
11/23/09

1

Scaling Cache Coherence

Zeljko Zilic
McConnell Engineering Building
Room 546

Nov-23-09 ECSE 420
Parallel Computing

Scalable CC - Context

° ° °

Scalable network

CA

P

$

Switch

M

Switch Switch

Realizing Pgm Models
through net transaction
protocols
 - efficient node-to-net interface
 - interprets transactions

Caches naturally replicate
data
 - coherence through bus
snooping protocols
 - consistency

Scalable Networks
 - many simultaneous
transactions

Scalable
distributed
memory

Need cache coherence protocols that scale!
 - In general, no broadcast or single point of order

11/23/09

2

Nov-23-09 ECSE 420
Parallel Computing

Generic Solution: Directories

  Maintain state vector explicitly
  Associated with memory block (cache line)
  Records state of block in each cache

  On miss, communicate with directory
  Determine location of cached copies
  Determine action to take
  Conduct protocol to maintain coherence

P1

Cache

Memory

Scalable Interconnection Network

Comm.
Assist

P1

Cache

Comm
Assist

Directory MemoryDirectory

Nov-23-09 ECSE 420
Parallel Computing

Cache Coherent System Must:

  Provide set of states, state transition diagram, and actions
  Manage coherence protocol

  (0) Determine when to invoke coherence protocol
  (a) Find info about state of block in other caches to determine

action
  Whether need to communicate with other cached copies

  (b) Locate the other copies
  (c) Communicate with those copies (inval/update)

  (0) is done the same way on all systems
  State of the line is maintained in the cache
  Protocol is invoked if an “access fault” occurs on the line

  Different approaches distinguished by (a) to (c)

11/23/09

3

Nov-23-09 ECSE 420
Parallel Computing

Bus-based Coherence

  All of (a), (b), (c) done through broadcast on bus
  Faulting processor sends out a “search”
  Others respond to the search probe and take necessary action

  Could do it in scalable network too
  Broadcast to all processors, and let them respond

  Conceptually simple, but broadcast doesn’t scale with p
  On bus, bus bandwidth doesn’t scale
  Nn scalable network, every fault leads to at least p network

transactions

  Scalable coherence:
  Can have same cache states and state transition diagram
  Different mechanisms to manage protocol

Nov-23-09 ECSE 420
Parallel Computing

A Try: Hierarchical Snooping
  Extend snooping approach: hierarchy of broadcast media

  Tree of buses or rings (KSR-1)
  Processors are in the bus- or ring-based multiprocessors at leaves
  Parents and children connected by two-way snoopy interfaces

  Snoop both buses and propagate relevant transactions
  Main memory may be centralized at root or distributed among leaves

  Issues (a) - (c) handled similarly to bus, but not full broadcast
  Faulting processor sends out “search” bus transaction on its bus
  Propagates up and down hierarchy based on snoop results

  Problems:
  High latency: multiple levels, and snoop/lookup at every level
  Bandwidth bottleneck at root

  Not popular today

11/23/09

4

Nov-23-09 ECSE 420
Parallel Computing

Scalable Approach: Directories

  Every memory block has associated directory
information
  Keeps track of copies of cached blocks and their states
  On a miss, find directory entry, look it up, and

communicate only with the nodes that have copies if
necessary

  In scalable networks, communication with directory
and copies is through network transactions

  Many alternatives for organizing directory
information

Nov-23-09 ECSE 420
Parallel Computing

Basic Operation of Directory

• k processors.
• With each cache-block in memory: k

presence-bits, 1 dirty-bit
• With each cache-block in cache: 1

valid bit, and 1 dirty (owner) bit • ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:

• If dirty-bit OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit ON then { recall line from dirty proc (cache state to

shared); update memory; turn dirty-bit OFF; turn p[i] ON; supply
recalled data to i;}

• Write to main memory by processor i:

• If dirty-bit OFF then { supply data to i; send invalidations to all
caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }

• ...

