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Realizing Pgm Models 
through net transaction 
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  - efficient node-to-net interface 
  - interprets transactions 

Caches naturally replicate 
data 
  - coherence through bus 
snooping protocols 
  - consistency 

Scalable Networks 
  - many simultaneous 
transactions 

Scalable 
distributed 
memory 

Need cache coherence protocols that scale! 
   - In general, no broadcast or single point of order 
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Generic Solution: Directories 

  Maintain state vector explicitly  
  Associated with memory block (cache line) 
  Records state of block in each cache 

  On miss, communicate with directory 
  Determine location of cached copies 
  Determine action to take 
  Conduct protocol to maintain coherence 
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Scalable Interconnection Network

Comm.
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P1

Cache

Comm
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Directory MemoryDirectory
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Cache Coherent System Must: 

  Provide set of states, state transition diagram, and actions 
  Manage coherence protocol 

  (0)  Determine when to invoke coherence protocol 
  (a)  Find info about state of block in other caches to determine 

action 
  Whether need to communicate with other cached copies 

  (b)  Locate  the other copies 
  (c)  Communicate with those copies  (inval/update) 

  (0) is done the same way on all systems 
  State of the line is maintained in the cache 
  Protocol is invoked if an “access fault” occurs on the line 

  Different approaches distinguished by (a) to (c) 
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Bus-based Coherence 

  All of (a), (b), (c) done through broadcast on bus 
  Faulting processor sends out a “search”  
  Others respond to the search probe and take necessary action 

  Could do it in scalable network too 
  Broadcast to all processors, and let them respond 

  Conceptually simple, but broadcast doesn’t scale with p 
  On bus, bus bandwidth doesn’t scale 
  Nn scalable network, every fault leads to at least  p network 

transactions 

  Scalable coherence: 
  Can have same cache states and state transition diagram 
  Different mechanisms to manage protocol 
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A Try: Hierarchical Snooping 
  Extend snooping approach: hierarchy of broadcast media 

  Tree of buses or rings (KSR-1) 
  Processors are in the bus- or ring-based multiprocessors at leaves 
  Parents and children connected by two-way snoopy interfaces 

  Snoop both buses and propagate relevant transactions 
  Main memory may be centralized at root or distributed among leaves 

  Issues (a) - (c) handled similarly to bus, but not full broadcast  
  Faulting processor sends out “search” bus transaction on its bus 
  Propagates up and down hierarchy based on snoop results 

  Problems:  
  High latency: multiple levels, and snoop/lookup at every level 
  Bandwidth bottleneck at root 

  Not popular today 
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Scalable Approach: Directories 

   Every memory block has associated directory 
information 
  Keeps track of copies of cached blocks and their states 
  On a miss, find directory entry, look it up, and 

communicate only with the nodes that have copies if 
necessary 

  In scalable networks, communication with directory 
and copies is through network transactions 

  Many alternatives for organizing directory 
information 
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Basic Operation of Directory 

•  k processors.   
•  With each cache-block in memory: k  

presence-bits, 1 dirty-bit 
•  With each cache-block in cache:    1 

valid bit, and 1 dirty (owner) bit • ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i: 

• If dirty-bit OFF then { read from main memory; turn p[i] ON; } 
• if dirty-bit ON   then { recall line from dirty proc (cache state to 

shared); update memory; turn dirty-bit OFF; turn p[i] ON; supply 
recalled data to i;} 

• Write to main memory by processor i: 

• If dirty-bit OFF then { supply data to i; send invalidations to all 
caches that have the block; turn dirty-bit ON; turn p[i] ON; ... } 

• ... 
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Basic Directory Transactions 
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(a) Read miss to a block in dirty state (b) Write miss to a block with two sharers
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A Popular Middle Ground 

  Two-level “hierarchy” 
  Individual nodes are multiprocessors, connected non-

hiearchically 
  e.g. mesh of SMPs 

  Coherence across nodes is directory-based 
  Directory keeps track of nodes, not individual processors 

  Coherence within nodes is snooping or directory 
  Orthogonal, but needs a good interface of functionality 

  Examples: 
  Convex Exemplar: directory-directory 
  Sequent, Data General, HAL: directory-snoopy 

  SMP on a chip? 
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Example Two-level Hierarchies 
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Advantages of Multiprocessor Nodes 

  Potential for cost and performance advantages 
  Amortization of node fixed costs over multiple processors 

  applies even if processors  simply packaged together but not 
coherent 

  Can use commodity SMPs 
  Less nodes for directory to keep track of 
  Much communication may be contained within node (cheaper) 
  Nodes prefetch data for each other (fewer “remote” misses) 
  Combining of requests (like hierarchical, only two-level) 
  Can even share caches (overlapping of working sets) 
  Benefits depend on sharing pattern (and mapping) 

