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Outline 

  Synchronization 
  Buses 
  Split-Transaction Buses 
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Role of Synchronization 
  “A collection of processing elements that cooperate and 

communicate to solve large problems fast.” 
  Types of Synchronization 

  Mutual Exclusion 
  Event synchronization 

  point-to-point 
  group 
  global (barriers) 

  How much hardware support? 
  high-level operations? 
  atomic instructions? 
  specialized interconnect? 
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Mini-Instruction Set debate 
  Atomic read-modify-write (r-m-w) instructions 

  IBM 370: included atomic compare&swap for 
multiprogramming 

  x86: any instruction can be prefixed with a lock modifier 
  High-level language advocates want hardware locks/barriers 

  but it’s goes against the “RISC” flow,and has other problems 
  SPARC: atomic register-memory ops (swap, compare&swap) 
  MIPS, IBM Power: no atomic operations but pair of 

instructions 
  load-locked, store-conditional 
  later used by PowerPC and DEC Alpha too 

  Rich set of tradeoffs 
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Other forms of hardware support 
  Separate lock lines on the bus 
  Lock locations in memory 
  Lock registers (Cray Xmp) 
  Hardware full/empty bits (Tera) 
  Bus support for interrupt dispatch 



Oct-28-09 ECSE 420 
Parallel Computing 

Components of Synchronization Event 

  Acquire method 
  Acquire right to the synch  

  enter critical section, go past event 

  Waiting algorithm 
  Wait for synch to become available when it isn’t 
  busy-waiting, blocking, or hybrid 

  Release method 
  Enable other processors to acquire right to the synch 

  Waiting algorithm is independent of type of 
synchronization 
  Makes no sense to put in hardware 
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Strawman Lock 

lock: !ld !register, location   /* copy location to register */ 
 cmp !register, #0   /* compare with 0 */ 
 bnz !lock  /* if not 0, try again */ 
 st !location, #1  /* store 1 to mark it locked */ 
 ret   /* return control to caller */ 

unlock: !st !location, #0  /* write 0 to location */ 
 ret   /* return control to caller */ 

Busy-Wait 

Why doesn’t the acquire method work? 

Release method? 
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Atomic Instructions 

  Specifies a location, register, & atomic operation 
  Value in location read into a register 
  Another value (function of value read or not) stored 

into location 

  Many variants 
  Varying degrees of flexibility in second part 

  Simple example:  test&set 
  Value in location read into a specified register 
  Constant 1 stored into location 
  Successful if value loaded into register is 0 
  Other constants could be used instead of 1 and 0 



Oct-28-09 ECSE 420 
Parallel Computing 

Simple Test&Set Lock 

lock: !t&s !register, location   
 bnz !lock   /* if not 0, try again */ 
 ret   /* return control to caller */ 

unlock: !st !location, #0  /* write 0 to location */ 
 ret   /* return control to caller */ 

  Other read-modify-write primitives  
  Swap 
  Fetch&op 
  Compare&swap 

 Three operands: location, register to compare with, 
register to swap with 
 Not commonly supported by RISC instruction sets 

  Cacheable or uncacheable 
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Performance Criteria for Synch. Ops 

  Latency (time per op) 
  especially when light contention 

  Bandwidth (ops per sec) 
  especially under high contention 

  Traffic 
  load on critical resources 
  especially on failures under contention 

  Storage 

  Fairness 
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T&S Lock Microbenchmark: SGI Chal. 

lock; 
delay(c); 
unlock;!

  Why does performance degrade? 
  Bus Transactions on T&S? 
  Hardware support in CC protocol? 
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Enhancements to Simple Lock 
  Reduce frequency of issuing test&sets while waiting 

  Test&set lock with backoff 
  Don’t back off too much or will be backed off when lock 

becomes free 
  Exponential backoff works quite well empirically: ith time =  

k*ci 

  Busy-wait with read operations rather than test&set 
  Test-and-test&set lock 
  Keep testing with ordinary load 

  cached lock variable will be invalidated upon release 
  When value changes (to 0), try to obtain lock with test&set 

  only 1 attemptor will succeed; others fail and restart test 
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Improved Hardware Primitives: LL-SC 

  Goals:  
  Test with reads 
  Failed read-modify-write attempts don’t generate invalidations 
  Nice if single primitive can implement few r-m-w operations 

  Load-Locked (or -linked), Store-Conditional 
  LL reads variable into register 
  Follow with arbitrary instructions to manipulate its value 
  SC tries to store back to location  
  Succeed iff no other write to the variable since this processor’s LL 

  indicated by condition codes; 

