
11/11/09

1

 Parallel Arch. Review

Zeljko Zilic
McConnell Engineering Building
Room 536

Nov-11-09 ECSE 420
Parallel Computing

Main Points
  Understanding of the design and engineering of

modern parallel computers
  Technology forces
  Fundamental architectural issues

  Naming, replication, communication, synchronization

  Basic design techniques
  Cache coherence, protocols, networks, pipelining, …

  Methods of evaluation
  Underlying engineering trade-offs

  From moderate to large scale
  Across the hardware/software boundary

11/11/09

2

Nov-11-09 ECSE 420
Parallel Computing

Useful?
  Absolutely! Not only for PP designers
  The fundamental issues and solutions translate across a

wide spectrum of systems.
  Crisp solutions in the context of parallel machines.

  Pioneered at the thin-end of the platform pyramid on the
most-demanding applications
  Migrate downward with time

  Understand SW implications SuperServers

Departmental Servers

Workstations

Personal Computers

Workstations

Nov-11-09 ECSE 420
Parallel Computing

What is Parallel Architecture?
  A parallel computer is a collection of processing elements

that cooperate to solve large problems fast
  Some broad issues:

  Resource Allocation:
  How large a collection?
  How powerful are the elements?
  How much memory?

  Data access, Communication and Synchronization
  How do the elements cooperate and communicate?
  How are data transmitted between processors?
  What are the abstractions and primitives for cooperation?

  Performance and Scalability
  How does it all translate into performance?
  How does it scale?

11/11/09

3

Nov-11-09 ECSE 420
Parallel Computing

Role of a computer/system architect:
To design and engineer various levels of a computer system to
maximize performance and programmability within limits of
technology and cost.

Parallelism:
•  Provides alternative to faster clock for performance
•  Applies at all levels of system design
•  Is a fascinating perspective from which to view architecture
•  Is increasingly central in information processing

Why Parallel Architecture?

Nov-11-09 ECSE 420
Parallel Computing

Speedup
  Speedup (p processors) =

  For a fixed problem size (input data set),
performance = 1/time

  Speedupfixed (p processors) =

Performance (p processors)!
Performance (1 processor)!

Time (1 processor)!
Time (p processors)!

11/11/09

4

Nov-11-09 ECSE 420
Parallel Computing

Architectural Trends
  Architecture translates technology’s gains into

performance and capability
  Resolves the tradeoff between parallelism and locality

  Change with scale and technology advances
  Increasing role of memories (caches, …)

  Understanding microprocessor architectural trends
=> Helps build intuition about design issues or parallel

machines
=> Shows fundamental role of parallelism even in

“sequential” computers

Nov-11-09 ECSE 420
Parallel Computing

Architectural Trends
  Greatest trend in VLSI generation is increase in parallelism

  Up to 1985: bit level parallelism: 4-bit -> 8 bit -> 16-bit
  Slows after 32 bit
  Adoption of 64-bit now, 128-bit far (not performance issue)
  Great inflection point when 32-bit micro and cache fit on a chip

  Mid 80s to mid 90s: instruction level parallelism
  Pipelining and simple instruction sets, + compiler advances

(RISC)
  On-chip caches and functional units => superscalar execution
  Greater sophistication: out of order execution, speculation,

prediction
  To deal with control transfer and latency problems

  Next step: thread level parallelism

11/11/09

5

Nov-11-09 ECSE 420
Parallel Computing

Summary: Why Parallel?
  Increasingly attractive

  Economics, technology, architecture, application demand

  Increasingly central and mainstream
  Parallelism exploited at many levels

  Instruction-level parallelism
  Multiprocessor servers
  Large-scale multiprocessors (“MPPs”)

  Focus of this class: multiprocessor level of parallelism
  Same story from memory system perspective

  Increase bandwidth, reduce average latency with many local
memories

  Spectrum of parallel architectures make sense
  Different cost, performance and scalability

Nov-11-09 ECSE 420
Parallel Computing

Programming Model
  Conceptualization of the machine that programmer uses in coding

applications
  How parts cooperate and coordinate their activities
  Specifies communication and synchronization operations

  Multiprogramming
  No communication or synch. at program level

  Shared address space
  Like bulletin board

  Message passing
  Like letters or phone calls, explicit point to point

  Data parallel:
  More regimented, global actions on data
  Implemented with shared address space or message passing

11/11/09

6

Nov-11-09 ECSE 420
Parallel Computing

Toward Architectural Convergence

  Evolution and role of software have blurred boundary
  Send/recv supported on SAS machines via buffers
  Can construct global address space on MP (GA -> P | LA)
  Page-based (or finer-grained) shared virtual memory

