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Scalable CC - Context
Scalable Network:
- many simultaneous
Realizing Pgm Models transactions
through net transaction

protocols Scalable network
- efficient node-to-net interface

- interprets transactions
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Scalable
distributed|
memory

Caches naturally replicate
data

- coherence through bus
snooping protocols

- consistency

Need cache coherence protocols that scale!
- In general, no broadcast or single point of order
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Generic Solution: Directories

Directory Memory Directory  Memory

o Maintain state vector explicitly
m  Associated with memory block (cache line)
= Records state of block in each cache
o On miss, communicate with directory
m  Determine location of cached copies
m  Determine action to take
m  Conduct protocol to maintain coherence
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Cache Coherent System Must:

Provide set of states, state transition diagram, and actions

Manage coherence protocol

m  (0) Determine when to invoke coherence protocol

m  (a) Find info about state of block in other caches to determine
action
o Whether need to communicate with other cached copies

m  (b) Locate the other copies

m  (c) Communicate with those copies (inval/update)

(0) is done the same way on all systems

= State of the line is maintained in the cache

m  Protocol is invoked if an “access fault” occurs on the line

Different approaches distinguished by (a) to (c)

Nov-23-09 ECSE 420 TR MCGlll
Parallel Computing *




Bus-based Coherence

All of (a), (b), (c) done through broadcast on bus

m  Faulting processor sends out a “search”

m  Others respond to the search probe and take necessary action
Could do it in scalable network too

m  Broadcast to all processors, and let them respond
Conceptually simple, but broadcast doesn’t scale with p

= On bus, bus bandwidth doesn’t scale

m  Nn scalable network, every fault leads to at least p network
transactions

Scalable coherence:

m  Can have same cache states and state transition diagram
m Different mechanisms to manage protocol
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A Try: Hierarchical Snooping

Extend snooping approach: hierarchy of broadcast media
= Tree of buses or rings (KSR-1)
m  Processors are in the bus- or ring-based multiprocessors at leaves
m  Parents and children connected by two-way snoopy interfaces

o Snoop both buses and propagate relevant transactions
= Main memory may be centralized at root or distributed among leaves
Issues (a) - (c) handled similarly to bus, but not full broadcast
m Faulting processor sends out “search” bus transaction on its bus
= Propagates up and down hierarchy based on snoop results
Problems:
= High latency: multiple levels, and snoop/lookup at every level
= Bandwidth bottleneck at root
Not popular today
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Scalable Approach: Directories

o Every memory block has associated directory
information
m  Keeps track of copies of cached blocks and their states

= On a miss, find directory entry, look it up, and
communicate only with the nodes that have copies if
necessary

m In scalable networks, communication with directory
and copies is through network transactions
o Many alternatives for organizing directory
information
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Basic Operation of Directory

| Cache| | Cache| * k processors.
+ With each cache-block in memory: k
| Interconnection Network | presence-bits, 1 dirty-bit
I I + With each cache-block in cache: 1
Memory e L L LT “: Directory valid bit, and 1 dirty (owner) bit

’ v
presence bits  dirty bit
¢ Read from main memory by processor i:
o If dirty-bit OFF then { read from main memory; turn p[i] ON; }

o if dirty-bit ON then { recall line from dirty proc (cache state to
shared); update memory; turn dirty-bit OFF; turn p[i] ON; supply
recalled data to i;}

¢ Write to main memory by processor i:
o If dirty-bit OFF then { supply data to i; send invalidations to all

o Noy-23-09 ECSE 420 TR MCGlll
Parallel Computing *

11/23/09



Basic Directory Transactions
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A Popular Middle Ground

o Two-level “hierarchy”
o Individual nodes are multiprocessors, connected non-
hiearchically
= e.g. mesh of SMPs
o Coherence across nodes is directory-based
= Directory keeps track of nodes, not individual processors
o Coherence within nodes is shooping or directory
m  Orthogonal, but needs a good interface of functionality
o Examples:
m Convex Exemplar: directory-directory
m  Sequent, Data General, HAL: directory-snoopy

o SMP on a chip?
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Example Two-level Hierarchies

Network1 Network1

Bus (or Ring)

Network2

(¢) Directory-directory (d) Directory-snooping
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Advantages of Multiprocessor Nodes

o Potential for cost and performance advantages
= Amortization of node fixed costs over multiple processors

o applies even if processors simply packaged together but not
coherent

Can use commodity SMPs

Less nodes for directory to keep track of

Much communication may be contained within node (cheaper)
Nodes prefetch data for each other (fewer “remote” misses)
Combining of requests (like hierarchical, only two-level)

