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Main Points 
  Understanding of the design and engineering of 

modern parallel computers 
  Technology forces 
  Fundamental architectural issues 

  Naming, replication, communication, synchronization 

  Basic design techniques 
  Cache coherence, protocols, networks, pipelining, … 

  Methods of evaluation 
  Underlying engineering trade-offs 

  From moderate to large scale 
  Across the hardware/software boundary 
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Useful? 
  Absolutely! Not only for  PP designers 
  The fundamental issues and solutions translate across a 

wide spectrum of systems. 
  Crisp solutions in the context of parallel machines. 

  Pioneered at the thin-end of the platform pyramid on the 
most-demanding applications 
  Migrate downward with time 

  Understand SW implications SuperServers 

Departmental Servers 

Workstations 

Personal Computers 

Workstations 
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What is Parallel Architecture? 
  A parallel computer is a collection of processing elements 

that cooperate  to solve large problems fast 
  Some broad issues: 

  Resource Allocation: 
  How large a collection?  
  How powerful are the elements? 
  How much memory? 

  Data access, Communication and Synchronization 
  How do the elements  cooperate and communicate? 
  How are  data transmitted between processors? 
  What are the abstractions and primitives for cooperation? 

  Performance and Scalability 
  How does it all translate into performance? 
  How does it scale? 
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Role of a computer/system architect:   
To design and engineer various levels of a computer system to 
maximize performance and programmability within limits of 
technology and cost. 

Parallelism: 
•  Provides alternative to faster clock for performance 
•  Applies at all levels of system design 
•  Is a fascinating perspective from which to view architecture 
•  Is increasingly central in information processing 

Why Parallel Architecture? 
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Speedup 
  Speedup (p processors) = 

  For a fixed problem size (input data set), 
performance = 1/time 

  Speedupfixed (p processors) =   

Performance (p processors)!
Performance (1 processor)!

Time (1 processor)!
Time (p processors)!



11/11/09 

4 

Nov-11-09 ECSE 420 
Parallel Computing 

Architectural Trends 
  Architecture translates technology’s gains into 

performance and capability 
  Resolves the tradeoff between parallelism and locality 

  Change with scale and technology advances 
  Increasing role of memories (caches, …) 

  Understanding microprocessor architectural trends  
=> Helps build intuition about design issues or parallel 

machines 
=> Shows fundamental role of parallelism even in 

“sequential” computers 
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Architectural Trends 
  Greatest trend in VLSI generation is increase in parallelism 

  Up to 1985: bit level parallelism: 4-bit -> 8 bit -> 16-bit 
  Slows after 32 bit  
  Adoption of 64-bit now, 128-bit far (not performance issue) 
  Great inflection point when 32-bit micro and cache fit on a chip 

  Mid 80s to mid 90s: instruction level parallelism 
  Pipelining and simple instruction sets, + compiler advances 

(RISC) 
  On-chip caches and functional units => superscalar execution 
  Greater sophistication: out of order execution, speculation, 

prediction 
  To deal with control transfer and latency problems 

  Next step: thread level parallelism 
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Summary: Why Parallel? 
  Increasingly attractive 

  Economics, technology, architecture, application demand 

  Increasingly central and mainstream 
  Parallelism exploited at many levels 

  Instruction-level parallelism 
  Multiprocessor servers 
  Large-scale multiprocessors (“MPPs”) 

  Focus of this class: multiprocessor level of parallelism 
  Same story from memory system perspective 

  Increase bandwidth, reduce average latency with many local 
memories 

  Spectrum of parallel architectures make sense 
  Different cost, performance and scalability 
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Programming Model 
  Conceptualization of the machine that programmer uses in coding 

applications 
  How parts cooperate and coordinate their activities 
  Specifies communication and synchronization operations 

  Multiprogramming 
  No communication or synch. at program level 

  Shared address space 
  Like bulletin board 

  Message passing 
  Like letters or phone calls, explicit point to point 

  Data parallel:  
  More regimented, global actions on data 
  Implemented with shared address space or message passing 
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Toward Architectural Convergence 

  Evolution and role of software have blurred boundary 
  Send/recv supported on SAS machines via buffers 
  Can construct global address space on MP    (GA -> P | LA) 
  Page-based (or finer-grained) shared virtual memory 

  Hardware organization converging too 
  Tighter NI integration even for MP (low-latency, high-bandwidth) 
  Hardware SAS passes messages 

  Even clusters of workstations/SMPs are parallel systems 
  Emergence of fast system area networks (SAN) 

  Programming models distinct, but organizations converging 
  Nodes connected by general network and communication assists 
  Implementations also converging, at least in high-end machines 
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Mem

ϒ ϒ ϒ

Network

P

$

Communication
assist (CA)

Convergence: Generic Parallel Arch. 

