-level “hierarchy” 
  Individual nodes are multiprocessors, connected non-

hiearchically 
  e.g. mesh of SMPs 

  Coherence across nodes is directory-based 
  Directory keeps track of nodes, not individual processors 

  Coherence within nodes is snooping or directory 
  Orthogonal, but needs a good interface of functionality 

  Examples: 
  Convex Exemplar: directory-directory 
  Sequent, Data General, HAL: directory-snoopy 

  SMP on a chip? 
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Example Two-level Hierarchies 
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(a) Snooping-snooping (b) Snooping-directory

Dir. Dir.

(c) Directory-directory (d) Directory-snooping
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Advantages of Multiprocessor Nodes 

  Potential for cost and performance advantages 
  Amortization of node fixed costs over multiple processors 

  applies even if processors  simply packaged together but not 
coherent 

  Can use commodity SMPs 
  Less nodes for directory to keep track of 
  Much communication may be contained within node (cheaper) 
  Nodes prefetch data for each other (fewer “remote” misses) 
  Combining of requests (like hierarchical, only two-level) 
  Can even share caches (overlapping of working sets) 
  Benefits depend on sharing pattern (and mapping) 

  Good for widely read-shared: e.g. tree data in Barnes-Hut 
  Good for nearest-neighbor, if properly mapped 
  Not so good for all-to-all communication 
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Disadvantages of Coherent MP Nodes 
  Bandwidth shared among nodes 

  all-to-all example 
  Applies to coherent or not 

  Bus increases latency to local memory 
  With coherence, typically wait for local snoop results 

before sending remote requests 
  Snoopy bus at remote node increases delays there too, 

increasing latency and reducing bandwidth 
  May hurt performance if sharing patterns don’t comply 
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Outline 

  Today: 
  Overview of  directory-based approaches 
  Inherent program characteristics 
  Correctness, including serialization and 

consistency 

  Next: Implementation case study 
  NUMAchine 
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Scaling Issues 
  Memory and directory bandwidth 

  Centralized directory is bandwidth bottleneck, just like 
centralized memory 

  How to maintain directory information in distributed way? 

  Performance characteristics 
  Traffic: no. of network transactions  each time protocol is 

invoked 
  Latency = no. of network transactions in critical path 

  Directory storage requirements 
  Number of presence bits grows as the number of processors 

  How directory is organized affects all these, performance 
at a target scale, as well as coherence management  
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Insight into Directory Requirements 

  If most misses involve O(P) transactions, 
might as well broadcast! 

=> Study Inherent program characteristics: 
  Frequency of write misses? 
  How many sharers on a write miss 
  How these scale 

  Also provides insight into how to organize 
and store directory information 
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Cache Invalidation Patterns 
LU Invalidation Patterns
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Cache Invalidation Patterns 
Barnes-Hut Invalidation Patterns
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Radiosity Invalidation Patterns

6.68

58.35

12.04

4.16 2.24 1.59 1.16 0.97 3.28 2.2 1.74 1.46 0.92 0.45 0.37 0.31 0.28 0.26 0.24 0.19 0.19 0.91
0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

8 
to

 1
1

12
 t

o 
15

16
 t

o 
19

20
 t

o 
23

24
 t

o 
27

28
 t

o 
31

32
 t

o 
35

36
 t

o 
39

40
 t

o 
43

44
 t

o 
47

48
 t

o 
51

52
 t

o 
55

56
 t

o 
59

60
 t

o 
63

# of  invalidations

%
 

of
 

sh
ar

ed
 

w
rit

es



11/23/09 

10 

Nov-23-09 ECSE 420 
Parallel Computing 

Sharing Patterns Summary 
  Generally, few sharers at a write, scales slowly with P 

  Code and read-only objects (e.g, scene data in Raytrace) 
  No problems as rarely written 

  Migratory objects (e.g., cost array cells in LocusRoute) 
  Even as # of PEs scale, only 1-2 invalidations 

  Mostly-read objects (e.g., root of tree in Barnes)  
  Invalidations are large but infrequent, so little impact on performance 

  Frequently read/written objects (e.g., task queues) 
  Invalidations usually remain small, though frequent 

  Synchronization objects 
  Low-contention locks result in small invalidations 
  High-contention locks need special support (SW trees, queueing locks) 

  Implies directories very useful in containing traffic 
  If organized properly, traffic and latency shouldn’t scale too badly 

  Suggests techniques to reduce storage overhead 
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Organizing Directories 

Centralized Distributed 

Hierarchical Flat 

Memory-based Cache-based 

Directory Schemes 

How to find source of 
directory information 

How to locate copies 
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How to Find Directory Information 

  Centralized memory and directory - easy: 
go to it 
  But not scalable 

  Distributed memory and directory 
  Flat schemes 

  Directory distributed with memory: at the home 
  Location based on address (hashing): network 

xaction sent directly to home 
  Hierarchical schemes 

  ?? 
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How Hierarchical Directories Work 

  Directory is a hierarchical data structure 
  Leafs are processing nodes, internal nodes just directory 
  Logical hierarchy, not necessarily physical  

  (can be embedded in general network) 

processing nodes

level-1 directory

level-2 directory

(Tracks which of its children
processing nodes have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
processor caches and directory.)(Tracks which of its children

level-1 directories have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
level-1 directories and level-2 directory.)
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Find Directory Info (cont) 
  Distributed memory and directory 

  Flat schemes 
  Hash 

  Hierarchical schemes 
  Node’s directory entry for a block says whether 

each subtree caches the block 
  To find directory info, send “search” message 

up to parent 
  Routes itself through directory lookups 

  Like hiearchical snooping, but point-to-point 
messages between children and parents 
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How Is Location of Copies Stored? 