  Good for widely read-shared: e.g. tree data in Barnes-Hut 
  Good for nearest-neighbor, if properly mapped 
  Not so good for all-to-all communication 
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Disadvantages of Coherent MP Nodes 
  Bandwidth shared among nodes 

  all-to-all example 
  Applies to coherent or not 

  Bus increases latency to local memory 
  With coherence, typically wait for local snoop results 

before sending remote requests 
  Snoopy bus at remote node increases delays there too, 

increasing latency and reducing bandwidth 
  May hurt performance if sharing patterns don’t comply 
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Outline 

  Today: 
  Overview of  directory-based approaches 
  Inherent program characteristics 
  Correctness, including serialization and 

consistency 

  Next: Implementation case study 
  NUMAchine 
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Scaling Issues 
  Memory and directory bandwidth 

  Centralized directory is bandwidth bottleneck, just like 
centralized memory 

  How to maintain directory information in distributed way? 

  Performance characteristics 
  Traffic: no. of network transactions  each time protocol is 

invoked 
  Latency = no. of network transactions in critical path 

  Directory storage requirements 
  Number of presence bits grows as the number of processors 

  How directory is organized affects all these, performance 
at a target scale, as well as coherence management  
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Insight into Directory Requirements 

  If most misses involve O(P) transactions, 
might as well broadcast! 

=> Study Inherent program characteristics: 
  Frequency of write misses? 
  How many sharers on a write miss 
  How these scale 

  Also provides insight into how to organize 
and store directory information 
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Cache Invalidation Patterns 
LU Invalidation Patterns

8.75

91.22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7

8 
to

 1
1

12
 t

o 
15

16
 t

o 
19

20
 t

o 
23

24
 t

o 
27

28
 t

o 
31

32
 t

o 
35

36
 t

o 
39

40
 t

o 
43

44
 t

o 
47

48
 t

o 
51

52
 t

o 
55

56
 t

o 
59

60
 t

o 
63

# of  invalidations

%
 

of
 

sh
ar

ed
 

w
rit

es

Ocean Invalidation Patterns

0

80.98

15.06

3.04 0.49 0.34 0.03 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0.02
0

10

20
30
40
50
60
70
80
90

0 1 2 3 4 5 6 7

8 
to

 1
1

12
 t

o 
15

16
 t

o 
19

20
 t

o 
23

24
 t

o 
27

28
 t

o 
31

32
 t

o 
35

36
 t

o 
39

40
 t

o 
43

44
 t

o 
47

48
 t

o 
51

52
 t

o 
55

56
 t

o 
59

60
 t

o 
63

# of  invalidations

%
 

of
 

sh
ar

ed
 

w
rit

es

Nov-23-09 ECSE 420 
Parallel Computing 

Cache Invalidation Patterns 
Barnes-Hut Invalidation Patterns
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Radiosity Invalidation Patterns
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Sharing Patterns Summary 
  Generally, few sharers at a write, scales slowly with P 

  Code and read-only objects (e.g, scene data in Raytrace) 
  No problems as rarely written 

  Migratory objects (e.g., cost array cells in LocusRoute) 
  Even as # of PEs scale, only 1-2 invalidations 

  Mostly-read objects (e.g., root of tree in Barnes)  
  Invalidations are large but infrequent, so little impact on performance 

  Frequently read/written objects (e.g., task queues) 
  Invalidations usually remain small, though frequent 

  Synchronization objects 
  Low-contention locks result in small invalidations 
  High-contention locks need special support (SW trees, queueing locks) 

  Implies directories very useful in containing traffic 
  If organized properly, traffic and latency shouldn’t scale too badly 

  Suggests techniques to reduce storage overhead 
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Organizing Directories 

Centralized Distributed 

Hierarchical Flat 

Memory-based Cache-based 

Directory Schemes 

How to find source of 
directory information 

How to locate copies 
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How to Find Directory Information 

  Centralized memory and directory - easy: 
go to it 
  But not scalable 

  Distributed memory and directory 
  Flat schemes 

  Directory distributed with memory: at the home 
  Location based on address (hashing): network 

xaction sent directly to home 
  Hierarchical schemes 

  ?? 
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How Hierarchical Directories Work 

  Directory is a hierarchical data structure 
  Leafs are processing nodes, internal nodes just directory 
  Logical hierarchy, not necessarily physical  

  (can be embedded in general network) 

processing nodes

level-1 directory

level-2 directory

(Tracks which of its children
processing nodes have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
processor caches and directory.)(Tracks which of its children

level-1 directories have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
level-1 directories and level-2 directory.)
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Find Directory Info (cont) 
  Distributed memory and directory 

  Flat schemes 
  Hash 

  Hierarchical schemes 
  Node’s directory entry for a block says whether 

each subtree caches the block 
  To find directory info, send “search” message 

up to parent 
  Routes itself through directory lookups 

  Like hiearchical snooping, but point-to-point 
messages between children and parents 
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How Is Location of Copies Stored? 