  If SC succeeds, all three steps happened atomically 
  If fails, doesn’t write or generate invalidations 

  must retry aquire 
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Simple Lock with LL-SC 
lock:  ! ll !    reg1, location  /* LL location to reg1 */ 

            bnz !reg1, lock   
             sc!location, reg2  /* SC reg2 into location*/ 
            beqz !reg2, lock   /* if failed, start again */ 
            ret      

unlock: !st !location, #0   /* write 0 to location */ 

           ret     

  Can do more fancy atomic ops by changing what’s between LL & SC 
  But keep it small so SC likely to succeed 
  Don’t include instructions that would need to be undone (e.g. stores) 

  SC can fail (without putting transaction on bus) if: 
  Detects intervening write even before trying to get bus 
  Tries to get bus but another processor’s SC gets bus first 

  LL & SC are not lock & unlock, respectively 
  Only guarantee no conflicting write to lock variable between them 
  But can use directly to implement simple operations on shared variables 
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Trade-offs So Far 

  Latency? 
  Bandwidth? 
  Traffic? 
  Storage? 
  Fairness? 

  What happens when several processors spinning on 
lock and it is released? 
  Traffic per P lock operations? 
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Ticket Lock 
  Only one r-m-w per acquire 
  Two counters per lock (next_ticket, now_serving) 

  Acquire:   fetch&inc next_ticket;      
 wait for now_serving == next_ticket 
  atomic op when arrive at lock, not when it’s free (so less 

contention) 
  Release: increment now-serving 

  Performance 
  low latency for low-contention -  if fetch&inc cacheable 
  O(p) read misses at release, since all spin on same variable 
  FIFO order 

  like simple LL-SC lock, but no inval when SC succeeds, and fair 
  Backoff? 

  Wouldn’t it be nice to poll different locations ... 
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Array-based Queuing Locks 

  Waiting processes poll on different locations in an array of size 
p 
  Acquire 

  fetch&inc to obtain address on which to spin (next array element) 
  Ensure that the addresses are in different cache lines or memories 

  Release 
  set next location in array, thus waking up process spinning on it 

  O(1) traffic per acquire with coherent caches 
  FIFO ordering, as in ticket lock, but, O(p) space per lock 
  Not so great for non-cache-coherent machines with distributed 

memory 
  array location  I spin on not necessarily in my local memory 

(solution later) 
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Lock Performance on SGI Challenge 
Loop:  lock; !

!delay(c); !
!unlock; !
!delay(d);!

 A r r a y - b a s e d 
 L L - S C 
 L L - S C , e x p o n e n t i a l 
 T i c k e t 
 T i c k e t , p r o p o r t i o n a l 
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Point to Point Event Synchronization 
  Software methods: 

  Interrupts 

  Busy-waiting: use ordinary variables as flags 

  Blocking: use semaphores 

  Full hardware support: full-empty bit with each word in memory 

  Set when word is “full” with newly produced data (i.e. when written) 

  Unset when word is “empty” due to being consumed (i.e. when read) 

  Natural for word-level producer-consumer synchronization 
  producer: write if empty, set to full; consumer: read if full; set to empty 

  Hardware preserves atomicity of bit manipulation with read or write 

  Problem: flexiblity 
  multiple consumers, or multiple writes before consumer reads? 
  needs language support to specify when to use 
  composite data structures? 
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Barriers 

  Software algorithms implemented using locks, flags, 
counters 

  Hardware barriers 
  Wired-AND line separate from address/data bus 

  Set input high when arrive, wait for output to be high to leave 
  In practice, multiple wires to allow reuse 
  Useful when barriers are global and very frequent 
  Difficult to support arbitrary subset of processors 

  even harder with multiple processes per processor 
  Difficult to dynamically change number and identity of 

participants 
  e.g. latter due to process migration 

  Not common today on bus-based machines 
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struct bar_type {int counter; struct lock_type lock; 
! ! ! ! ! !int flag = 0;} bar_name;!

BARRIER (bar_name, p) {!
!LOCK(bar_name.lock);!
!if (bar_name.counter == 0) !
! !bar_name.flag = 0; ! !/* reset flag if first to reach*/!
!mycount = bar_name.counter++; !/* mycount is private */!
!UNLOCK(bar_name.lock);!
!if (mycount == p) { ! !/* last to arrive */ !!
! !bar_name.counter = 0; ! !/* reset for next barrier */!
! !bar_name.flag = 1; ! !/* release waiters */!
!}!
!else while (bar_name.flag == 0) {};  /* busy wait for release */!

}!

