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Main Points 
  Understanding of the design and engineering of 

modern parallel computers 
  Technology forces 
  Fundamental architectural issues 

  Naming, replication, communication, synchronization 

  Basic design techniques 
  Cache coherence, protocols, networks, pipelining, … 

  Methods of evaluation 
  Underlying engineering trade-offs 

  From moderate to large scale 
  Across the hardware/software boundary 
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Useful? 
  Absolutely! Not only for  PP designers 
  The fundamental issues and solutions translate across a 

wide spectrum of systems. 
  Crisp solutions in the context of parallel machines. 

  Pioneered at the thin-end of the platform pyramid on the 
most-demanding applications 
  Migrate downward with time 

  Understand SW implications SuperServers 

Departmental Servers 

Workstations 

Personal Computers 

Workstations 
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What is Parallel Architecture? 
  A parallel computer is a collection of processing elements 

that cooperate  to solve large problems fast 
  Some broad issues: 

  Resource Allocation: 
  How large a collection?  
  How powerful are the elements? 
  How much memory? 

  Data access, Communication and Synchronization 
  How do the elements  cooperate and communicate? 
  How are  data transmitted between processors? 
  What are the abstractions and primitives for cooperation? 

  Performance and Scalability 
  How does it all translate into performance? 
  How does it scale? 
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Role of a computer/system architect:   
To design and engineer various levels of a computer system to 
maximize performance and programmability within limits of 
technology and cost. 

Parallelism: 
•  Provides alternative to faster clock for performance 
•  Applies at all levels of system design 
•  Is a fascinating perspective from which to view architecture 
•  Is increasingly central in information processing 

Why Parallel Architecture? 
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Speedup 
  Speedup (p processors) = 

  For a fixed problem size (input data set), 
performance = 1/time 

  Speedupfixed (p processors) =   

Performance (p processors)!
Performance (1 processor)!

Time (1 processor)!
Time (p processors)!
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Architectural Trends 
  Architecture translates technology’s gains into 

performance and capability 
  Resolves the tradeoff between parallelism and locality 

  Change with scale and technology advances 
  Increasing role of memories (caches, …) 

  Understanding microprocessor architectural trends  
=> Helps build intuition about design issues or parallel 

machines 
=> Shows fundamental role of parallelism even in 

“sequential” computers 
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Architectural Trends 
  Greatest trend in VLSI generation is increase in parallelism 

  Up to 1985: bit level parallelism: 4-bit -> 8 bit -> 16-bit 
  Slows after 32 bit  
  Adoption of 64-bit now, 128-bit far (not performance issue) 
  Great inflection point when 32-bit micro and cache fit on a chip 

  Mid 80s to mid 90s: instruction level parallelism 
  Pipelining and simple instruction sets, + compiler advances 

(RISC) 
  On-chip caches and functional units => superscalar execution 
  Greater sophistication: out of order execution, speculation, 

prediction 
  To deal with control transfer and latency problems 

  Next step: thread level parallelism 
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Summary: Why Parallel? 
  Increasingly attractive 

  Economics, technology, architecture, application demand 

  Increasingly central and mainstream 
  Parallelism exploited at many levels 

  Instruction-level parallelism 
  Multiprocessor servers 
  Large-scale multiprocessors (“MPPs”) 

  Focus of this class: multiprocessor level of parallelism 
  Same story from memory system perspective 

  Increase bandwidth, reduce average latency with many local 
memories 

  Spectrum of parallel architectures make sense 
  Different cost, performance and scalability 
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Programming Model 
  Conceptualization of the machine that programmer uses in coding 

applications 
  How parts cooperate and coordinate their activities 
  Specifies communication and synchronization operations 

  Multiprogramming 
  No communication or synch. at program level 

  Shared address space 
  Like bulletin board 

  Message passing 
  Like letters or phone calls, explicit point to point 

  Data parallel:  
  More regimented, global actions on data 
  Implemented with shared address space or message passing 
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Toward Architectural Convergence 

  Evolution and role of software have blurred boundary 
  Send/recv supported on SAS machines via buffers 
  Can construct global address space on MP    (GA -> P | LA) 
  Page-based (or finer-grained) shared virtual memory 

  Hardware organization converging too 
  Tighter NI integration even for MP (low-latency, high-bandwidth) 
  Hardware SAS passes messages 

  Even clusters of workstations/SMPs are parallel systems 
  Emergence of fast system area networks (SAN) 

  Programming models distinct, but organizations converging 
  Nodes connected by general network and communication assists 
  Implementations also converging, at least in high-end machines 
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Mem

ϒ ϒ ϒ

Network

P

$

Communication
assist (CA)

Convergence: Generic Parallel Arch. 