11/23/09

5

Nov-23-09 ECSE 420
Parallel Computing

Basic Directory Transactions
P

A M/D

C

P

A M/D

C

P

A M/D

C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2 .

3 .

4a.

4 b.

P

A M/D

C
P

A M/D

C

P

A M/D

C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1 .

2 .

P

A M/D

C

Inval. req.
to sharer

Inval. ack

Inval. ack

3a. 3 b.

4a. 4 b.

Requestor

Node with
dirty copy

Directory node
for block

Requestor

Directory node

Sharer Sharer

(a) Read miss to a block in dirty state (b) Write miss to a block with two sharers

Nov-23-09 ECSE 420
Parallel Computing

A Popular Middle Ground

  Two-level “hierarchy”
  Individual nodes are multiprocessors, connected non-

hiearchically
  e.g. mesh of SMPs

  Coherence across nodes is directory-based
  Directory keeps track of nodes, not individual processors

  Coherence within nodes is snooping or directory
  Orthogonal, but needs a good interface of functionality

  Examples:
  Convex Exemplar: directory-directory
  Sequent, Data General, HAL: directory-snoopy

  SMP on a chip?

11/23/09

6

Nov-23-09 ECSE 420
Parallel Computing

Example Two-level Hierarchies

P

C

Snooping

B1

B2

P

C

P

C
B1

P

C

Main
Mem

Main
Mem

Adapter
Snooping
Adapter

P

C
B1

Bus (or Ring)

P

C

P

C
B1

P

C

Main
Mem

Main
Mem

Network

Assist Assist

Network2

P

C

AM/D

Network1

P

C

AM/D

Directory adapter

P

C

AM/D

Network1

P

C

AM/D

Directory adapter

P

C

AM/D

Network1

P

C

AM/D

Dir/Snoopy adapter

P

C

AM/D

Network1

P

C

AM/D

Dir/Snoopy adapter

(a) Snooping-snooping (b) Snooping-directory

Dir. Dir.

(c) Directory-directory (d) Directory-snooping

Nov-23-09 ECSE 420
Parallel Computing

Advantages of Multiprocessor Nodes

  Potential for cost and performance advantages
  Amortization of node fixed costs over multiple processors

  applies even if processors simply packaged together but not
coherent

  Can use commodity SMPs
  Less nodes for directory to keep track of
  Much communication may be contained within node (cheaper)
  Nodes prefetch data for each other (fewer “remote” misses)
  Combining of requests (like hierarchical, only two-level)
  Can even share caches (overlapping of working sets)
  Benefits depend on sharing pattern (and mapping)

  Good for widely read-shared: e.g. tree data in Barnes-Hut
  Good for nearest-neighbor, if properly mapped
  Not so good for all-to-all communication

11/23/09

7

Nov-23-09 ECSE 420
Parallel Computing

Disadvantages of Coherent MP Nodes
  Bandwidth shared among nodes

  all-to-all example
  Applies to coherent or not

  Bus increases latency to local memory
  With coherence, typically wait for local snoop results

before sending remote requests
  Snoopy bus at remote node increases delays there too,

increasing latency and reducing bandwidth
  May hurt performance if sharing patterns don’t comply

Nov-23-09 ECSE 420
Parallel Computing

Outline

  Today:
  Overview of directory-based approaches
  Inherent program characteristics
  Correctness, including serialization and

consistency

  Next: Implementation case study
  NUMAchine

11/23/09

8

Nov-23-09 ECSE 420
Parallel Computing

Scaling Issues
  Memory and directory bandwidth

  Centralized directory is bandwidth bottleneck, just like
centralized memory

  How to maintain directory information in distributed way?