A Simple Centralized Barrier 
  Shared counter maintains number of processes that have 

arrived 
  increment when arrive (lock), check until reaches numprocs 
  Problem? 
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A Working Centralized Barrier 
  Consecutively entering the same barrier doesn’t work 

  Must prevent process from entering until all leave previous instance 

  Could use another counter, but increases latency and contention 

  Sense reversal: wait for flag to flip value in consecutive times 
  Toggle this value only when all processes reach 

BARRIER (bar_name, p) {!
!local_sense = !(local_sense); /* toggle private sense variable */!

 !LOCK(bar_name.lock);!
!mycount = bar_name.counter++;! !/* mycount is private */!
!if (bar_name.counter == p) !
! !UNLOCK(bar_name.lock); !
! !bar_name.flag = local_sense; !/* release waiters*/!
!else!
!   { !UNLOCK(bar_name.lock);!
! !while (bar_name.flag != local_sense) {}; }!

}!
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Centralized Barrier Performance 
  Latency 

  Centralized has critical path length at least proportional to p 

  Traffic 
  About  3p bus transactions 

  Storage Cost 
  Very low: centralized counter and flag 

  Fairness 
  Same processor should not always be last to exit barrier 

  No such bias in centralized 

  Key problems for centralized barrier are latency and traffic 
  Especially with distributed memory, traffic goes to same node 
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Improved Barrier Algorithms for a Bus 

  Separate arrival and exit trees, and use sense reversal 

  Valuable in distributed network: communicate along different paths 

  On bus, all traffic goes on same bus, and no less total traffic 

  Higher latency (log p steps of work, and O(p) serialized bus xactions) 

  Advantage on bus is use of ordinary reads/writes instead of locks 

Software combining tree 
• Only k processors access the same location, where k is tree degree 

Flat Tree structured

Contention Little contention
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Barrier Performance on SGI Challenge 

  Centralized does quite well 
  Will need fancier barrier algorithms for distributed machines 

  Helpful hw support: piggybacking of reads misses (for flag) on bus 
  Also for spinning on highly contended locks 
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Synchronization Summary 

  Rich interaction of hardware-software tradeoffs 
  Must evaluate hardware primitives and software algorithms 

together 
  primitives determine which algorithms perform well 

  Evaluation methodology is challenging 
  Use of delays, microbenchmarks 
  Should use both microbenchmarks and real workloads 

  Simple software algorithms with common hardware primitives 
do well on bus 
  Will see more sophisticated techniques for distributed machines 
  Hardware support still subject of debate 

  Research argues for swap or compare&swap, not fetch&op 
  Algorithms that ensure constant-time access, but complex 
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Implications for Software 

  Processor caches do well with temporal locality 
  Synch. algorithms reduce inherent communication 
  Large cache lines (spatial locality) less effective 

First working set 

Capacity-generated traffic 
(including conflicts) 

Second working set 

B
us

 tr
af
 fic 

True sharing (inherent communication) 
Cold-start (compulsory) traffic 

Cache size 

False sharing 
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Bag of Tricks for Spatial Locality 
  Assign tasks to reduce spatial interleaving of accesses from procs 

  Contiguous rather than interleaved assignment of array elements 

  Structure data to reduce spatial interleaving of accesses 
  Higher-dimensional arrays to keep partitions contiguous 
  Reduce false sharing and fragmentation as well as conflict misses 

C o n t i g u i t y i n m e m o r y l a y o u t C a c h e b l o c k 
s t r a d d l e s p a r t i t i o n C a c h e b l o c k i s 

w i t h i n a p a r t i t b o u n d a r y 

( a ) T w o - d i m e n s i o n a l a r r a y ( b ) F o u r - d i m e n s i o n a l a r r a y 

P 1 P 0 P 2 P 3 

P 5 P 6 P 7 P 4 

P 8 

P 2 P 3 

P 5 P 6 P 7 P 4 

P 8 

P 0 P 1 
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Conflict Misses in a 2-D Array Grid 

  Consecutive subrows of partition are not contiguous 
  Problem when both array and cache size is power of 2 

C a c h e 
e n t r i e s 

P 1 P 0 P 2 P 3 

P 5 P 6 P 7 P 4 

P 8 

Locations in subrows 
and 

Map to the same entries 
(indices) in the same cache. 
The rest of the processor’s 
cache entries are not mapped 
to by locations in its partition 
(but would have been mapped 
to by subrows 
in other processor’s partitions) 
and are thus wasted. 
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Bag of Tricks (contd.) 
  Beware conflict misses more generally 

  Allocate non-power-of-2 even if application needs power-of-2 
  Conflict misses across data structures: ad-hoc padding/alignment 
  Conflict misses on small, seemingly harmless data 