  Hierarchical Schemes 
  Through the hierarchy 
  Each directory has presence bits child subtrees and dirty bit 

  Flat Schemes 
  Vary a lot 
  Different storage overheads and performance characteristics 

  Memory-based schemes 
  Info about copies stored all at the home with the memory block 
  Dash, Alewife , SGI Origin, Flash 

  Cache-based schemes 
  Info about copies distributed among copies themselves 

  Each copy  points to next 

  Scalable Coherent Interface (SCI: IEEE standard) 
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Flat, Memory-based Schemes 

  Info about copies colocated with block at the home 
  Performance Scaling 

  Traffic on a write: proportional to # sharers 
  Latency on write: can issue invalidations to sharers in 

parallel 

  Storage overhead 
  Simplest representation: full bit vector, i.e. one 

presence bit per node 
  Storage overhead doesn’t scale well with P; 64-byte 

line implies 
  64 nodes: 12.7% ovhd. 
  256 nodes: 50% ovhd.; 1024 nodes: 200% ovhd. 

  For M memory blocks in memory, storage overhead is 
proportional to P*M 

P 

M 
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P 

M 

Reducing Storage Overhead 
  Optimizations for full bit vector schemes 

  Increase cache block size (reduces storage overhead 
proportionally) 

  Use multiprocessor nodes (bit per mp node, not per 
processor) 

  Still scales as P*M, but reasonable for all but very large 
machines 
  256-procs, 4 per cluster, 128B line:  6.25% ovhd. 

  Reducing “width” 
  Addressing the P term? 

  Reducing “height” 
  Addressing the M term? 
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Storage Reductions 
  Width observation:  

  Most blocks cached by only few nodes 
  Don’t have a bit per node, but entry contains a few pointers to 

sharing nodes 
  P=1024 => 10 bit ptrs, can use 100  pointers and still save space 
  Sharing patterns indicate a few pointers should suffice (five or so) 
  Need an overflow strategy when there are more sharers 

  Height observation:  
  Number of memory blocks >> number of cache blocks 
  Most directory entries are useless at any given time 
  Organize directory as a cache, rather than having one entry per 

memory block 
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P

Cache

P

Cache

P

Cache

Main Memory
(Home)

Node 0 Node 1 Node 2

Flat, Cache-based Schemes 
  How they work: 

  Home only holds pointer to rest of directory info 
  Distributed linked list of copies, weaves through caches 

  Cache tag has pointer, points to next cache with a copy 
  On read, add yourself to head of the list (comm. needed) 
  On write, propagate chain of invals down the list 

  Scalable Coherent Interface 
  Doubly linked list 
  IEEE Standard 
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Scaling Properties (Cache-based) 
  Traffic on write: proportional to number of sharers 
  Latency on write: proportional to number of sharers! 

  Don’t know identity of next sharer until reach current one 
  Also assist processing at each node along the way 
  (even reads involve more than one other assist: home and 

first sharer on list) 

  Storage overhead: quite good scaling along both axes 
  Only one head ptr per memory block 

  Rest is all prop to cache size 

  Very complex!!! 
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Summary of Directory Schemes 
  Flat Schemes: 
  Issue (a): finding source of directory data 

  Go to home, based on address 

  Issue (b): finding out where the copies are 
  Memory-based: all info is in directory at home 
  Cache-based: home has pointer to first element of distributed linked list 

  Issue (c): communicating with those copies 
  Memory-based: point-to-point messages (perhaps coarser on overflow) 

  Can be multicast or overlapped 
  Cache-based: part of point-to-point linked list traversal  to find them 

  Serialized 

  Hierarchical Schemes: 
  All three issues through sending messages up and down tree 
  No single explict list of sharers 
  Only direct communication is between parents and children 
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Summary of Directory Schemes 
  Directories offer scalable coherence on general networks 

  No need for broadcast media 

  Many possibilities for organizing directory and managing 
protocols 

  Hierarchical directories not used much 
  High latency, many network transactions, and bandwidth 

bottleneck at root 

  Both memory-based and cache-based flat schemes are 
alive 
  For memory-based, full bit vector suffices for moderate scale 

  Measured in nodes visible to directory protocol, not 
processors 
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Issues for Directory Protocols 

  Correctness 
  Performance 
  Complexity and dealing with errors 

Discuss major correctness and performance issues that 
a protocol must address 

Then delve into memory- and cache-based protocols, 
tradeoffs in how they might address (case studies) 

Complexity will become apparent through this 
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Correctness 
  Ensure basics of coherence at state transition level 

  Relevant lines are updated/invalidated/fetched 
  Correct state transitions and actions happen 