  Performance characteristics
  Traffic: no. of network transactions each time protocol is

invoked
  Latency = no. of network transactions in critical path

  Directory storage requirements
  Number of presence bits grows as the number of processors

  How directory is organized affects all these, performance
at a target scale, as well as coherence management

Nov-23-09 ECSE 420
Parallel Computing

Insight into Directory Requirements

  If most misses involve O(P) transactions,
might as well broadcast!

=> Study Inherent program characteristics:
  Frequency of write misses?
  How many sharers on a write miss
  How these scale

  Also provides insight into how to organize
and store directory information

11/23/09

9

Nov-23-09 ECSE 420
Parallel Computing

Cache Invalidation Patterns
LU Invalidation Patterns

8.75

91.22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7

8
to

 1
1

12
 t

o
15

16
 t

o
19

20
 t

o
23

24
 t

o
27

28
 t

o
31

32
 t

o
35

36
 t

o
39

40
 t

o
43

44
 t

o
47

48
 t

o
51

52
 t

o
55

56
 t

o
59

60
 t

o
63

of invalidations

%

of

sh
ar

ed

w
rit

es

Ocean Invalidation Patterns

0

80.98

15.06

3.04 0.49 0.34 0.03 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0.02
0

10

20
30
40
50
60
70
80
90

0 1 2 3 4 5 6 7

8
to

 1
1

12
 t

o
15

16
 t

o
19

20
 t

o
23

24
 t

o
27

28
 t

o
31

32
 t

o
35

36
 t

o
39

40
 t

o
43

44
 t

o
47

48
 t

o
51

52
 t

o
55

56
 t

o
59

60
 t

o
63

of invalidations

%

of

sh
ar

ed

w
rit

es

Nov-23-09 ECSE 420
Parallel Computing

Cache Invalidation Patterns
Barnes-Hut Invalidation Patterns

1.27

48.35

22.87

10.56

5.33
2.87 1.88 1.4 2.5 1.06 0.61 0.24 0.28 0.2 0.06 0.1 0.07 0 0 0 0 0.33

0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6 7

8
to

 1
1

12
 t

o
15

16
 t

o
19

20
 t

o
23

24
 t

o
27

28
 t

o
31

32
 t

o
35

36
 t

o
39

40
 t

o
43

44
 t

o
47

48
 t

o
51

52
 t

o
55

56
 t

o
59

60
 t

o
63

of invalidations

%

of

sh
ar

ed

w
rit

es

Radiosity Invalidation Patterns

6.68

58.35

12.04

4.16 2.24 1.59 1.16 0.97 3.28 2.2 1.74 1.46 0.92 0.45 0.37 0.31 0.28 0.26 0.24 0.19 0.19 0.91
0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

8
to

 1
1

12
 t

o
15

16
 t

o
19

20
 t

o
23

24
 t

o
27

28
 t

o
31

32
 t

o
35

36
 t

o
39

40
 t

o
43

44
 t

o
47

48
 t

o
51

52
 t

o
55

56
 t

o
59

60
 t

o
63

of invalidations

%

of

sh
ar

ed

w
rit

es

11/23/09

10

Nov-23-09 ECSE 420
Parallel Computing

Sharing Patterns Summary
  Generally, few sharers at a write, scales slowly with P

  Code and read-only objects (e.g, scene data in Raytrace)
  No problems as rarely written

  Migratory objects (e.g., cost array cells in LocusRoute)
  Even as # of PEs scale, only 1-2 invalidations

  Mostly-read objects (e.g., root of tree in Barnes)
  Invalidations are large but infrequent, so little impact on performance

  Frequently read/written objects (e.g., task queues)
  Invalidations usually remain small, though frequent

  Synchronization objects
  Low-contention locks result in small invalidations
  High-contention locks need special support (SW trees, queueing locks)

  Implies directories very useful in containing traffic
  If organized properly, traffic and latency shouldn’t scale too badly

  Suggests techniques to reduce storage overhead

Nov-23-09 ECSE 420
Parallel Computing

Organizing Directories

Centralized Distributed

Hierarchical Flat

Memory-based Cache-based

Directory Schemes

How to find source of
directory information

How to locate copies

11/23/09

11

Nov-23-09 ECSE 420
Parallel Computing

How to Find Directory Information

  Centralized memory and directory - easy:
go to it
  But not scalable

  Distributed memory and directory
  Flat schemes

  Directory distributed with memory: at the home
  Location based on address (hashing): network

xaction sent directly to home
  Hierarchical schemes

  ??