  Use per-processor heaps for dynamic memory allocation 

  Copy data to increase locality 
  If noncontiguous data are to be reused  

  Must trade off against cost of copying 

  Pad and align arrays: can have false sharing v. fragmentation 
tradeoff 

  Organize arrays of records for spatial locality 
  E.g. particles with fields: organize by particle or by field 
  In vector programs by field for unit-stride, in parallel often by particle 
  Phases of program may have different access patterns and needs 
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Logical Protocol Algorithm 

  Set of States 
  Events causing 

state transitions 
  Actions on 

Transition 

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd
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Reality 
  Protocol defines logical 

FSM for each block 
  Cache controller FSM 

  multiple states per miss 

  Bus controller FSM 
  Other $Ctrls Get bus 
  Multiple Bus transactions 

  write-back 

  Multi-Level Caches 
  Split-Transaction Busses 

Σ Tag Data 

Proc 

$ Ctrl 
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Typical Bus Protocol 

  Bus state machine 
  Assert request for bus 
  Wait for bus grant 
  Drive address and command lines 
  Wait for command to be accepted by relevant device 
  Transfer data 

BReq 

BGnt 

Addr 

OK 

Data 

BR 

Addr 

Data 

BG 

BG 

OK 

OK 

OK 

others 
may get 
bus 
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B

A

Correctness Issues 
  Fulfill conditions for coherence and consistency 

  write propagation and atomicity 

  Deadlock: all system activity ceases 
  Cycle of resource dependences 

  Livelock: no processor makes forward progress although transactions 
are performed at hardware level 
  e.g. simultaneous writes in invalidation-based protocol 

  each requests ownership, invalidating other, but loses it before getting bus 

  Starvation: some processors make no progress while others do. 
  e.g. interleaved memory system with NACK on bank busy 
  Often not completely eliminated (not likely, not catastrophic) 
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Preliminary Design Issues 
  Design of cache controller and tags 

  Both processor and bus need to look up 

  How and when to present snoop results on bus 
  Dealing with write-backs 
  Overall set of actions for memory operation not 

atomic 
  Can introduce race conditions 

  Atomic operations 

  New issues deadlock, livelock, starvation, 
serialization, etc. 
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Contention for Cache Tags 
  Cache controller must monitor bus and processor 

  Can view as two controllers: bus-side, and processor-side 
  With single-level cache: dual tags (not data) or dual-

ported tag RAM 
  Must reconcile when updated, but usually only looked up 

  Respond to bus transactions 

Tags TagsCached Data

Tags used by
the bus snooper

Tags used by 
the processor
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Reporting Snoop Results: How? 
  Collective response from $’s must appear on bus 
  Example: in MESI protocol, need to know 

  Is block dirty; i.e. should memory respond or not? 
  Is block shared; i.e. transition to E or S state on read miss? 

  Three wired-OR signals 
  Shared: asserted if any cache has a copy 
  Dirty: asserted if some cache has a dirty copy 

  needn’t know which, since it will do what’s necessary 

  Snoop-valid: asserted when OK to check other two signals 
  actually inhibit until OK to check 

  Illinois MESI requires priority scheme for cache-to-cache transfers 
  Which cache should supply data when in shared state? 
  Commercial implementations allow memory to provide data 
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Reporting Snoop Results: When? 
  Memory needs to know what, if anything, to do 
  Fixed number of clocks from address appearing on bus 

  Dual tags required to reduce contention with processor 
  Still must be conservative (update both on write: E -> M) 
  Pentium Pro, HP servers, Sun Enterprise 

  Variable delay 
  Memory assumes cache will supply data till all say “sorry” 
  Less conservative, more flexible, more complex 
  Memory can fetch data  and hold just in case (SGI 

Challenge) 

  Immediately: Bit-per-block in memory 
  Extra hardware complexity in commodity main memory 

system 
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Writebacks 

  Allow processor to continue quickly 
  Want to service miss first and then process the 

write back caused by the miss asynchronously 
  Need write-back buffer 

  Must handle bus transactions relevant to 
buffered block 
  Snoop the WB buffer 
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Basic design 

  Comparison to NUMAchine (later) 

Addr CmdSnoop state Data buffer

Write-back buffer

Cache data RAM

Comparator

Comparator

P

Tag

Addr Cmd

Data
Addr Cmd

To
controller

System bus

Bus-
side

controller
To
controller

Tags
and
state
for
snoop

Tags
and
state
for
P

Processor-
side

controller
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NUMAchine Processor Board 

  Much more 
realistic support 
for 
  CC  
  Split-tx bus  
  Scalability  
  Development  
  Debug 
  Multi-clocks 
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Non-Atomic State Transitions 

  Memory operation involves actions by many entities, incl. bus 
  Look up cache tags, bus arbitration, actions by other controllers, ... 
  Even if bus is atomic, overall set of actions is not 
  Can have race conditions among components of different operations 