Can even share caches (overlapping of working sets)

Benefits depend on sharing pattern (and mapping)

o Good for widely read-shared: e.g. tree data in Barnes-Hut

o Good for nearest-neighbor, if properly mapped

o Not so good for all-to-all communication
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Disadvantages of Coherent MP Nodes

o Bandwidth shared among nodes
m all-to-all example
m Applies to coherent or not
o Bus increases latency to local memory

o With coherence, typically wait for local snoop results
before sending remote requests

O Snoopy bus at remote node increases delays there too,
increasing latency and reducing bandwidth

o May hurt performance if sharing patterns don’t comply

Hoe08 Paralllzgls(l:zo:wzpouting MC Gill
Outline
o Today:

m Overview of directory-based approaches
= Inherent program characteristics
m Correctness, including serialization and
consistency
o Next: Implementation case study
= NUMAchine
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Scaling Issues

Memory and directory bandwidth

m  Centralized directory is bandwidth bottleneck, just like
centralized memory

= How to maintain directory information in distributed way?
Performance characteristics

= Traffic: no. of network transactions each time protocol is
invoked

m Latency = no. of network transactions in critical path
Directory storage requirements
= Number of presence bits grows as the number of processors

How directory is organized affects all these, performance
at a target scale, as well as coherence management
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Insight into Directory Requirements

o If most misses involve O(P) transactions,
might as well broadcast!

=> Study Inherent program characteristics:
= Frequency of write misses?

= How many sharers on a write miss
= How these scale

o Also provides insight into how to organize
and store directory information
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Cache Invalidation Patterns

LU Invalidation Pattern:
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Sharing Patterns Summary

Generally, few sharers at a write, scales slowly with P
= Code and read-only objects (e.g, scene data in Raytrace)

o No problems as rarely written
= Migratory objects (e.g., cost array cells in LocusRoute)

o Even as # of PEs scale, only 1-2 invalidations
= Mostly-read objects (e.g., root of tree in Barnes)

o Invalidations are large but infrequent, so little impact on performance
m  Frequently read/written objects (e.g., task queues)

o Invalidations usually remain small, though frequent
= Synchronization objects

o Low-contention locks result in small invalidations

o High-contention locks need special support (SW trees, queueing locks)
Implies directories very useful in containing traffic
= If organized properly, traffic and latency shouldn’t scale too badly
Suggests techniques to reduce storage overhead
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Organizing Directories

ﬁrectow Schemes

_— .

Centralized Distributed
How to find source of =
directory information at Hierarchical

How to locate copies

Memory-based Cache-based
= Para Illzé:lsgo?nzpouting O, MC Glll
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How to Find Directory Information

o Centralized memory and directory - easy:
go to it
= But not scalable

o Distributed memory and directory
m  Flat schemes
o Directory distributed with memory: at the home
o Location based on address (hashing): network
xaction sent directly to home
m Hierarchical schemes
o ??
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How Hierarchical Directories Work

() processing nodes

(Tracks which of its children
processing nodes have a copy
==r of the memory block.Also tracks
[Hevel-1 dlrectory which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
processor caches and directory

(Tracks which of its children
level-1 directories have a copy
of the memory block.Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
level-1 directories and level-2 directory

o Directory is a hierarchical data structure
m Leafs are processing nodes, internal nodes just directory
m Logical hierarchy, not necessarily physical
o (can be embedded in general network)
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Find Directory Info (cont)

o Distributed memory and directory

m Flat schemes
o Hash

m Hierarchical schemes
o Node’s directory entry for a block says whether
each subtree caches the block
o To find directory info, send “search” message
up to parent
m  Routes itself through directory lookups

o Like hiearchical snooping, but point-to-point
messages between children and parents
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How Is Location of Copies Stored?

