
11/11/09

1

 Parallel Arch. Review

Zeljko Zilic
McConnell Engineering Building
Room 536

Nov-11-09 ECSE 420
Parallel Computing

Main Points
  Understanding of the design and engineering of

modern parallel computers
  Technology forces
  Fundamental architectural issues

  Naming, replication, communication, synchronization

  Basic design techniques
  Cache coherence, protocols, networks, pipelining, …

  Methods of evaluation
  Underlying engineering trade-offs

  From moderate to large scale
  Across the hardware/software boundary

11/11/09

2

Nov-11-09 ECSE 420
Parallel Computing

Useful?
  Absolutely! Not only for PP designers
  The fundamental issues and solutions translate across a

wide spectrum of systems.
  Crisp solutions in the context of parallel machines.

  Pioneered at the thin-end of the platform pyramid on the
most-demanding applications
  Migrate downward with time

  Understand SW implications SuperServers

Departmental Servers

Workstations

Personal Computers

Workstations

Nov-11-09 ECSE 420
Parallel Computing

What is Parallel Architecture?
  A parallel computer is a collection of processing elements

that cooperate to solve large problems fast
  Some broad issues:

  Resource Allocation:
  How large a collection?
  How powerful are the elements?
  How much memory?

  Data access, Communication and Synchronization
  How do the elements cooperate and communicate?
  How are data transmitted between processors?
  What are the abstractions and primitives for cooperation?

  Performance and Scalability
  How does it all translate into performance?
  How does it scale?

11/11/09

3

Nov-11-09 ECSE 420
Parallel Computing

Role of a computer/system architect:
To design and engineer various levels of a computer system to
maximize performance and programmability within limits of
technology and cost.

Parallelism:
•  Provides alternative to faster clock for performance
•  Applies at all levels of system design
•  Is a fascinating perspective from which to view architecture
•  Is increasingly central in information processing

Why Parallel Architecture?

Nov-11-09 ECSE 420
Parallel Computing

Speedup
  Speedup (p processors) =

  For a fixed problem size (input data set),
performance = 1/time

  Speedupfixed (p processors) =

Performance (p processors)!
Performance (1 processor)!

Time (1 processor)!
Time (p processors)!

11/11/09

4

Nov-11-09 ECSE 420
Parallel Computing

Architectural Trends
  Architecture translates technology’s gains into

performance and capability
  Resolves the tradeoff between parallelism and locality

  Change with scale and technology advances
  Increasing role of memories (caches, …)

  Understanding microprocessor architectural trends
=> Helps build intuition about design issues or parallel

machines
=> Shows fundamental role of parallelism even in

“sequential” computers

Nov-11-09 ECSE 420
Parallel Computing

Architectural Trends
  Greatest trend in VLSI generation is increase in parallelism

  Up to 1985: bit level parallelism: 4-bit -> 8 bit -> 16-bit
  Slows after 32 bit
  Adoption of 64-bit now, 128-bit far (not performance issue)
  Great inflection point when 32-bit micro and cache fit on a chip

  Mid 80s to mid 90s: instruction level parallelism
  Pipelining and simple instruction sets, + compiler advances

(RISC)
  On-chip caches and functional units => superscalar execution
  Greater sophistication: out of order execution, speculation,

prediction
  To deal with control transfer and latency problems

  Next step: thread level parallelism

11/11/09

5

Nov-11-09 ECSE 420
Parallel Computing

Summary: Why Parallel?
  Increasingly attractive

  Economics, technology, architecture, application demand

  Increasingly central and mainstream
  Parallelism exploited at many levels

  Instruction-level parallelism
  Multiprocessor servers
  Large-scale multiprocessors (“MPPs”)

  Focus of this class: multiprocessor level of parallelism
  Same story from memory system perspective

  Increase bandwidth, reduce average latency with many local
memories

  Spectrum of parallel architectures make sense
  Different cost, performance and scalability

Nov-11-09 ECSE 420
Parallel Computing

Programming Model
  Conceptualization of the machine that programmer uses in coding

applications
  How parts cooperate and coordinate their activities
  Specifies communication and synchronization operations

  Multiprogramming
  No communication or synch. at program level

  Shared address space
  Like bulletin board

  Message passing
  Like letters or phone calls, explicit point to point

  Data parallel:
  More regimented, global actions on data
  Implemented with shared address space or message passing

11/11/09

6

Nov-11-09 ECSE 420
Parallel Computing

Toward Architectural Convergence

  Evolution and role of software have blurred boundary
  Send/recv supported on SAS machines via buffers
  Can construct global address space on MP (GA -> P | LA)
  Page-based (or finer-grained) shared virtual memory

  Hardware organization converging too
  Tighter NI integration even for MP (low-latency, high-bandwidth)
  Hardware SAS passes messages

  Even clusters of workstations/SMPs are parallel systems
  Emergence of fast system area networks (SAN)

  Programming models distinct, but organizations converging
  Nodes connected by general network and communication assists
  Implementations also converging, at least in high-end machines

Nov-11-09 ECSE 420
Parallel Computing

Mem

ϒ ϒ ϒ

Network

P

$

Communication
assist (CA)

Convergence: Generic Parallel Arch.