  Suppose P1 and P2 attempt to write cached block A 
simultaneously 
  Each decides to issue BusUpgr to allow S –> M 

  Issues 
  Must handle requests for other blocks while waiting to acquire bus  
  Must handle requests for this block A 

  e.g. if P2 wins, P1 must invalidate copy and modify request to 
BusRdX 
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Handling Non-atomicity: 
Transient States 

  Increases complexity 
  e.g. don’t use BusUpgr, rather other 

mechanisms to avoid data transfer 

Two types of states 
• Stable (e.g. MESI) 
• Transient or Intermediate 

PrWr/—

BusGrant/BusUpgr

BusRd/Flush

BusGrant/ 

BusRdX/Flush

BusGrant/BusRdX

PrRd/BusReq

PrWr/—

PrRd/—

PrRd/—
BusRd/Flushʹ′

E

M

I

S

PrRd/—

BusRd (S)

PrWr/BusReq

I → M

S → M

PrWr/ 
BusReq

BusRdX/Flushʹ′ 

I → S,E

BusRdX/Flush

BusRdX/Flushʹ′

BusGrant/ 
BusRd (S) BusRd/Flush
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Serialization 

  Processor-cache handshake must 
preserve serialization of bus order 
  e.g. on write to block in S state, mustn’t 

write data in block until ownership is 
acquired. 
  Other transactions that get bus before this 

one may seem to appear later 
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Write completion for SC? 
  Needn’t wait for inval to actually happen 

  Just wait till it gets bus 

  Commit versus complete 
  Don’t know when inval actually inserted in destination process’s 

local order, only that it’s before next xaction and in same order for 
all procs 

  Local write hits become visible not before next bus transaction 

  Same argument will extend to more complex systems 

  What matters is not when written data gets on the bus (write 
back), but when subsequent reads are guaranteed to see it 

  Write atomicity: if a read returns value of a write W, W has 
already gone to bus and therefore  completed if it needed to 
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Deadlock, Livelock 
  Request-reply protocols can lead to protocol-level, 

fetch deadlock 
  In addition to buffer deadlock discussed earlier 
  When attempting to issue requests, must service 

incoming transactions 
  Cache controller awaiting bus grant must snoop and 

even flush blocks 
  else may not respond to request that will release bus 

pending 
request 

snoop 
service 
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Livelock, Starvation 
  Many processors try to write same line.  
  Each one: 

  Obtains exclusive ownership via bus transaction 
(assume not in cache) 

  Realizes block is in cache and tries to write it 
  Livelock: I obtain ownership, but you steal it before I 

can write, etc. 

  Solution: don’t let exclusive ownership be taken 
away before write is done 

  Starvation: Solve by using fair arbitration on bus 
and FIFO buffers 
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Implementing Atomic Operations 

  In cache or memory? 
  Cacheable 

  Better latency and bandwidth on self-reacquisition 
  Allows spinning in cache without making traffic while waiting 

  At-memory  
  Lower transfer time 
  Used to be done with “locked” read-write pair of bus transitions 
  Not viable with modern, pipelined busses 

  Usually traffic and latency considerations dominate, so use 
cacheable 
  What is the implementation strategy? 
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Use Cache Exclusivity for Atomicity 

  Get exclusive ownership, read-
modify-write 

  Error/don’t allow conflicting bus 
transactions (Read or ReadEx)  

  Can actually buffer request if R-W is 
committed 
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Implementing LL-SC 
  Lock flag and lock address register at each processor 
  LL reads block, sets lock flag, puts block address in register 
  Incoming invalidations checked against address: if match, reset flag 

  Also if block is replaced and at context switches 

  SC checks lock flag as indicator of intervening conflicting write 
  If reset, fail; if not, succeed 

  Livelock considerations 
  Don’t allow replacement of lock variable between LL and SC 

  split or set-assoc. cache, and don’t allow memory accesses between LL, SC 
  (also don’t allow reordering of accesses across LL or SC) 

  Don’t allow failing SC to generate invalidations (not an ordinary write) 

  Performance: both LL and SC can miss in cache 
  Prefetch block in exclusive state at LL 
  But exclusive request reintroduces livelock possibility: use backoff 
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Multilevel Cache Hierarchies 

  Independent snoop hardware for each level? 
  processor pins for shared bus 
  contention for processor cache access ? 

  Snoop only at L2 and propagate relevant transactions 
  Inclusion property 

(1) contents L1 is a subset of L 
(2) any block in modified state in L1 is in modified state in L2 
1 => all transactions relevant to L1 are relevant to L2 
2 => on BusRd L2 can wave off memory access and inform L1 

P 

L1 

L2 

P 

L1 

L2 ° ° ° 

P 

L1 

L2 

snoop 

snoop ??? 