T C I C O S C O TTTC S ——
m  Through the hierarchy
m  Each directory has presence bits child subtrees and dirty bit
o Flat Schemes
= Vary alot
m Different storage overheads and performance characteristics

m Memory-based schemes
o Info about copies stored all at the home with the memory block
o Dash, Alewife , SGI Origin, Flash

m  Cache-based schemes

o Info about copies distributed among copies themselves
n Each copy points to next

o Scalable Coherent Interface (SCI: IEEE standard)
Nov-23-09 CSE 420
= ParaIIlEeI go?nputing \C, MCGlll
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Flat, Memory-based Schemes

P
o Info about copies colocated with block at the home [ L1 1 [°°°
o Performance Scaling
m Traffic on a write: proportional to # sharers M
= Latency on write: can issue invalidations to sharers in o
parallel s
o Storage overhead
m  Simplest representation: full bit vector, i.e. one
presence bit per node
m  Storage overhead doesn’t scale well with P; 64-byte
line implies
O 64 nodes: 12.7% ovhd.
o 256 nodes: 50% ovhd.; 1024 nodes: 200% ovhd.
m For M memory blocks in memory, storage overhead is
proportional to P*M
[ B8 & .
Nove23-09 Paralllzgls(l:zo:wzpouting @ MCGlll
Reducing Storage Overhead
o Optimizations for full bit vector schemes
m Increase cache block size (reduces storage overhead
proportionally)
= Use multiprocessor nodes (bit per mp node, not per
processor)
= Still scales as P*M, but reasonable for all but very large
machines
o 256-procs, 4 per cluster, 128B line: 6.25% ovhd. P
o Reducing “width” | [ [ feee
m  Addressing the P term?
o Reducing “height” M
m  Addressing the M term? o
.
= Paralllzgsgo?nzpouting k\: C 1
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Storage Reductions

o Width observation:
Most blocks cached by only few nodes
Don’t have a bit per node, but entry contains a few pointers to
sharing nodes
m  P=1024 => 10 bit ptrs, can use 100 pointers and still save space
m  Sharing patterns indicate a few pointers should suffice (five or so)
»  Need an overflow strategy when there are more sharers
o Height observation:
m Number of memory blocks >> number of cache blocks
m  Most directory entries are useless at any given time

m  Organize directory as a cache, rather than having one entry per
memory block

Nov-23-09 ECSE 420 MCGlll
Parallel Computing *

Flat, Cache-based Schemes

o How they work:
= Home only holds pointer to rest of directory info
m  Distributed linked list of copies, weaves through caches
o Cache tag has pointer, points to next cache with a copy
= On read, add yourself to head of the list (comm. needed)
= On write, propagate chain of invals down the list

o Scalable Coherent Interface - .
= Doubly linked list = oy ™™
u IEEE Standard Node 0 Node 1 Node 2

P

Chche
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Scaling Properties (Cache-based)

o Traffic on write: proportional to number of sharers

o Latency on write: proportional to number of sharers!
= Don’t know identity of next sharer until reach current one
= Also assist processing at each node along the way

m  (even reads involve more than one other assist: home and
first sharer on list)

o Storage overhead: quite good scaling along both axes
= Only one head ptr per memory block
o Rest is all prop to cache size

o Very complex!!!
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Summary of Directory Schemes

Flat Schemes:

Issue (a): finding source of directory data

= Go to home, based on address

Issue (b): finding out where the copies are

= Memory-based: all info is in directory at home

m  Cache-based: home has pointer to first element of distributed linked list

Issue (c): communicating with those copies

= Memory-based: point-to-point messages (perhaps coarser on overflow)
o Can be multicast or overlapped

m Cache-based: part of point-to-point linked list traversal to find them
o Serialized

Hierarchical Schemes:

= All three issues through sending messages up and down tree

= No single explict list of sharers

m  Only direct communication is between parents and children

Nov-23-09 ECSE 420 TR MCGlll
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Summary of Directory Schemes

Directories offer scalable coherence on general networks

= No need for broadcast media

Many possibilities for organizing directory and managing

protocols

Hierarchical directories not used much

= High latency, many network transactions, and bandwidth
bottleneck at root

Both memory-based and cache-based flat schemes are

alive

m  For memory-based, full bit vector suffices for moderate scale

o Measured in nodes visible to directory protocol, not
processors
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Issues for Directory Protocols

o Correctness
o Performance
o Complexity and dealing with errors

Discuss major correctness and performance issues that
a protocol must address

Then delve into memory- and cache-based protocols,
tradeoffs in how they might address (case studies)

Complexity will become apparent through this

Nov-23-09 ECSE 420 TR MCGlll
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Correctness

Ensure basics of coherence at state transition level

m  Relevant lines are updated/invalidated/fetched

m  Correct state transitions and actions happen

Ensure ordering and serialization constraints are met
m  For coherence (single location)

m  For consistency (multiple locations): assume sequential
consistency

Avoid deadlock, livelock, starvation

Problems:
= Multiple copies AND multiple paths through network (distributed
pathways)