  Node: processor(s), memory system, communication assist 
  Network interface and communication controller 

  Scalable network 
  Convergence allows lots of innovation, within framework 

  Integration of assist with node, what operations, how efficiently... 
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Architecture 
  Two facets of Computer Architecture: 

  Defines Critical Abstractions  
  Especially at HW/SW boundary 
  Set of operations and data types these operate on 

  Organizational structure that realizes these 
abstraction 

  Parallel Computer Arch. =     
 Comp. Arch + Communication Arch. 

  Comm. Architecture has same two facets 
  Communication abstraction 
  Primitives at user/system and hw/sw boundary 
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Communication Architecture 
User/System Interface + Organization 

 User/System Interface: 
 Comm. primitives exposed to user-level by hw and system-level sw 

 Implementation: 
 Organizational structures that implement the primitives: HW or OS 
 How optimized are they? How integrated into processing node? 
 Structure of network 

 Goals: 
 Performance 
 Broad applicability 
 Programmability 
 Scalability 
 Low Cost 



11/11/09 

8 

Nov-11-09 ECSE 420 
Parallel Computing 

Modern Layered Framework 
CAD 

Multipr ogramming Shar ed 
addr ess 

Message 
passing 

Data 
parallel 

Database Scientific modeling Parallel applications 

Pr ogramming models 

Communication abstraction 
User/system boundary 

Compilation 
or library 

Operating systems support 

Communication har dwar e 
Physical communication medium 

Har dwar e/softwar e boundary 
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Communication Abstraction 
  User level communication primitives provided 

  Realizes the programming model 
  Mapping exists between language primitives of programming 

model and these primitives 

  Supported directly by hw, or via OS, or via user sw 
  Lot of debate about what to support in sw and gap between 

layers 
  Today: 

  Hw/sw interface tends to be flat, i.e. complexity roughly uniform 
  Compilers and software play important roles as bridges today 
  Technology trends exert strong influence 

  Result is convergence in organizational structure 
  Relatively simple, general purpose communication primitives 
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Understanding Parallel Architecture 
  Traditional taxonomies not very useful 
  Programming models not enough, nor hardware structures 

  Same one can be supported by radically different architectures 

=> Architectural distinctions that affect software 
  Compilers, libraries, programs 

  Design of user/system and hardware/software interface 
  Constrained from above by progr. models and below by 

technology 

  Guiding principles provided by layers 
  What primitives are provided at communication abstraction 
  How programming models map to these 
  How they are mapped to hardware 
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Fundamental Design Issues 
  At any layer, interface (contract) aspect and 

performance aspects 
  Naming:  How are logically shared data and/or 

processes referenced? 
  Operations: What operations are provided on these 

data 
  Ordering:  How are accesses to data ordered and 

coordinated? 
  Replication: How are data replicated to reduce 

communication? 
  Communication Cost:  Latency, bandwidth, overhead, 

occupancy 
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Creating a Parallel Program 

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program
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  Decomposition of computation in tasks 
  Assignment of tasks to processes 
  Orchestration of data access, comm, synch. 
  Mapping processes to processors 
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Performance Goal => Speedup 
  Architect Goal 

  observe how program 
uses machine and 
improve the design to 
enhance performance 

  Programmer Goal 
  observe how the 

program uses the 
machine and improve 
the implementation to 
enhance performance 

  What do you observe? 
  Who fixes what? 
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Recap: Performance Trade-offs 
  Programmer’s View of Performance 

  Different goals often have conflicting demands 
  Load Balance 

  fine-grain tasks, random or dynamic assignment 

  Communication 
  coarse grain tasks, decompose to obtain locality 

  Extra Work 
  coarse grain tasks, simple assignment 

  Communication & synchronization Cost: 
  big transfers: amortize overhead and latency 
  small transfers: reduce contention 