  Node: processor(s), memory system, communication assist
  Network interface and communication controller

  Scalable network
  Convergence allows lots of innovation, within framework

  Integration of assist with node, what operations, how efficiently...

11/11/09

7

Nov-11-09 ECSE 420
Parallel Computing

Architecture
  Two facets of Computer Architecture:

  Defines Critical Abstractions
  Especially at HW/SW boundary
  Set of operations and data types these operate on

  Organizational structure that realizes these
abstraction

  Parallel Computer Arch. =
 Comp. Arch + Communication Arch.

  Comm. Architecture has same two facets
  Communication abstraction
  Primitives at user/system and hw/sw boundary

Nov-11-09 ECSE 420
Parallel Computing

Communication Architecture
User/System Interface + Organization

 User/System Interface:
 Comm. primitives exposed to user-level by hw and system-level sw

 Implementation:
 Organizational structures that implement the primitives: HW or OS
 How optimized are they? How integrated into processing node?
 Structure of network

 Goals:
 Performance
 Broad applicability
 Programmability
 Scalability
 Low Cost

11/11/09

8

Nov-11-09 ECSE 420
Parallel Computing

Modern Layered Framework
CAD

Multipr ogramming Shar ed
addr ess

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Pr ogramming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication har dwar e
Physical communication medium

Har dwar e/softwar e boundary

Nov-11-09 ECSE 420
Parallel Computing

Communication Abstraction
  User level communication primitives provided

  Realizes the programming model
  Mapping exists between language primitives of programming

model and these primitives

  Supported directly by hw, or via OS, or via user sw
  Lot of debate about what to support in sw and gap between

layers
  Today:

  Hw/sw interface tends to be flat, i.e. complexity roughly uniform
  Compilers and software play important roles as bridges today
  Technology trends exert strong influence

  Result is convergence in organizational structure
  Relatively simple, general purpose communication primitives

11/11/09

9

Nov-11-09 ECSE 420
Parallel Computing

Understanding Parallel Architecture
  Traditional taxonomies not very useful
  Programming models not enough, nor hardware structures

  Same one can be supported by radically different architectures

=> Architectural distinctions that affect software
  Compilers, libraries, programs

  Design of user/system and hardware/software interface
  Constrained from above by progr. models and below by

technology

  Guiding principles provided by layers
  What primitives are provided at communication abstraction
  How programming models map to these
  How they are mapped to hardware

Nov-11-09 ECSE 420
Parallel Computing

Fundamental Design Issues
  At any layer, interface (contract) aspect and

performance aspects
  Naming: How are logically shared data and/or

processes referenced?
  Operations: What operations are provided on these

data
  Ordering: How are accesses to data ordered and

coordinated?
  Replication: How are data replicated to reduce

communication?
  Communication Cost: Latency, bandwidth, overhead,

occupancy

11/11/09

10

Nov-11-09 ECSE 420
Parallel Computing

Creating a Parallel Program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

  Decomposition of computation in tasks
  Assignment of tasks to processes
  Orchestration of data access, comm, synch.
  Mapping processes to processors

Nov-11-09 ECSE 420
Parallel Computing

Performance Goal => Speedup
  Architect Goal

  observe how program
uses machine and
improve the design to
enhance performance

  Programmer Goal
  observe how the

program uses the
machine and improve
the implementation to
enhance performance

  What do you observe?
  Who fixes what?