  Hardware organization converging too
  Tighter NI integration even for MP (low-latency, high-bandwidth)
  Hardware SAS passes messages

  Even clusters of workstations/SMPs are parallel systems
  Emergence of fast system area networks (SAN)

  Programming models distinct, but organizations converging
  Nodes connected by general network and communication assists
  Implementations also converging, at least in high-end machines

Nov-11-09 ECSE 420
Parallel Computing

Mem

ϒ ϒ ϒ

Network

P

$

Communication
assist (CA)

Convergence: Generic Parallel Arch.

  Node: processor(s), memory system, communication assist
  Network interface and communication controller

  Scalable network
  Convergence allows lots of innovation, within framework

  Integration of assist with node, what operations, how efficiently...

11/11/09

7

Nov-11-09 ECSE 420
Parallel Computing

Architecture
  Two facets of Computer Architecture:

  Defines Critical Abstractions
  Especially at HW/SW boundary
  Set of operations and data types these operate on

  Organizational structure that realizes these
abstraction

  Parallel Computer Arch. =
 Comp. Arch + Communication Arch.

  Comm. Architecture has same two facets
  Communication abstraction
  Primitives at user/system and hw/sw boundary

Nov-11-09 ECSE 420
Parallel Computing

Communication Architecture
User/System Interface + Organization

 User/System Interface:
 Comm. primitives exposed to user-level by hw and system-level sw

 Implementation:
 Organizational structures that implement the primitives: HW or OS
 How optimized are they? How integrated into processing node?
 Structure of network

 Goals:
 Performance
 Broad applicability
 Programmability
 Scalability
 Low Cost

11/11/09

8

Nov-11-09 ECSE 420
Parallel Computing

Modern Layered Framework
CAD

Multipr ogramming Shar ed
addr ess

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Pr ogramming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication har dwar e
Physical communication medium

Har dwar e/softwar e boundary

Nov-11-09 ECSE 420
Parallel Computing

Communication Abstraction
  User level communication primitives provided

  Realizes the programming model
  Mapping exists between language primitives of programming

model and these primitives

  Supported directly by hw, or via OS, or via user sw
  Lot of debate about what to support in sw and gap between

layers
  Today:

  Hw/sw interface tends to be flat, i.e. complexity roughly uniform
  Compilers and software play important roles as bridges today
  Technology trends exert strong influence

  Result is convergence in organizational structure
  Relatively simple, general purpose communication primitives

11/11/09

9

Nov-11-09 ECSE 420
Parallel Computing

Understanding Parallel Architecture
  Traditional taxonomies not very useful
  Programming models not enough, nor hardware structures

  Same one can be supported by radically different architectures

=> Architectural distinctions that affect software
  Compilers, libraries, programs

  Design of user/system and hardware/software interface
  Constrained from above by progr. models and below by

technology

  Guiding principles provided by layers
  What primitives are provided at communication abstraction
  How programming models map to these
  How they are mapped to hardware

Nov-11-09 ECSE 420
Parallel Computing

Fundamental Design Issues
  At any layer, interface (contract) aspect and

performance aspects
  Naming: How are logically shared data and/or

processes referenced?
  Operations: What operations are provided on these

data
  Ordering: How are accesses to data ordered and

coordinated?
  Replication: How are data replicated to reduce

communication?
  Communication Cost: Latency, bandwidth, overhead,

occupancy

11/11/09

10

Nov-11-09 ECSE 420
Parallel Computing

Creating a Parallel Program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

  Decomposition of computation in tasks
  Assignment of tasks to processes
  Orchestration of data access, comm, synch.
  Mapping processes to processors

Nov-11-09 ECSE 420
Parallel Computing

Performance Goal => Speedup
  Architect Goal

  observe how program
uses machine and
improve the design to
enhance performance

  Programmer Goal
  observe how the

program uses the
machine and improve
the implementation to
enhance performance

  What do you observe?
  Who fixes what?