= Unlike bus and non cache-coherent (each had only one)
m Large latency makes optimizations attractive
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Coherence: Serialization to a
Location

o Need entity that sees op’s from many procs
o Bus:
m  Multiple copies, but serialization by bus imposed order
o Scalable MP without coherence:
= Main memory module determined order
o Scalable MP with cache coherence
= Home memory good candidate
o All relevant ops go home first
= But multiple copies
o Valid copy of data may not be in main memory
o Reaching main memory in one order does not mean will reach
valid copy in that order
o Serialized in one place doesn’t mean serialized wrt all copies

Nov-23-09 ECSE 420 TR MCGlll
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Basic Serialization Solution

o Use additional ‘busy’ or ‘pending’
directory states

o Indicate that operation is in progress,
further operations on location must
be delayed

buffer at home

buffer at requestor

= NACK and retry

forward to dirty node
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Sequential Consistency

o Bus-based:

= Write completion: wait till gets on bus

m  Write atomicity: bus plus buffer ordering provides
o Non-coherent scalable case

m  Write completion: needed to wait for explicit ack from
memory

= Write atomicity: easy due to single copy
o With multiple copies and distributed network paths
m  Write completion: need explicit acks from copies

themselves
m  Writes are not easily atomic
m ... in addition to issues with bus-based and non-coherent
TR .
Nov-23-09 ECSE 420
= Parallel Computing \C, MCGlll
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Write Atomicity Problem

A=1l; ————» while (A==0) ;
while (B==0) ;
printA;
-0- A:0
Cache Cache | A:0->1 Cache |p.o.51
Mem Mem Mem

Interconnection Network

Nov-23-09 ECSE 420 MCGlll
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Basic Solution

o In invalidation-based scheme, block
owner (mem to $) provides
appearance of atomicity by waiting
for all invalidations to be ack’d before
allowing access to new value.

o Much harder in update schemes!
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Deadlock, Livelock, Starvation

o Request-response protocol

o Similarissues to those discussed earlier
= A node may receive too many messages
m  Flow control can cause deadlock

m  Separate request and reply networks with request-reply
protocol

= Or NACKs, but potential livelock and traffic problems
o New problem: protocols often are not strict request-reply
= e.g. rd-excl generates inval requests (which generate ack
replies)
m  Other cases to reduce latency and allow concurrency
o Must address livelock and starvation too

o Will see how protocols address these correctness issues

e Paralllzgls(l:zo:wzpouting MCGill
Performance
o Latency

m Protocol optimizations to reduce network
transactions in critical path

m Overlap activities or make them faster
o Throughput
m Reduce number of protocol operations
per invocation
o Care about how these scale with the
number of nodes
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Protocol Enhancements for Latency

e} Forwaraing messages: memory-based protocols

3:intervention

1: req 2:intervention
4:reply 3:response
4b:response
(a) Strict equest-reply (a) Intervention forwahing
1: req 2:intervention

Intervention is like a req,
but issued in reaction to
req. and sent to cache,
rather than memory.

3b:response

(a) Reply forwading
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Other Latency Optimizations

o Throw hardware at critical path
= SRAM for directory (sparse or cache)
= Bit per block in SRAM to tell if protocol should be
invoked
o Overlap activities in critical path
m  Multiple invalidations at a time in memory-based
= Overlap invalidations and acks in cache-based

m  Lookups of directory and memory, or lookup
with transaction

o Speculative protocol operations

Nov-23-09 ECSE 420 TR MCGlll
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Increasing Throughput

o Reduce the number of transactions per operation
m invals, acks, replacement hints
= All incur bandwidth and assist occupancy

o Reduce assist occupancy or overhead of protocol
processing

= Transactions small and frequent, so occupancy very
important

o Pipeline the assist (protocol processing)

o Many ways to reduce latency also increase
throughput

m e.g. forwarding to dirty node, throwing hardware at
critical path...
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Complexity

Cache coherence protocols are complex

Choice of approach

m  Conceptual and protocol design versus implementation
Tradeoffs within an approach

m  Performance enhancements often add complexity,
complicate correctness

o More concurrency, potential race conditions

o Not strict request-reply
Many subtle corner cases
m  BUT, increasing understanding/adoption makes job easier
m  Automatic verification is important but hard
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Summary

o In directory protocol there is substantial
implementation complexity below the
logical state diagram

Directory vs cache states
Transient states

Race conditions
Conditional actions
Speculation

o Real systems reflect interplay of design
issues at several levels
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