  Hierarchical Schemes 
  Through the hierarchy 
  Each directory has presence bits child subtrees and dirty bit 

  Flat Schemes 
  Vary a lot 
  Different storage overheads and performance characteristics 

  Memory-based schemes 
  Info about copies stored all at the home with the memory block 
  Dash, Alewife , SGI Origin, Flash 

  Cache-based schemes 
  Info about copies distributed among copies themselves 

  Each copy  points to next 

  Scalable Coherent Interface (SCI: IEEE standard) 
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Flat, Memory-based Schemes 

  Info about copies colocated with block at the home 
  Performance Scaling 

  Traffic on a write: proportional to # sharers 
  Latency on write: can issue invalidations to sharers in 

parallel 

  Storage overhead 
  Simplest representation: full bit vector, i.e. one 

presence bit per node 
  Storage overhead doesn’t scale well with P; 64-byte 

line implies 
  64 nodes: 12.7% ovhd. 
  256 nodes: 50% ovhd.; 1024 nodes: 200% ovhd. 

  For M memory blocks in memory, storage overhead is 
proportional to P*M 

P 

M 
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P 

M 

Reducing Storage Overhead 
  Optimizations for full bit vector schemes 

  Increase cache block size (reduces storage overhead 
proportionally) 

  Use multiprocessor nodes (bit per mp node, not per 
processor) 

  Still scales as P*M, but reasonable for all but very large 
machines 
  256-procs, 4 per cluster, 128B line:  6.25% ovhd. 

  Reducing “width” 
  Addressing the P term? 

  Reducing “height” 
  Addressing the M term? 
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Storage Reductions 
  Width observation:  

  Most blocks cached by only few nodes 
  Don’t have a bit per node, but entry contains a few pointers to 

sharing nodes 
  P=1024 => 10 bit ptrs, can use 100  pointers and still save space 
  Sharing patterns indicate a few pointers should suffice (five or so) 
  Need an overflow strategy when there are more sharers 

  Height observation:  
  Number of memory blocks >> number of cache blocks 
  Most directory entries are useless at any given time 
  Organize directory as a cache, rather than having one entry per 

memory block 
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P

Cache

P

Cache

P

Cache

Main Memory
(Home)

Node 0 Node 1 Node 2

Flat, Cache-based Schemes 
  How they work: 

  Home only holds pointer to rest of directory info 
  Distributed linked list of copies, weaves through caches 

  Cache tag has pointer, points to next cache with a copy 
  On read, add yourself to head of the list (comm. needed) 
  On write, propagate chain of invals down the list 

  Scalable Coherent Interface 
  Doubly linked list 
  IEEE Standard 
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Scaling Properties (Cache-based) 
  Traffic on write: proportional to number of sharers 
  Latency on write: proportional to number of sharers! 

  Don’t know identity of next sharer until reach current one 
  Also assist processing at each node along the way 
  (even reads involve more than one other assist: home and 

first sharer on list) 

  Storage overhead: quite good scaling along both axes 
  Only one head ptr per memory block 

  Rest is all prop to cache size 

  Very complex!!! 
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Summary of Directory Schemes 
  Flat Schemes: 
  Issue (a): finding source of directory data 

  Go to home, based on address 

  Issue (b): finding out where the copies are 
  Memory-based: all info is in directory at home 
  Cache-based: home has pointer to first element of distributed linked list 

  Issue (c): communicating with those copies 
  Memory-based: point-to-point messages (perhaps coarser on overflow) 

  Can be multicast or overlapped 
  Cache-based: part of point-to-point linked list traversal  to find them 

  Serialized 

  Hierarchical Schemes: 
  All three issues through sending messages up and down tree 
  No single explict list of sharers 
  Only direct communication is between parents and children 
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Summary of Directory Schemes 
  Directories offer scalable coherence on general networks 

  No need for broadcast media 

  Many possibilities for organizing directory and managing 
protocols 

  Hierarchical directories not used much 
  High latency, many network transactions, and bandwidth 

bottleneck at root 

  Both memory-based and cache-based flat schemes are 
alive 
  For memory-based, full bit vector suffices for moderate scale 

  Measured in nodes visible to directory protocol, not 
processors 
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Issues for Directory Protocols 

  Correctness 
  Performance 
  Complexity and dealing with errors 

Discuss major correctness and performance issues that 
a protocol must address 

Then delve into memory- and cache-based protocols, 
tradeoffs in how they might address (case studies) 

Complexity will become apparent through this 
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Correctness 
  Ensure basics of coherence at state transition level 