Processor Chip 
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P 

L1 

L2 

associativity:  a1 
block size:  b1 
number of sets: n1 

Capacity S1 = a1*b1*n1 

associativity:  a2 
block size:  b2 
number of sets: n2 

Maintaining Inclusion 
  The two caches (L1, L2) may choose to replace different block 

  Differences in reference history 
  set-associative first-level cache with LRU replacement 
  example: blocks m1, m2, m3 fall in same set of L1 cache... 

  Split higher-level caches 
  instruction, data blocks go in different caches at L1, but may 

collide in L2 
  what if L2 is set-associative? 

  Differences in block size 

  Common case - automatical 
  L1 direct-mapped,      

 fewer sets than in L2,      and block 
size same 
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Preserving Inclusion Explicitly 
  Propagate lower-level (L2) replacements to higher-

level (L1) 
  Invalidate or flush (if dirty) messages 

  Propagate bus transactions from L2 to L1 
  Propagate all L2 transactions? 
  use inclusion bits? 

  Propagate modified state from L1 to L2 on writes? 
  if L1 is write-through, just invalidate 
  if L1 is write-back 

  add extra state to L2 (dirty-but-stale) 
  request flush from L1 on Bus Rd 



Oct-28-09 ECSE 420 
Parallel Computing 

Contention of Cache Tags 

  L2 filter reduces contention on L1 
tags 

Tags TagsCached Data

Tags used by
the bus snooper

Tags used by 
the processor

TagsCached Data

Cached
DataTags

Tags used mainly 
 by processor

Tags used mainly
 by bus snooper

L1 Cache

L2 Cache



Oct-28-09 ECSE 420 
Parallel Computing 

Correctness 

  Issues altered? 
  Not really, if all propagation occurs 

correctly and is waited for 
  Writes commit when they reach the bus, 

acknowledged immediately 
  But performance problems, so want to 

not wait for propagation 
  Same issues as split-transaction busses 
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Split-Transaction Bus 

Mem Access Delay 

Address/CMD 

Mem Access Delay 

Data 

Address/CMD 

Data 

Address/CMD 

Bus 
arbitration 

  Split bus transaction into request and response xactions 
  Separate arbitration for each phase 

  Other transactions may intervene 
  Improves bandwidth dramatically 
  Response is matched to request 
  Buffering between bus and cache controllers 

  Reduce serialization down to the actual bus arbitration 
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Impact of 2-stage Miss Processing 
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SGI Challenge Overview 

  36 MIPS R4400 (peak 2.7 GFLOPS, 4 per board) or 18 MIPS 
R8000 (peak 5.4 GFLOPS, 2 per board) 

  8-way interleaved memory (up to 16 GB) 

  4 I/O busses of 320 MB/s each 

  1.2 GB/s Powerpath-2 bus @ 47.6 MHz, 16 slots, 329 signals 

  128 Bytes lines (1 + 4 cycles) 

  Split-transaction with up to 8 outstanding reads 
  all transactions take five cycles 

(a) A four-processor board

V
M
E
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S
I-2
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H
P
P
I

I/O subsystem

Interleaved
memory:

16 GB maximum

Powerpath-2 bus (256 data,  40 address, 47.6 MHz)

R4400 CPUs
and caches

(b) Machine organization
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SUN Enterprise Overview 

  Up to 30 UltraSPARC  processors (peak 9 GFLOPs) 
  GigaplaneTM bus has peak bw 2.67 GB/s; upto 30GB memory 
  16 bus slots, for processing or I/O boards  

  2 CPUs and 1GB memory per board 
  memory distributed, unlike Challenge, but protocol treats as 

centralized 
  Each I/O board has 2 64-bit 25Mhz SBUSes 

GigaplaneTM bus (256 data, 41 address, 83 MHz)

I/O Cards

P

$2

$
P

$2

$

mem ctrl

Bus Interface / Switch
Bus Interface

CPU/Mem
Cards
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Complications 
  New request can appear on bus before previous one serviced 

  Even before snoop result obtained 

  Conflicting operations to same block may be outstanding on bus 
  e.g. P1, P2 write block in S state at same time 

  both get bus before either gets snoop result, so both think they won 

  Buffers are small, so may need flow control 
  Buffering implies revisiting snoop issues 

  When and how snoop results and data responses are provided 

  In order w.r.t. requests? (PPro, DEC Turbolaser: yes; SGI, Sun: no) 

  Snoop and data response together or separately? 
  SGI together, SUN separately 
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Example (based on SGI Challenge) 
  No conflicting requests for same block allowed on bus 