11/11/09

11

Nov-11-09 ECSE 420
Parallel Computing

Recap: Performance Trade-offs
  Programmer’s View of Performance

  Different goals often have conflicting demands
  Load Balance

  fine-grain tasks, random or dynamic assignment

  Communication
  coarse grain tasks, decompose to obtain locality

  Extra Work
  coarse grain tasks, simple assignment

  Communication & synchronization Cost:
  big transfers: amortize overhead and latency
  small transfers: reduce contention

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup <

Nov-11-09 ECSE 420
Parallel Computing

Working Set Perspective

  Hierarchy of working sets
  At first level cache (fully assoc, one-word block), inherent to

algorithm
  Working set curve for program

  Traffic from any type of miss can be local or nonlocal

• At a given level of the hierarchy (to the next further one)
First working set

Capacity-generated traf fic
(including conflicts)

Second working set

D
at

a
tra

f fic

Other capacity-independent communication
Cold-start (compulsory) traf fic

Replication capacity (cache size)
Inher ent communication

11/11/09

12

Nov-11-09 ECSE 420
Parallel Computing

Relation Between Perspectives

Synch wait

Data-remote

Data-localOrchestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Orchestration/
mapping

Load imbalance and
synchronization

Inherent
communication
volume

Artifactual
communication
and data locality

Communication
structure

Busy(1) + Data(1)
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p)

Speedup <

Nov-11-09 ECSE 420
Parallel Computing

Extensions of Memory System
P 1

Switch

Main memory

P n

(Interleaved)

(Interleaved)

First-level $

P 1

$

Inter connection network

$

P n

Mem Mem

P 1

$

Inter connection network

$

P n

Mem Mem Shared Cache

Centralized Memory
Dance Hall, UMA

Distributed Memory (NUMA)

Scale

11/11/09

13

Nov-11-09 ECSE 420
Parallel Computing

Snooping Cache-Coherence

  Bus is a broadcast medium & Caches know what they have
  Cache Controller “snoops” all transactions on the shared

bus
  Relevant transaction if for a block it contains
  Take action to ensure coherence

  Invalidate, update, or supply value
  Depends on state of the block and the protocol

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Nov-11-09 ECSE 420
Parallel Computing

Sequential Consistency

  Total order achieved by interleaving accesses from different
processes
  Maintains program order, and memory operations, from all processes,

appear to [issue, execute, complete] atomically w.r.t. others

  As if there were no caches, and a single memory

  “A multiprocessor is sequentially consistent if the result of any
execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order
specified by its program.” [Lamport, 1979]

Processors
issuing memory
references as
per program or der

P1 P2 Pn

Memory

The “switch” is randomly
set after each memory
reference

11/11/09

14

Nov-11-09 ECSE 420
Parallel Computing

MSI Invalidate Protocol
  Read obtains block in

“shared”
  even if only cache copy

  Obtain exclusive ownership
before writing
  BusRdx causes others to

invalidate (demote)
  If M in another cache, will

flush
  BusRdx even if hit in S

  promote to M (upgrade)

  What about replacement?
  S->I, M->I as before

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd

Nov-11-09 ECSE 420
Parallel Computing

Hardware Support for MESI

  All cache controllers snoop on BusRd
  Assert ‘shared’ if present (S? E? M?)
  Issuer chooses between S and E

  how does it know when all have voted?

I/O devices

Memory

u :5

P0 P1 P4

shared signal
 - wired-OR

11/11/09

15

Nov-11-09 ECSE 420
Parallel Computing

Dragon State Transition
Diagram

E Sc

Sm M

PrW r/—
PrRd/—

PrRd/—

PrRd/—

PrRdMiss/BusRd(S) PrRdMiss/BusRd(S)
PrW r/—

PrW rMiss/(BusRd(S); BusUpd) PrW rMiss/BusRd(S)

PrW r/BusUpd(S)

PrW r/BusUpd(S)

BusRd/—

BusRd/Flush

PrRd/— BusUpd/Update

BusUpd/Update

BusRd/Flush

PrW r/BusUpd(S)

PrW r/BusUpd(S)

Nov-11-09 ECSE 420
Parallel Computing

Workload-Driven Evaluation
  Evaluating real machines
  Evaluating an architectural idea or trade-offs
=> need good metrics of performance
=> need to pick good workloads
=> need to pay attention to scaling

  many factors involved

  Today: narrow architectural comparison
  Set in wider context

11/11/09

16

Nov-11-09 ECSE 420
Parallel Computing

Evaluation Summary

  FSMs describe Cache Coherence Algorithm
  Many underlying design choices
  Prove coherence, consistency

  Evaluation must be based on sound
understanding of workloads
  Drive the factors you want to study
  Representative
  Scaling factors

  Use of workload driven evaluation to
resolve architectural questions

Nov-11-09 ECSE 420
Parallel Computing

Components of Synchronization Event

  Acquire method
  Acquire right to the synch

  Enter critical section, go past event

  Waiting algorithm
  Wait for synch to become available
  busy-waiting, blocking, or hybrid

  Release method
  Enable other processors to acquire right to synch

  Waiting algorithm is independent of type of
synchronization
  Makes no sense to put in hardware

11/11/09

17

Nov-11-09 ECSE 420
Parallel Computing

Lock Perf. on SGI Challenge
Loop: lock; !