Sequential Work 
Max (Work + Synch Wait Time + Comm Cost + Extra Work) 

Speedup   < 
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Working Set Perspective 

  Hierarchy of working sets 
  At first level cache (fully assoc, one-word block), inherent to 

algorithm 
  Working set curve for program 

  Traffic from any type of miss can be local or nonlocal 

• At a given level of the hierarchy (to the next further one) 
First working set 

Capacity-generated traf fic 
(including conflicts) 

Second working set 

D
at

a 
tra

f fic 

Other capacity-independent communication 
Cold-start (compulsory) traf fic 

Replication capacity (cache size) 
Inher ent communication 
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Relation Between Perspectives 

Synch wait

Data-remote

Data-localOrchestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Orchestration/
mapping

Load imbalance and 
synchronization

Inherent 
communication 
volume

Artifactual 
communication 
and data locality

Communication 
structure

Busy(1) + Data(1) 
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p) 

Speedup < 

Nov-11-09 ECSE 420 
Parallel Computing 

Extensions of Memory System 
P 1 

Switch 

Main memory 

P n 

(Interleaved) 

(Interleaved) 

First-level $ 

P 1 

$ 

Inter connection network 

$ 

P n 

Mem Mem 

P 1 

$ 

Inter connection network 

$ 

P n 

Mem Mem Shared Cache 

Centralized Memory 
Dance Hall, UMA 

Distributed Memory (NUMA) 

Scale 
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Snooping Cache-Coherence 

  Bus is a broadcast medium & Caches know what they have 
  Cache Controller “snoops” all transactions on the shared 

bus 
  Relevant transaction if for a block it contains 
  Take action to ensure coherence 

  Invalidate, update, or supply value 
  Depends on state of the block and the protocol 

State 
Address 
Data 

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction
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Sequential Consistency 

  Total order achieved by interleaving accesses from different 
processes 
  Maintains program order, and memory operations, from all processes, 

appear to [issue, execute, complete] atomically w.r.t. others 

  As if there were no caches, and a single memory 

   “A multiprocessor is sequentially consistent if the result of any 
execution is the same as if the operations of all the processors 
were executed in some sequential order, and the operations of 
each individual processor appear in this sequence in the order 
specified by its program.” [Lamport, 1979] 

Processors 
issuing memory 
references as 
per program or der

P1 P2 Pn

Memory

The “switch” is randomly 
set after each memory
reference
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MSI Invalidate Protocol 
  Read obtains block in 

“shared” 
  even if only cache copy 

  Obtain exclusive ownership 
before writing 
  BusRdx causes others to 

invalidate (demote) 
  If M in another cache, will 

flush 
  BusRdx even if hit in S 

  promote to M (upgrade) 

  What about replacement? 
  S->I, M->I as before 

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd
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Hardware Support for MESI 

  All cache controllers snoop on BusRd 
  Assert ‘shared’ if present (S? E? M?) 
  Issuer chooses between S and E 

  how does it know when all have voted? 

I/O devices 

Memory 

u  :5 

P0 P1 P4 

shared signal 
 - wired-OR 
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Dragon State Transition 
Diagram 

E Sc 

Sm M 

PrW r/— 
PrRd/— 

PrRd/— 

PrRd/— 

PrRdMiss/BusRd(S) PrRdMiss/BusRd(S) 
PrW r/— 

PrW rMiss/(BusRd(S); BusUpd) PrW rMiss/BusRd(S) 

PrW r/BusUpd(S) 

PrW r/BusUpd(S) 

BusRd/— 

BusRd/Flush 

PrRd/— BusUpd/Update 

BusUpd/Update 

BusRd/Flush 

PrW r/BusUpd(S) 

PrW r/BusUpd(S) 
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Workload-Driven Evaluation 
  Evaluating real machines 
  Evaluating an architectural idea or trade-offs 
=> need good metrics of performance 
=> need to pick good workloads 
=> need to pay attention to scaling 

  many factors involved 

  Today: narrow architectural comparison 
  Set in wider context 
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Evaluation Summary 