11/11/09

11

Nov-11-09 ECSE 420
Parallel Computing

Recap: Performance Trade-offs
  Programmer’s View of Performance

  Different goals often have conflicting demands
  Load Balance

  fine-grain tasks, random or dynamic assignment

  Communication
  coarse grain tasks, decompose to obtain locality

  Extra Work
  coarse grain tasks, simple assignment

  Communication & synchronization Cost:
  big transfers: amortize overhead and latency
  small transfers: reduce contention

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup <

Nov-11-09 ECSE 420
Parallel Computing

Working Set Perspective

  Hierarchy of working sets
  At first level cache (fully assoc, one-word block), inherent to

algorithm
  Working set curve for program

  Traffic from any type of miss can be local or nonlocal

• At a given level of the hierarchy (to the next further one)
First working set

Capacity-generated traf fic
(including conflicts)

Second working set

D
at

a
tra

f fic

Other capacity-independent communication
Cold-start (compulsory) traf fic

Replication capacity (cache size)
Inher ent communication

11/11/09

12

Nov-11-09 ECSE 420
Parallel Computing

Relation Between Perspectives

Synch wait

Data-remote

Data-localOrchestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Orchestration/
mapping

Load imbalance and
synchronization

Inherent
communication
volume

Artifactual
communication
and data locality

Communication
structure

Busy(1) + Data(1)
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p)

Speedup <

Nov-11-09 ECSE 420
Parallel Computing

Extensions of Memory System
P 1

Switch

Main memory

P n

(Interleaved)

(Interleaved)

First-level $

P 1

$

Inter connection network

$

P n

Mem Mem

P 1

$

Inter connection network

$

P n

Mem Mem Shared Cache

Centralized Memory
Dance Hall, UMA

Distributed Memory (NUMA)

Scale

11/11/09

13

Nov-11-09 ECSE 420
Parallel Computing

Snooping Cache-Coherence

  Bus is a broadcast medium & Caches know what they have
  Cache Controller “snoops” all transactions on the shared

bus
  Relevant transaction if for a block it contains
  Take action to ensure coherence

  Invalidate, update, or supply value
  Depends on state of the block and the protocol

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Nov-11-09 ECSE 420
Parallel Computing

Sequential Consistency

  Total order achieved by interleaving accesses from different
processes
  Maintains program order, and memory operations, from all processes,

appear to [issue, execute, complete] atomically w.r.t. others

  As if there were no caches, and a single memory

  “A multiprocessor is sequentially consistent if the result of any
execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order
specified by its program.” [Lamport, 1979]

Processors
issuing memory
references as
per program or der

P1 P2 Pn

Memory

The “switch” is randomly
set after each memory
reference

11/11/09

14

Nov-11-09 ECSE 420
Parallel Computing

MSI Invalidate Protocol
  Read obtains block in

“shared”
  even if only cache copy

  Obtain exclusive ownership
before writing
  BusRdx causes others to

invalidate (demote)
  If M in another cache, will

flush
  BusRdx even if hit in S

  promote to M (upgrade)

  What about replacement?
  S->I, M->I as before

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd

Nov-11-09 ECSE 420
Parallel Computing

Hardware Support for MESI

  All cache controllers snoop on BusRd
  Assert ‘shared’ if present (S? E? M?)
  Issuer chooses between S and E

  how does it know when all have voted?

I/O devices

Memory

u :5

P0 P1 P4

shared signal
 - wired-OR

11/11/09

15

Nov-11-09 ECSE 420
Parallel Computing

Dragon State Transition
Diagram

E Sc

Sm M

PrW r/—
PrRd/—

PrRd/—

PrRd/—

PrRdMiss/BusRd(S) PrRdMiss/BusRd(S)
PrW r/—

PrW rMiss/(BusRd(S); BusUpd) PrW rMiss/BusRd(S)

PrW r/BusUpd(S)

PrW r/BusUpd(S)

BusRd/—

BusRd/Flush

PrRd/— BusUpd/Update

BusUpd/Update

BusRd/Flush

PrW r/BusUpd(S)

PrW r/BusUpd(S)

Nov-11-09 ECSE 420
Parallel Computing

Workload-Driven Evaluation
  Evaluating real machines
  Evaluating an architectural idea or trade-offs
=> need good metrics of performance
=> need to pick good workloads
=> need to pay attention to scaling

  many factors involved

  Today: narrow architectural comparison
  Set in wider context

11/11/09

16

Nov-11-09 ECSE 420
Parallel Computing

Evaluation Summary

  FSMs describe Cache Coherence Algorithm
  Many underlying design choices
  Prove coherence, consistency

  Evaluation must be based on sound
understanding of workloads
  Drive the factors you want to study
  Representative
  Scaling factors

  Use of workload driven evaluation to
resolve architectural questions

Nov-11-09 ECSE 420
Parallel Computing

Components of Synchronization Event

  Acquire method
  Acquire right to the synch

  Enter critical section, go past event

  Waiting algorithm
  Wait for synch to become available
  busy-waiting, blocking, or hybrid

  Release method
  Enable other processors to acquire right to synch

  Waiting algorithm is independent of type of
synchronization
  Makes no sense to put in hardware

11/11/09

17

Nov-11-09 ECSE 420
Parallel Computing

Lock Perf. on SGI Challenge
Loop: lock; !