  Node: processor(s), memory system, communication assist 
  Network interface and communication controller 

  Scalable network 
  Convergence allows lots of innovation, within framework 

  Integration of assist with node, what operations, how efficiently... 
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Architecture 
  Two facets of Computer Architecture: 

  Defines Critical Abstractions  
  Especially at HW/SW boundary 
  Set of operations and data types these operate on 

  Organizational structure that realizes these 
abstraction 

  Parallel Computer Arch. =     
 Comp. Arch + Communication Arch. 

  Comm. Architecture has same two facets 
  Communication abstraction 
  Primitives at user/system and hw/sw boundary 
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Communication Architecture 
User/System Interface + Organization 

 User/System Interface: 
 Comm. primitives exposed to user-level by hw and system-level sw 

 Implementation: 
 Organizational structures that implement the primitives: HW or OS 
 How optimized are they? How integrated into processing node? 
 Structure of network 

 Goals: 
 Performance 
 Broad applicability 
 Programmability 
 Scalability 
 Low Cost 
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Modern Layered Framework 
CAD 

Multipr ogramming Shar ed 
addr ess 

Message 
passing 

Data 
parallel 

Database Scientific modeling Parallel applications 

Pr ogramming models 

Communication abstraction 
User/system boundary 

Compilation 
or library 

Operating systems support 

Communication har dwar e 
Physical communication medium 

Har dwar e/softwar e boundary 
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Communication Abstraction 
  User level communication primitives provided 

  Realizes the programming model 
  Mapping exists between language primitives of programming 

model and these primitives 

  Supported directly by hw, or via OS, or via user sw 
  Lot of debate about what to support in sw and gap between 

layers 
  Today: 

  Hw/sw interface tends to be flat, i.e. complexity roughly uniform 
  Compilers and software play important roles as bridges today 
  Technology trends exert strong influence 

  Result is convergence in organizational structure 
  Relatively simple, general purpose communication primitives 
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Understanding Parallel Architecture 
  Traditional taxonomies not very useful 
  Programming models not enough, nor hardware structures 

  Same one can be supported by radically different architectures 

=> Architectural distinctions that affect software 
  Compilers, libraries, programs 

  Design of user/system and hardware/software interface 
  Constrained from above by progr. models and below by 

technology 

  Guiding principles provided by layers 
  What primitives are provided at communication abstraction 
  How programming models map to these 
  How they are mapped to hardware 
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Fundamental Design Issues 
  At any layer, interface (contract) aspect and 

performance aspects 
  Naming:  How are logically shared data and/or 

processes referenced? 
  Operations: What operations are provided on these 

data 
  Ordering:  How are accesses to data ordered and 

coordinated? 
  Replication: How are data replicated to reduce 

communication? 
  Communication Cost:  Latency, bandwidth, overhead, 

occupancy 
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Creating a Parallel Program 

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program
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  Decomposition of computation in tasks 
  Assignment of tasks to processes 
  Orchestration of data access, comm, synch. 
  Mapping processes to processors 
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Performance Goal => Speedup 
  Architect Goal 

  observe how program 
uses machine and 
improve the design to 
enhance performance 

  Programmer Goal 
  observe how the 

program uses the 
machine and improve 
the implementation to 
enhance performance 

  What do you observe? 
  Who fixes what? 
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Recap: Performance Trade-offs 
  Programmer’s View of Performance 

  Different goals often have conflicting demands 
  Load Balance 

  fine-grain tasks, random or dynamic assignment 

  Communication 
  coarse grain tasks, decompose to obtain locality 

  Extra Work 
  coarse grain tasks, simple assignment 

  Communication & synchronization Cost: 
  big transfers: amortize overhead and latency 
  small transfers: reduce contention 