  8 outstanding requests total, makes conflict detection tractable 

  Flow-control through negative acknowledgement (NACK) 
  NACK as soon as request appears on bus, requestor retries 
  Separate command (incl. NACK) + address  and tag + data buses 

  Responses may be in different order than requests 
  Order of transactions determined by requests 
  Snoop results presented on bus with response 

  Look at 
  Bus design, and how requests and responses are matched 
  Snoop results and handling conflicting requests 
  Flow control 
  Path of a request through the system 
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Bus Design and Req-Resp 
Matching 

  Essentially two separate buses, arbitrated independently 
  “Request” bus for command and address 
  “Response” bus for data 

  Out-of-order responses imply need for matching req-
response 
  Request gets 3-bit tag when wins arbitration  

  max 8 outstanding  
  Response includes data as well as corresponding  request 

tag 
  Tags allow response to not use address bus, leaving it free 

  Separate bus lines for arbitration, and for snoop results 

Req / Addr 

Resp / Data 
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Bus Design (continued) 

  Each of request and response phase is 5 bus cycles 
  Response: 4 cycles for data (128 bytes, 256-bit bus), 1 turnaround 

  Request phase: arbitration, resolution, address, decode, ack 

  Request-response transaction takes 3 or more of these 

  Cache tags looked up in decode; extend ack cycle if not possible 

  Determine who will respond, if any 

  Actual response comes later, with re-arbitration 

  Write-backs only request phase : arbitrate both data+addr buses 

  Upgrades have only request part; ack’ed by bus on grant (commit) 

Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack

Addr
req

Addr Addr

Data
req

Tag

D0 D1 D2 D3

Addr
req

Addr Addr

Data
req

Tag

Grant

D0

check check

ackack

Time

Address
bus

Data
arbitration

Data
bus

Read operation 1
Read operation 2
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Bus Design (continued) 

  Tracking outstanding requests and matching responses 

  Eight-entry “request table” in each cache controller 

  New request on bus added to all at same  index, 
determined by tag 

  Entry holds address, request type, state in that cache (if 
determined already), ... 

  All entries checked on bus or processor accesses for 
match, so fully associative 

  Entry freed when response appears, so tag can be 
reassigned by bus 
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Bus Interface with Request 
Table 

Addr + cmd
Snoop Data buffer

Write-back buffer

Comparator

Tag

Addr + cmd

To
control

TagTag

Data to/from $

Request
buffer

Request table

Ta
g

7

A
dd
re
ss

Request +

M
is
ce
lla
ne
ou
s

response
queue

Addr + cmd bus

Data + tag bus

Snoop state
from $

state

Issue +
merge

W
rit
e 
ba
ck
s

R
es
po
ns
es

check

0

O
rig
in
at
or

M
y 
re
sp
on
se

in
fo
rm
at
io
n

R
es
po
ns
e

qu
eu
e



Oct-28-09 ECSE 420 
Parallel Computing 

Snoop Results and Conflicting 
Requests 

  Variable-delay snooping 
  Shared, dirty and inhibit wired-OR lines 
  Snoop results presented when response appears 

  Determined earlier, in request phase, and kept in request 
table entry 

  Also determined who will respond 
  Writebacks and upgrades don’t have data response or 

snoop result 

  Avoiding conflicting requests on bus  
  don’t issue request for conflicting request that is in request 

table 
  adds delay to issue logic 

  Recall writes committed when request gets bus 
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Flow Control 

  Where? 
  incoming request buffers from bus to cache controller 
  response buffer 

  Controller limits number of outstanding requests 

  Mainly needed at main memory in this design 
  Each of the 8 transactions can generate a writeback 
  Can happen in quick succession (no response needed) 
  SGI Challenge: separate NACK lines for address and data buses 

  Asserted before ack phase of request (response) cycle is done 
  Request (response) cancelled everywhere, and retries later 
  Backoff and priorities to reduce traffic and starvation 

  SUN Enterprise: destination initiates retry when it has a free buffer 
  source keeps watch for this retry 
  guaranteed space will still be there, only two “tries” needed at most 
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Handling a Read Miss 

  Need to issue BusRd 
  First check request table.  If hit: 

  If prior request exists for same block, want to grab data too! 
  “want to grab response” bit 
  “original requestor”  bit 

  non-original grabber must assert sharing line so others will load in S rather than 
E state 

  If prior request incompatible with BusRd (e.g. BusRdX) 
  wait for it to complete and retry (processor-side controller) 