Nov-23-09 ECSE 420
Parallel Computing

How Hierarchical Directories Work

  Directory is a hierarchical data structure
  Leafs are processing nodes, internal nodes just directory
  Logical hierarchy, not necessarily physical

  (can be embedded in general network)

processing nodes

level-1 directory

level-2 directory

(Tracks which of its children
processing nodes have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
processor caches and directory.)(Tracks which of its children

level-1 directories have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
level-1 directories and level-2 directory.)

11/23/09

12

Nov-23-09 ECSE 420
Parallel Computing

Find Directory Info (cont)
  Distributed memory and directory

  Flat schemes
  Hash

  Hierarchical schemes
  Node’s directory entry for a block says whether

each subtree caches the block
  To find directory info, send “search” message

up to parent
  Routes itself through directory lookups

  Like hiearchical snooping, but point-to-point
messages between children and parents

Nov-23-09 ECSE 420
Parallel Computing

How Is Location of Copies Stored?

  Hierarchical Schemes
  Through the hierarchy
  Each directory has presence bits child subtrees and dirty bit

  Flat Schemes
  Vary a lot
  Different storage overheads and performance characteristics

  Memory-based schemes
  Info about copies stored all at the home with the memory block
  Dash, Alewife , SGI Origin, Flash

  Cache-based schemes
  Info about copies distributed among copies themselves

  Each copy points to next

  Scalable Coherent Interface (SCI: IEEE standard)

11/23/09

13

Nov-23-09 ECSE 420
Parallel Computing

Flat, Memory-based Schemes

  Info about copies colocated with block at the home
  Performance Scaling

  Traffic on a write: proportional to # sharers
  Latency on write: can issue invalidations to sharers in

parallel

  Storage overhead
  Simplest representation: full bit vector, i.e. one

presence bit per node
  Storage overhead doesn’t scale well with P; 64-byte

line implies
  64 nodes: 12.7% ovhd.
  256 nodes: 50% ovhd.; 1024 nodes: 200% ovhd.

  For M memory blocks in memory, storage overhead is
proportional to P*M

P

M

Nov-23-09 ECSE 420
Parallel Computing

P

M

Reducing Storage Overhead
  Optimizations for full bit vector schemes

  Increase cache block size (reduces storage overhead
proportionally)

  Use multiprocessor nodes (bit per mp node, not per
processor)

  Still scales as P*M, but reasonable for all but very large
machines
  256-procs, 4 per cluster, 128B line: 6.25% ovhd.

  Reducing “width”
  Addressing the P term?

  Reducing “height”
  Addressing the M term?

11/23/09

14

Nov-23-09 ECSE 420
Parallel Computing

Storage Reductions
  Width observation:

  Most blocks cached by only few nodes
  Don’t have a bit per node, but entry contains a few pointers to

sharing nodes
  P=1024 => 10 bit ptrs, can use 100 pointers and still save space
  Sharing patterns indicate a few pointers should suffice (five or so)
  Need an overflow strategy when there are more sharers

  Height observation:
  Number of memory blocks >> number of cache blocks
  Most directory entries are useless at any given time
  Organize directory as a cache, rather than having one entry per

memory block

Nov-23-09 ECSE 420
Parallel Computing

P

Cache

P

Cache

P

Cache

Main Memory
(Home)

Node 0 Node 1 Node 2

Flat, Cache-based Schemes
  How they work:

  Home only holds pointer to rest of directory info
  Distributed linked list of copies, weaves through caches

  Cache tag has pointer, points to next cache with a copy
  On read, add yourself to head of the list (comm. needed)
  On write, propagate chain of invals down the list

  Scalable Coherent Interface
  Doubly linked list
  IEEE Standard

11/23/09

15

Nov-23-09 ECSE 420
Parallel Computing

Scaling Properties (Cache-based)
  Traffic on write: proportional to number of sharers
  Latency on write: proportional to number of sharers!