Sequential Work 
Max (Work + Synch Wait Time + Comm Cost + Extra Work) 

Speedup   < 
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Working Set Perspective 

  Hierarchy of working sets 
  At first level cache (fully assoc, one-word block), inherent to 

algorithm 
  Working set curve for program 

  Traffic from any type of miss can be local or nonlocal 

• At a given level of the hierarchy (to the next further one) 
First working set 

Capacity-generated traf fic 
(including conflicts) 

Second working set 

D
at

a 
tra

f fic 

Other capacity-independent communication 
Cold-start (compulsory) traf fic 

Replication capacity (cache size) 
Inher ent communication 
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Relation Between Perspectives 

Synch wait

Data-remote

Data-localOrchestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Orchestration/
mapping

Load imbalance and 
synchronization

Inherent 
communication 
volume

Artifactual 
communication 
and data locality

Communication 
structure

Busy(1) + Data(1) 
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p) 

Speedup < 
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Extensions of Memory System 
P 1 

Switch 

Main memory 

P n 

(Interleaved) 

(Interleaved) 

First-level $ 

P 1 

$ 

Inter connection network 

$ 

P n 

Mem Mem 

P 1 

$ 

Inter connection network 

$ 

P n 

Mem Mem Shared Cache 

Centralized Memory 
Dance Hall, UMA 

Distributed Memory (NUMA) 

Scale 
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Snooping Cache-Coherence 

  Bus is a broadcast medium & Caches know what they have 
  Cache Controller “snoops” all transactions on the shared 

bus 
  Relevant transaction if for a block it contains 
  Take action to ensure coherence 

  Invalidate, update, or supply value 
  Depends on state of the block and the protocol 

State 
Address 
Data 

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction
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Sequential Consistency 

  Total order achieved by interleaving accesses from different 
processes 
  Maintains program order, and memory operations, from all processes, 

appear to [issue, execute, complete] atomically w.r.t. others 

  As if there were no caches, and a single memory 

   “A multiprocessor is sequentially consistent if the result of any 
execution is the same as if the operations of all the processors 
were executed in some sequential order, and the operations of 
each individual processor appear in this sequence in the order 
specified by its program.” [Lamport, 1979] 

Processors 
issuing memory 
references as 
per program or der

P1 P2 Pn

Memory

The “switch” is randomly 
set after each memory
reference
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MSI Invalidate Protocol 
  Read obtains block in 

“shared” 
  even if only cache copy 

  Obtain exclusive ownership 
before writing 
  BusRdx causes others to 

invalidate (demote) 
  If M in another cache, will 

flush 
  BusRdx even if hit in S 

  promote to M (upgrade) 

  What about replacement? 
  S->I, M->I as before 

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd
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Hardware Support for MESI 

  All cache controllers snoop on BusRd 
  Assert ‘shared’ if present (S? E? M?) 
  Issuer chooses between S and E 

  how does it know when all have voted? 

I/O devices 

Memory 

u  :5 

P0 P1 P4 

shared signal 
 - wired-OR 
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Dragon State Transition 
Diagram 

E Sc 

Sm M 

PrW r/— 
PrRd/— 

PrRd/— 

PrRd/— 

PrRdMiss/BusRd(S) PrRdMiss/BusRd(S) 
PrW r/— 

PrW rMiss/(BusRd(S); BusUpd) PrW rMiss/BusRd(S) 

PrW r/BusUpd(S) 

PrW r/BusUpd(S) 

BusRd/— 

BusRd/Flush 

PrRd/— BusUpd/Update 

BusUpd/Update 

BusRd/Flush 

PrW r/BusUpd(S) 

PrW r/BusUpd(S) 
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Workload-Driven Evaluation 
  Evaluating real machines 
  Evaluating an architectural idea or trade-offs 
=> need good metrics of performance 
=> need to pick good workloads 
=> need to pay attention to scaling 

  many factors involved 

  Today: narrow architectural comparison 
  Set in wider context 
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Evaluation Summary 