  FSMs describe Cache Coherence Algorithm 
  Many underlying design choices 
  Prove coherence, consistency 

  Evaluation must be based on sound 
understanding of workloads 
  Drive the factors you want to study 
  Representative 
  Scaling factors 

  Use of workload driven evaluation to 
resolve architectural questions 
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Components of Synchronization Event 

  Acquire method 
  Acquire right to the synch  

  Enter critical section, go past event 

  Waiting algorithm 
  Wait for synch to become available  
  busy-waiting, blocking, or hybrid 

  Release method 
  Enable other processors to acquire right to synch 

  Waiting algorithm is independent of type of 
synchronization 
  Makes no sense to put in hardware 
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Lock Perf. on SGI Challenge 
Loop:  lock; !

!delay(c); !
!unlock; !
!delay(d);!

 A r r a y - b a s e d 
 L L - S C 
 L L - S C , e x p o n e n t i a l 
 T i c k e t 
 T i c k e t , p r o p o r t i o n a l 
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Reality 
  Protocol defines logical 

FSM for each block 
  Cache controller FSM 

  multiple states per miss 

  Bus controller FSM 
  Other $Ctrls Get bus 
  Multiple Bus trnxs 

  write-back 

  Multi-Level Caches 
  Split-Transaction Busses 

Σ Tag Data 

Proc 

$ Ctrl 
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CC Design Issues 
  Design of cache controller and tags 

  Both processor and bus need to look up 

  How and when to present snoop results on bus 
  Dealing with write-backs 
  Overall set of actions for memory operation not 

atomic 
  Can introduce race conditions 

  Atomic operations 

  New issues deadlock, livelock, starvation, 
serialization, etc. 
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Basic design 

Addr CmdSnoop state Data buffer

Write-back buffer

Cache data RAM

Comparator

Comparator

P

Tag

Addr Cmd

Data
Addr Cmd

To
controller

System bus

Bus-
side

controller
To
controller

Tags
and
state
for
snoop

Tags
and
state
for
P

Processor-
side

controller
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Multilevel Cache Hierarchies 

  Independent snoop hardware for each level? 
  processor pins for shared bus 
  contention for processor cache access ? 

  Snoop only at L2 and propagate relevant transactions 
  Inclusion property 

(1) contents L1 is a subset of L 
(2) any block in modified state in L1 is in modified state in L2 
1 => all transactions relevant to L1 are relevant to L2 
2 => on BusRd L2 can wave off memory access and inform L1 

P 

L1 

L2 

P 

L1 

L2 ° ° ° 

P 

L1 

L2 

snoop 

snoop ??? 

Processor Chip 
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Bus Design (continued) 

  Each of request and response phase is 5 bus cycles 
  Response: 4 cycles for data (128 bytes, 256-bit bus), 1 turnaround 

  Request phase: arbitration, resolution, address, decode, ack 

  Request-response transaction takes 3 or more of these 

  Cache tags looked up in decode; extend ack cycle if not possible 

  Determine who will respond (actual response comes later, with re-arbitration) 

  Write-backs only request phase : arbitrate both data+addr buses 

  Upgrades have only request part; ack’ed by bus on grant (commit) 

Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack

Addr
req

Addr Addr

Data
req

Tag

D0 D1 D2 D3

Addr
req

Addr Addr

Data
req

Tag

Grant

D0

check check

ackack

Time

Address
bus

Data
arbitration

Data
bus

Read operation 1
Read operation 2
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Network Transaction Primitive 

  One-way transfer of information from a source 
output buffer to a dest. input buffer 
  Causes some action at the destination 
  Occurrence is not directly visible at source 

  Deposit data, state change, reply 

Output buffer Input buffer

Source node Destination node

Communication network

° ° °

Serialized data packet

Nov-11-09 ECSE 420 
Parallel Computing 

Scalable Synchronization Ops 
  Messages: point-to-point synchronization 
  Build all-to-all as trees 
  Recall: sophisticated locks reduced contention by 

spinning on separate locations 
  caching brought them local 
  test&test&set, ticket-lock, array lock 

  O(p) space 

  Problem: with array lock location determined by 
arrival order => not likely to be local 

  Solution: queue-lock 
  Build distributed linked-list, each spins on local node 