  Ensure ordering and serialization constraints are met 
  For coherence (single location) 
  For consistency (multiple locations): assume sequential 

consistency 

  Avoid deadlock, livelock, starvation 
  Problems: 

  Multiple copies AND multiple paths through network (distributed 
pathways) 

  Unlike bus and non cache-coherent (each had only one) 
  Large latency makes optimizations attractive 

  Increase concurrency, complicate correctness 
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Coherence: Serialization to a 
Location 

  Need entity that sees op’s from many procs 
  Bus:  

  Multiple copies, but serialization by bus imposed order 

  Scalable MP without  coherence: 
  Main memory module determined order 

  Scalable MP with cache coherence 
  Home memory good candidate 

  All relevant ops go home first 

  But multiple copies 
  Valid copy of data may not be in main memory 
  Reaching main memory in one order does not mean will reach 

valid copy in that order 
  Serialized in one place doesn’t mean serialized wrt all copies 
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Basic Serialization Solution 

  Use additional ‘busy’ or ‘pending’ 
directory states 

  Indicate that operation is in progress, 
further operations on location must 
be delayed 
  buffer at home 
  buffer at requestor 
  NACK and retry 
  forward to dirty node 
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Sequential Consistency 
  Bus-based: 

  Write completion: wait till gets on bus 
  Write atomicity: bus plus buffer ordering provides 

  Non-coherent scalable case 
  Write completion: needed to wait for explicit ack from 

memory 
  Write atomicity: easy due to single copy 

  With multiple copies and distributed network paths 
  Write completion: need explicit acks from copies 

themselves 
  Writes are not easily atomic 
  ... in addition to issues with bus-based and non-coherent 
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Write Atomicity Problem 

Interconnection Network

Cache

Mem

P1

Cache

Mem

P2

Cache

Mem

P3

A=1; while (A==0) ;
B=1; while (B==0) ;

print A;

A=1

A=1

B=1delay

A:0->1 A:0
B:0->1
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Basic Solution 

  In invalidation-based scheme, block 
owner (mem to $) provides 
appearance of atomicity by waiting 
for all invalidations to be ack’d before 
allowing access to new value. 

  Much harder in update schemes! 
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Deadlock, Livelock, Starvation 
  Request-response protocol 
  Similar issues to those discussed earlier 

  A node may receive too many messages 
  Flow control can cause deadlock 
  Separate request and reply networks with request-reply 

protocol 
  Or NACKs, but potential livelock and traffic problems 

  New problem: protocols often are not strict request-reply 
  e.g. rd-excl generates inval requests (which generate ack 

replies) 
  Other cases to reduce latency and allow concurrency 

  Must address livelock and starvation too 
  Will see how protocols address these correctness issues 
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Performance 

  Latency 
  Protocol optimizations to reduce network 

transactions in critical path 
  Overlap activities or make them faster 

  Throughput 
  Reduce number of protocol operations 

per invocation 
  Care about how these scale with the 

number of nodes 
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Protocol Enhancements for Latency  
  Forwarding messages: memory-based protocols 

L H R
1: req

2:reply

3:intervention

4a:revise

4b:response

L H R

1: req 2:intervention

3:response4:reply

L H R

1: req 2:intervention

3b:response

3a:revise

(a) Strict request-reply (a) Intervention forwarding

(a) Reply forwarding

Intervention is like a req, 
but issued in reaction to  
req. and sent to cache,  
rather than memory. 
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Other Latency Optimizations 

  Throw hardware at critical path 
  SRAM for directory (sparse or cache) 
  Bit per block in SRAM to tell if protocol should be 

invoked 

  Overlap activities in critical path 
  Multiple invalidations at a time in memory-based 
  Overlap invalidations and acks in cache-based 
  Lookups of directory and memory, or lookup 

with transaction 
  Speculative protocol operations 
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Increasing Throughput 
  Reduce the number of transactions per operation 

  invals, acks, replacement hints 
  All incur bandwidth and assist occupancy 

  Reduce assist occupancy or overhead of protocol 
processing 
  Transactions small and frequent, so occupancy very 

important 

  Pipeline the assist (protocol processing) 
  Many ways to reduce latency also increase 

throughput 
  e.g. forwarding to dirty node, throwing hardware at 

critical path... 
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Complexity 

  Cache coherence protocols are complex 
  Choice of approach 

  Conceptual and protocol design versus implementation 

  Tradeoffs within an approach 
  Performance enhancements often add complexity, 

complicate correctness 
  More concurrency, potential race conditions 
  Not strict request-reply 

  Many subtle corner cases 
  BUT, increasing understanding/adoption makes job easier 
  Automatic verification is important but hard 
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Summary 

  In directory protocol there is substantial 
implementation complexity below the 
logical state diagram 
  Directory vs cache states 
  Transient states 
  Race conditions 
  Conditional actions 
  Speculation 

  Real systems reflect interplay of design 
issues at several levels 