  Don’t know identity of next sharer until reach current one
  Also assist processing at each node along the way
  (even reads involve more than one other assist: home and

first sharer on list)

  Storage overhead: quite good scaling along both axes
  Only one head ptr per memory block

  Rest is all prop to cache size

  Very complex!!!

Nov-23-09 ECSE 420
Parallel Computing

Summary of Directory Schemes
  Flat Schemes:
  Issue (a): finding source of directory data

  Go to home, based on address

  Issue (b): finding out where the copies are
  Memory-based: all info is in directory at home
  Cache-based: home has pointer to first element of distributed linked list

  Issue (c): communicating with those copies
  Memory-based: point-to-point messages (perhaps coarser on overflow)

  Can be multicast or overlapped
  Cache-based: part of point-to-point linked list traversal to find them

  Serialized

  Hierarchical Schemes:
  All three issues through sending messages up and down tree
  No single explict list of sharers
  Only direct communication is between parents and children

11/23/09

16

Nov-23-09 ECSE 420
Parallel Computing

Summary of Directory Schemes
  Directories offer scalable coherence on general networks

  No need for broadcast media

  Many possibilities for organizing directory and managing
protocols

  Hierarchical directories not used much
  High latency, many network transactions, and bandwidth

bottleneck at root

  Both memory-based and cache-based flat schemes are
alive
  For memory-based, full bit vector suffices for moderate scale

  Measured in nodes visible to directory protocol, not
processors

Nov-23-09 ECSE 420
Parallel Computing

Issues for Directory Protocols

  Correctness
  Performance
  Complexity and dealing with errors

Discuss major correctness and performance issues that
a protocol must address

Then delve into memory- and cache-based protocols,
tradeoffs in how they might address (case studies)

Complexity will become apparent through this

11/23/09

17

Nov-23-09 ECSE 420
Parallel Computing

Correctness
  Ensure basics of coherence at state transition level

  Relevant lines are updated/invalidated/fetched
  Correct state transitions and actions happen

  Ensure ordering and serialization constraints are met
  For coherence (single location)
  For consistency (multiple locations): assume sequential

consistency

  Avoid deadlock, livelock, starvation
  Problems:

  Multiple copies AND multiple paths through network (distributed
pathways)

  Unlike bus and non cache-coherent (each had only one)
  Large latency makes optimizations attractive

  Increase concurrency, complicate correctness

Nov-23-09 ECSE 420
Parallel Computing

Coherence: Serialization to a
Location

  Need entity that sees op’s from many procs
  Bus:

  Multiple copies, but serialization by bus imposed order

  Scalable MP without coherence:
  Main memory module determined order

  Scalable MP with cache coherence
  Home memory good candidate

  All relevant ops go home first

  But multiple copies
  Valid copy of data may not be in main memory
  Reaching main memory in one order does not mean will reach

valid copy in that order
  Serialized in one place doesn’t mean serialized wrt all copies

11/23/09

18

Nov-23-09 ECSE 420
Parallel Computing

Basic Serialization Solution

  Use additional ‘busy’ or ‘pending’
directory states

  Indicate that operation is in progress,
further operations on location must
be delayed
  buffer at home
  buffer at requestor
  NACK and retry
  forward to dirty node

Nov-23-09 ECSE 420
Parallel Computing

Sequential Consistency
  Bus-based:

  Write completion: wait till gets on bus
  Write atomicity: bus plus buffer ordering provides