!delay(c); !
!unlock; !
!delay(d);!

 A r r a y - b a s e d
 L L - S C
 L L - S C , e x p o n e n t i a l
 T i c k e t
 T i c k e t , p r o p o r t i o n a l

0
1

1 3 5 7 9 1 1 1 3 1 5 1 3 5 7 9 1 1 1 3 1 5 1 3 5 7 9 1 1 1 3 1 5

2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

(a) Null (c = 0, d = 0) (b) Critical-section (c = 3.64 µs, d = 0) (c) Delay (c = 3.64 µs, d = 1.29 µs)

Ti
m

e
(µ

s)

Ti
m

e
(µ

s)

Ti
m

e
(µ

s)

Number of processors Number of processors Number of processors

Nov-11-09 ECSE 420
Parallel Computing

Reality
  Protocol defines logical

FSM for each block
  Cache controller FSM

  multiple states per miss

  Bus controller FSM
  Other $Ctrls Get bus
  Multiple Bus trnxs

  write-back

  Multi-Level Caches
  Split-Transaction Busses

Σ Tag Data

Proc

$ Ctrl

11/11/09

18

Nov-11-09 ECSE 420
Parallel Computing

CC Design Issues
  Design of cache controller and tags

  Both processor and bus need to look up

  How and when to present snoop results on bus
  Dealing with write-backs
  Overall set of actions for memory operation not

atomic
  Can introduce race conditions

  Atomic operations

  New issues deadlock, livelock, starvation,
serialization, etc.

Nov-11-09 ECSE 420
Parallel Computing

Basic design

Addr CmdSnoop state Data buffer

Write-back buffer

Cache data RAM

Comparator

Comparator

P

Tag

Addr Cmd

Data
Addr Cmd

To
controller

System bus

Bus-
side

controller
To
controller

Tags
and
state
for
snoop

Tags
and
state
for
P

Processor-
side

controller

11/11/09

19

Nov-11-09 ECSE 420
Parallel Computing

Multilevel Cache Hierarchies

  Independent snoop hardware for each level?
  processor pins for shared bus
  contention for processor cache access ?

  Snoop only at L2 and propagate relevant transactions
  Inclusion property

(1) contents L1 is a subset of L
(2) any block in modified state in L1 is in modified state in L2
1 => all transactions relevant to L1 are relevant to L2
2 => on BusRd L2 can wave off memory access and inform L1

P

L1

L2

P

L1

L2 ° ° °

P

L1

L2

snoop

snoop ???

Processor Chip

Nov-11-09 ECSE 420
Parallel Computing

Bus Design (continued)

  Each of request and response phase is 5 bus cycles
  Response: 4 cycles for data (128 bytes, 256-bit bus), 1 turnaround

  Request phase: arbitration, resolution, address, decode, ack

  Request-response transaction takes 3 or more of these

  Cache tags looked up in decode; extend ack cycle if not possible

  Determine who will respond (actual response comes later, with re-arbitration)

  Write-backs only request phase : arbitrate both data+addr buses

  Upgrades have only request part; ack’ed by bus on grant (commit)

Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack

Addr
req

Addr Addr

Data
req

Tag

D0 D1 D2 D3

Addr
req

Addr Addr

Data
req

Tag

Grant

D0

check check

ackack

Time

Address
bus

Data
arbitration

Data
bus

Read operation 1
Read operation 2

11/11/09

20

Nov-11-09 ECSE 420
Parallel Computing

Network Transaction Primitive

  One-way transfer of information from a source
output buffer to a dest. input buffer
  Causes some action at the destination
  Occurrence is not directly visible at source

  Deposit data, state change, reply

Output buffer Input buffer

Source node Destination node

Communication network

° ° °

Serialized data packet

Nov-11-09 ECSE 420
Parallel Computing

Scalable Synchronization Ops
  Messages: point-to-point synchronization
  Build all-to-all as trees
  Recall: sophisticated locks reduced contention by

spinning on separate locations
  caching brought them local
  test&test&set, ticket-lock, array lock

  O(p) space

  Problem: with array lock location determined by
arrival order => not likely to be local

  Solution: queue-lock
  Build distributed linked-list, each spins on local node