  FSMs describe Cache Coherence Algorithm 
  Many underlying design choices 
  Prove coherence, consistency 

  Evaluation must be based on sound 
understanding of workloads 
  Drive the factors you want to study 
  Representative 
  Scaling factors 

  Use of workload driven evaluation to 
resolve architectural questions 
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Components of Synchronization Event 

  Acquire method 
  Acquire right to the synch  

  Enter critical section, go past event 

  Waiting algorithm 
  Wait for synch to become available  
  busy-waiting, blocking, or hybrid 

  Release method 
  Enable other processors to acquire right to synch 

  Waiting algorithm is independent of type of 
synchronization 
  Makes no sense to put in hardware 
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Lock Perf. on SGI Challenge 
Loop:  lock; !

!delay(c); !
!unlock; !
!delay(d);!

 A r r a y - b a s e d 
 L L - S C 
 L L - S C , e x p o n e n t i a l 
 T i c k e t 
 T i c k e t , p r o p o r t i o n a l 
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Reality 
  Protocol defines logical 

FSM for each block 
  Cache controller FSM 

  multiple states per miss 

  Bus controller FSM 
  Other $Ctrls Get bus 
  Multiple Bus trnxs 

  write-back 

  Multi-Level Caches 
  Split-Transaction Busses 

Σ Tag Data 

Proc 

$ Ctrl 
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CC Design Issues 
  Design of cache controller and tags 

  Both processor and bus need to look up 

  How and when to present snoop results on bus 
  Dealing with write-backs 
  Overall set of actions for memory operation not 

atomic 
  Can introduce race conditions 

  Atomic operations 

  New issues deadlock, livelock, starvation, 
serialization, etc. 
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Basic design 

Addr CmdSnoop state Data buffer

Write-back buffer

Cache data RAM

Comparator

Comparator

P

Tag

Addr Cmd

Data
Addr Cmd

To
controller

System bus

Bus-
side

controller
To
controller

Tags
and
state
for
snoop

Tags
and
state
for
P

Processor-
side

controller
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Multilevel Cache Hierarchies 

  Independent snoop hardware for each level? 
  processor pins for shared bus 
  contention for processor cache access ? 

  Snoop only at L2 and propagate relevant transactions 
  Inclusion property 

(1) contents L1 is a subset of L 
(2) any block in modified state in L1 is in modified state in L2 
1 => all transactions relevant to L1 are relevant to L2 
2 => on BusRd L2 can wave off memory access and inform L1 

P 

L1 

L2 

P 

L1 

L2 ° ° ° 

P 

L1 

L2 

snoop 

snoop ??? 

Processor Chip 
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Bus Design (continued) 

  Each of request and response phase is 5 bus cycles 
  Response: 4 cycles for data (128 bytes, 256-bit bus), 1 turnaround 

  Request phase: arbitration, resolution, address, decode, ack 

  Request-response transaction takes 3 or more of these 

  Cache tags looked up in decode; extend ack cycle if not possible 

  Determine who will respond (actual response comes later, with re-arbitration) 

  Write-backs only request phase : arbitrate both data+addr buses 

  Upgrades have only request part; ack’ed by bus on grant (commit) 

Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack

Addr
req

Addr Addr

Data
req

Tag

D0 D1 D2 D3

Addr
req

Addr Addr

Data
req

Tag

Grant

D0

check check

ackack

Time

Address
bus

Data
arbitration

Data
bus

Read operation 1
Read operation 2
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Network Transaction Primitive 

  One-way transfer of information from a source 
output buffer to a dest. input buffer 
  Causes some action at the destination 
  Occurrence is not directly visible at source 

  Deposit data, state change, reply 

Output buffer Input buffer

Source node Destination node

Communication network

° ° °

Serialized data packet
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Scalable Synchronization Ops 
  Messages: point-to-point synchronization 
  Build all-to-all as trees 
  Recall: sophisticated locks reduced contention by 

spinning on separate locations 
  caching brought them local 
  test&test&set, ticket-lock, array lock 

  O(p) space 

  Problem: with array lock location determined by 
arrival order => not likely to be local 

  Solution: queue-lock 
  Build distributed linked-list, each spins on local node 