  Relevant lines are updated/invalidated/fetched 
  Correct state transitions and actions happen 

  Ensure ordering and serialization constraints are met 
  For coherence (single location) 
  For consistency (multiple locations): assume sequential 

consistency 

  Avoid deadlock, livelock, starvation 
  Problems: 

  Multiple copies AND multiple paths through network (distributed 
pathways) 

  Unlike bus and non cache-coherent (each had only one) 
  Large latency makes optimizations attractive 

  Increase concurrency, complicate correctness 
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Coherence: Serialization to a 
Location 

  Need entity that sees op’s from many procs 
  Bus:  

  Multiple copies, but serialization by bus imposed order 

  Scalable MP without  coherence: 
  Main memory module determined order 

  Scalable MP with cache coherence 
  Home memory good candidate 

  All relevant ops go home first 

  But multiple copies 
  Valid copy of data may not be in main memory 
  Reaching main memory in one order does not mean will reach 

valid copy in that order 
  Serialized in one place doesn’t mean serialized wrt all copies 
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Basic Serialization Solution 

  Use additional ‘busy’ or ‘pending’ 
directory states 

  Indicate that operation is in progress, 
further operations on location must 
be delayed 
  buffer at home 
  buffer at requestor 
  NACK and retry 
  forward to dirty node 
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Sequential Consistency 
  Bus-based: 

  Write completion: wait till gets on bus 
  Write atomicity: bus plus buffer ordering provides 

  Non-coherent scalable case 
  Write completion: needed to wait for explicit ack from 

memory 
  Write atomicity: easy due to single copy 

  With multiple copies and distributed network paths 
  Write completion: need explicit acks from copies 

themselves 
  Writes are not easily atomic 
  ... in addition to issues with bus-based and non-coherent 
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Write Atomicity Problem 

Interconnection Network

Cache

Mem

P1

Cache

Mem

P2

Cache

Mem

P3

A=1; while (A==0) ;
B=1; while (B==0) ;

print A;

A=1

A=1

B=1delay

A:0->1 A:0
B:0->1
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Basic Solution 

  In invalidation-based scheme, block 
owner (mem to $) provides 
appearance of atomicity by waiting 
for all invalidations to be ack’d before 
allowing access to new value. 

  Much harder in update schemes! 
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Deadlock, Livelock, Starvation 
  Request-response protocol 
  Similar issues to those discussed earlier 

  A node may receive too many messages 
  Flow control can cause deadlock 
  Separate request and reply networks with request-reply 

protocol 
  Or NACKs, but potential livelock and traffic problems 

  New problem: protocols often are not strict request-reply 
  e.g. rd-excl generates inval requests (which generate ack 

replies) 
  Other cases to reduce latency and allow concurrency 

  Must address livelock and starvation too 
  Will see how protocols address these correctness issues 
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Performance 

  Latency 
  Protocol optimizations to reduce network 

transactions in critical path 
  Overlap activities or make them faster 

  Throughput 
  Reduce number of protocol operations 

per invocation 
  Care about how these scale with the 

number of nodes 
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Protocol Enhancements for Latency  
  Forwarding messages: memory-based protocols 

L H R
1: req

2:reply

3:intervention

4a:revise

4b:response

L H R

1: req 2:intervention

3:response4:reply

L H R

1: req 2:intervention

3b:response

3a:revise

(a) Strict request-reply (a) Intervention forwarding

(a) Reply forwarding

Intervention is like a req, 
but issued in reaction to  
req. and sent to cache,  
rather than memory. 
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Other Latency Optimizations 

  Throw hardware at critical path 
  SRAM for directory (sparse or cache) 
  Bit per block in SRAM to tell if protocol should be 

invoked 

  Overlap activities in critical path 
  Multiple invalidations at a time in memory-based 
  Overlap invalidations and acks in cache-based 
  Lookups of directory and memory, or lookup 

with transaction 
  Speculative protocol operations 



11/23/09 

22 

Nov-23-09 ECSE 420 
Parallel Computing 

Increasing Throughput 
  Reduce the number of transactions per operation 

  invals, acks, replacement hints 
  All incur bandwidth and assist occupancy 

  Reduce assist occupancy or overhead of protocol 
processing 
  Transactions small and frequent, so occupancy very 

important 

  Pipeline the assist (protocol processing) 
  Many ways to reduce latency also increase 

throughput 
  e.g. forwarding to dirty node, throwing hardware at 

critical path... 
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Complexity 

  Cache coherence protocols are complex 
  Choice of approach 

  Conceptual and protocol design versus implementation 

  Tradeoffs within an approach 
  Performance enhancements often add complexity, 

complicate correctness 
  More concurrency, potential race conditions 
  Not strict request-reply 

  Many subtle corner cases 
  BUT, increasing understanding/adoption makes job easier 
  Automatic verification is important but hard 
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Summary 

  In directory protocol there is substantial 
implementation complexity below the 
logical state diagram 
  Directory vs cache states 
  Transient states 
  Race conditions 
  Conditional actions 
  Speculation 

  Real systems reflect interplay of design 
issues at several levels 