  If no prior request, issue request and watch out for race conditions 
  conflicting request may win arbitration before this one, but this one 

receives bus grant before conflict is apparent 
  watch for conflicting request in slot before own, degrade request to “no action” 

and withdraw till conflicting request satisfied 
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Upon Issuing the BusRd Request 
  All processors enter request into table, snoop for request in cache 
  Memory starts fetching block 
  1. Cache with dirty block responds before memory ready 

  Memory aborts on seeing response 
  Waiters grab data 

  some may assert inhibit to extend response phase till done snooping 
  memory must accept response as WB (might even have to NACK) 

  2. Memory responds before cache with dirty block 
  Cache with dirty block asserts inhibit line till done with snoop 
  When done, asserts dirty, causing memory to cancel response 
  Cache with dirty issues response, arbitrating for bus 

  3. No dirty block: memory responds when inhibit line released 
  Assume cache-to-cache sharing not used (for non-modified data) 
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Handling a Write Miss 

  Similar to read miss, except: 
  Generate BusRdX 
  Main memory does not sink response since will 

be modified again 
  No other processor can grab the data 

  If block present in shared state, issue 
BusUpgr instead 
  No response needed 
  If another processor was going to issue 

BusUpgr, changes to BusRdX as with atomic bus 
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Write Serialization 

  With split-transaction buses, usually bus order is 
determined by order of requests appearing on bus 
  actually, the ack phase, since requests may be NACKed 
  by end of this phase, they are committed for visibility in order 

  A write that follows a read transaction to the same location 
should not be able to affect the value returned by that read 
  Easy in this case, since conflicting requests not allowed 
  Read response precedes write request on bus 

  Similarly, a read that follows a write transaction won’t return 
old value 
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Detecting Write Completion 
  Problem: invalidations don’t happen as soon as request appears on bus 

  They’re buffered between bus and cache 
  Commitment does not imply performing or completion 
  Need additional mechanisms 

  Key property to preserve: processor shouldn’t see new value produced 
by a write before previous writes in bus order are visible to it 
  1. Don’t let certain types of incoming transactions be reordered in buffers 

  in particular, data reply should not overtake invalidation request  
  okay for invalidations to be reordered: only reply actually brings data in 

  2. Allow reordering in buffers, but ensure important orders preserved at key 
points 
  e.g. flush incoming invalidations/updates from queues and apply before 

processor completes operation that may enable it to see a new value 
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Commitment of Writes 
(Operations) 

  More generally, distinguish between performing and 
commitment of a write w: 

  Performed w.r.t a processor: invalidation actually applied 
  Committed w.r.t a processor: guaranteed that once that 

processor sees the new value associated with W, any 
subsequent read by it will see new values of all writes that 
were committed w.r.t that processor before W. 

  Global bus serves as point of commitment, if buffers are FIFO 
  benefit of a serializing broadcast medium for interconnect 

  Note: acks from bus to processor must logically come via 
same FIFO 
  not via some special signal, since otherwise can violate ordering 
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Write Atomicity 

  Still provided naturally by broadcast nature of 
bus 

  Recall that bus implies: 
  writes commit in same order w.r.t. all processors 
  read cannot see value produced by write before 

write has committed on bus and hence w.r.t. all 
processors 

  Previous techniques allow substitution of 
“complete” for “commit” in above statements 
  that’s write atomicity 

  Will discuss deadlock, livelock, starvation after 
multilevel caches plus split transaction bus 
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Alternatives: In-order 
Responses 

  FIFO request table suffices 
  Dirty cache does not release inhibit 

line till it is ready to supply data 
  No deadlock problem since does not rely 

on anyone else 

  Performance problems possible at 
interleaved memory 

  Allow conflicting requests more easily 
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Handling Conflicting Requests 
  Two BusRdX requests one after the other on bus for same 

block 
  latter controller invalidates its block, as before, but earlier 

requestor sees later request before its own data response 

  With out-of-order response, not known which response will 
appear first 

  With in-order, known, and can use performance optimization 
  earlier controller responds to latter request by noting that latter 

is pending 
  when its response arrives, updates word, short-cuts block back 

on to bus, invalidates its copy (reduces ping-pong latency) 
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Other Alternatives 

  Fixed delay from request to snoop result also makes it easier 
  Can have conflicting requests even if data responses not in order 
  e.g. SUN Enterprise 

  64-byte line and 256-bit bus => 2 cycle data transfer 
  so 2-cycle request phase used too, for uniform pipelines 
  too little time to snoop and extend request phase 
  snoop results presented 5 cycles after address (unless inhibited) 
  by later data response arrival, conflicting requestors know what to 

do 

  Don’t even need request to go on same bus, as long as order is 
well-defined 
  SUN SparcCenter2000 had 2 busses, Cray 6400 had 4 
  Multiple requests go on bus in same cycle 
  Priority order established among them is logical order 