!delay(c); !
!unlock; !
!delay(d);!

 A r r a y - b a s e d
 L L - S C
 L L - S C , e x p o n e n t i a l
 T i c k e t
 T i c k e t , p r o p o r t i o n a l

 

 
          

  
  

   








       
  

 
 


 

  
  

   




 


           

0
1

1 3 5 7 9 1 1 1 3 1 5 1 3 5 7 9 1 1 1 3 1 5 1 3 5 7 9 1 1 1 3 1 5

2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7




 

  


 


   


       

 
 




   
          



   
  


   

 



 
           




 

  


 


   




     

  









  
         






  

 
 

  
  




 

          

(a) Null (c = 0, d = 0) (b) Critical-section (c = 3.64 µs, d = 0) (c) Delay (c = 3.64 µs, d = 1.29 µs)

Ti
m

e
(µ

s)

Ti
m

e
(µ

s)

Ti
m

e
(µ

s)

Number of processors Number of processors Number of processors

Nov-11-09 ECSE 420
Parallel Computing

Reality
  Protocol defines logical

FSM for each block
  Cache controller FSM

  multiple states per miss

  Bus controller FSM
  Other $Ctrls Get bus
  Multiple Bus trnxs

  write-back

  Multi-Level Caches
  Split-Transaction Busses

Σ Tag Data

Proc

$ Ctrl

11/11/09

18

Nov-11-09 ECSE 420
Parallel Computing

CC Design Issues
  Design of cache controller and tags

  Both processor and bus need to look up

  How and when to present snoop results on bus
  Dealing with write-backs
  Overall set of actions for memory operation not

atomic
  Can introduce race conditions

  Atomic operations

  New issues deadlock, livelock, starvation,
serialization, etc.

Nov-11-09 ECSE 420
Parallel Computing

Basic design

Addr CmdSnoop state Data buffer

Write-back buffer

Cache data RAM

Comparator

Comparator

P

Tag

Addr Cmd

Data
Addr Cmd

To
controller

System bus

Bus-
side

controller
To
controller

Tags
and
state
for
snoop

Tags
and
state
for
P

Processor-
side

controller

11/11/09

19

Nov-11-09 ECSE 420
Parallel Computing

Multilevel Cache Hierarchies

  Independent snoop hardware for each level?
  processor pins for shared bus
  contention for processor cache access ?

  Snoop only at L2 and propagate relevant transactions
  Inclusion property

(1) contents L1 is a subset of L
(2) any block in modified state in L1 is in modified state in L2
1 => all transactions relevant to L1 are relevant to L2
2 => on BusRd L2 can wave off memory access and inform L1

P

L1

L2

P

L1

L2 ° ° °

P

L1

L2

snoop

snoop ???

Processor Chip

Nov-11-09 ECSE 420
Parallel Computing

Bus Design (continued)

  Each of request and response phase is 5 bus cycles
  Response: 4 cycles for data (128 bytes, 256-bit bus), 1 turnaround

  Request phase: arbitration, resolution, address, decode, ack

  Request-response transaction takes 3 or more of these

  Cache tags looked up in decode; extend ack cycle if not possible

  Determine who will respond (actual response comes later, with re-arbitration)

  Write-backs only request phase : arbitrate both data+addr buses

  Upgrades have only request part; ack’ed by bus on grant (commit)

Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack

Addr
req

Addr Addr

Data
req

Tag

D0 D1 D2 D3

Addr
req

Addr Addr

Data
req

Tag

Grant

D0

check check

ackack

Time

Address
bus

Data
arbitration

Data
bus

Read operation 1
Read operation 2

11/11/09

20

Nov-11-09 ECSE 420
Parallel Computing

Network Transaction Primitive

  One-way transfer of information from a source
output buffer to a dest. input buffer
  Causes some action at the destination
  Occurrence is not directly visible at source

  Deposit data, state change, reply

Output buffer Input buffer

Source node Destination node

Communication network

° ° °

Serialized data packet

Nov-11-09 ECSE 420
Parallel Computing

Scalable Synchronization Ops
  Messages: point-to-point synchronization
  Build all-to-all as trees
  Recall: sophisticated locks reduced contention by

spinning on separate locations
  caching brought them local
  test&test&set, ticket-lock, array lock

  O(p) space

  Problem: with array lock location determined by
arrival order => not likely to be local

  Solution: queue-lock
  Build distributed linked-list, each spins on local node