  Non-coherent scalable case
  Write completion: needed to wait for explicit ack from

memory
  Write atomicity: easy due to single copy

  With multiple copies and distributed network paths
  Write completion: need explicit acks from copies

themselves
  Writes are not easily atomic
  ... in addition to issues with bus-based and non-coherent

11/23/09

19

Nov-23-09 ECSE 420
Parallel Computing

Write Atomicity Problem

Interconnection Network

Cache

Mem

P1

Cache

Mem

P2

Cache

Mem

P3

A=1; while (A==0) ;
B=1; while (B==0) ;

print A;

A=1

A=1

B=1delay

A:0->1 A:0
B:0->1

Nov-23-09 ECSE 420
Parallel Computing

Basic Solution

  In invalidation-based scheme, block
owner (mem to $) provides
appearance of atomicity by waiting
for all invalidations to be ack’d before
allowing access to new value.

  Much harder in update schemes!

11/23/09

20

Nov-23-09 ECSE 420
Parallel Computing

Deadlock, Livelock, Starvation
  Request-response protocol
  Similar issues to those discussed earlier

  A node may receive too many messages
  Flow control can cause deadlock
  Separate request and reply networks with request-reply

protocol
  Or NACKs, but potential livelock and traffic problems

  New problem: protocols often are not strict request-reply
  e.g. rd-excl generates inval requests (which generate ack

replies)
  Other cases to reduce latency and allow concurrency

  Must address livelock and starvation too
  Will see how protocols address these correctness issues

Nov-23-09 ECSE 420
Parallel Computing

Performance

  Latency
  Protocol optimizations to reduce network

transactions in critical path
  Overlap activities or make them faster

  Throughput
  Reduce number of protocol operations

per invocation
  Care about how these scale with the

number of nodes

11/23/09

21

Nov-23-09 ECSE 420
Parallel Computing

Protocol Enhancements for Latency
  Forwarding messages: memory-based protocols

L H R
1: req

2:reply

3:intervention

4a:revise

4b:response

L H R

1: req 2:intervention

3:response4:reply

L H R

1: req 2:intervention

3b:response

3a:revise

(a) Strict request-reply (a) Intervention forwarding

(a) Reply forwarding

Intervention is like a req,
but issued in reaction to
req. and sent to cache,
rather than memory.

Nov-23-09 ECSE 420
Parallel Computing

Other Latency Optimizations

  Throw hardware at critical path
  SRAM for directory (sparse or cache)
  Bit per block in SRAM to tell if protocol should be

invoked

  Overlap activities in critical path
  Multiple invalidations at a time in memory-based
  Overlap invalidations and acks in cache-based
  Lookups of directory and memory, or lookup

with transaction
  Speculative protocol operations

11/23/09

22

Nov-23-09 ECSE 420
Parallel Computing

Increasing Throughput
  Reduce the number of transactions per operation

  invals, acks, replacement hints
  All incur bandwidth and assist occupancy

  Reduce assist occupancy or overhead of protocol
processing
  Transactions small and frequent, so occupancy very

important

  Pipeline the assist (protocol processing)
  Many ways to reduce latency also increase

throughput
  e.g. forwarding to dirty node, throwing hardware at

critical path...

Nov-23-09 ECSE 420
Parallel Computing

Complexity

  Cache coherence protocols are complex
  Choice of approach

  Conceptual and protocol design versus implementation

  Tradeoffs within an approach
  Performance enhancements often add complexity,

complicate correctness
  More concurrency, potential race conditions
  Not strict request-reply

  Many subtle corner cases
  BUT, increasing understanding/adoption makes job easier
  Automatic verification is important but hard

11/23/09

23

Nov-23-09 ECSE 420
Parallel Computing

Summary

  In directory protocol there is substantial
implementation complexity below the
logical state diagram
  Directory vs cache states
  Transient states
  Race conditions
  Conditional actions
  Speculation

  Real systems reflect interplay of design
issues at several levels

