
Hardware Support for CC

Zeljko Zilic
McConnell Engineering Building
Room 546

Oct-29-09 ECSE 420
Parallel Computing

Outline

  Synchronization
  Buses
  Split-Transaction Buses

Oct-29-09 ECSE 420
Parallel Computing

Role of Synchronization
  “A collection of processing elements that cooperate and

communicate to solve large problems fast.”
  Types of Synchronization

  Mutual Exclusion
  Event synchronization

  point-to-point
  group
  global (barriers)

  How much hardware support?
  high-level operations?
  atomic instructions?
  specialized interconnect?

Oct-28-09 ECSE 420
Parallel Computing

Mini-Instruction Set debate
  Atomic read-modify-write (r-m-w) instructions

  IBM 370: included atomic compare&swap for
multiprogramming

  x86: any instruction can be prefixed with a lock modifier
  High-level language advocates want hardware locks/barriers

  but it’s goes against the “RISC” flow,and has other problems
  SPARC: atomic register-memory ops (swap, compare&swap)
  MIPS, IBM Power: no atomic operations but pair of

instructions
  load-locked, store-conditional
  later used by PowerPC and DEC Alpha too

  Rich set of tradeoffs

Oct-28-09 ECSE 420
Parallel Computing

Other forms of hardware support
  Separate lock lines on the bus
  Lock locations in memory
  Lock registers (Cray Xmp)
  Hardware full/empty bits (Tera)
  Bus support for interrupt dispatch

Oct-28-09 ECSE 420
Parallel Computing

Components of Synchronization Event

  Acquire method
  Acquire right to the synch

  enter critical section, go past event

  Waiting algorithm
  Wait for synch to become available when it isn’t
  busy-waiting, blocking, or hybrid

  Release method
  Enable other processors to acquire right to the synch

  Waiting algorithm is independent of type of
synchronization
  Makes no sense to put in hardware

Oct-28-09 ECSE 420
Parallel Computing

Strawman Lock

lock: !ld !register, location /* copy location to register */
 cmp !register, #0 /* compare with 0 */
 bnz !lock /* if not 0, try again */
 st !location, #1 /* store 1 to mark it locked */
 ret /* return control to caller */

unlock: !st !location, #0 /* write 0 to location */
 ret /* return control to caller */

Busy-Wait

Why doesn’t the acquire method work?

Release method?

Oct-28-09 ECSE 420
Parallel Computing

Atomic Instructions

  Specifies a location, register, & atomic operation
  Value in location read into a register
  Another value (function of value read or not) stored

into location

  Many variants
  Varying degrees of flexibility in second part

  Simple example: test&set
  Value in location read into a specified register
  Constant 1 stored into location
  Successful if value loaded into register is 0
  Other constants could be used instead of 1 and 0

Oct-28-09 ECSE 420
Parallel Computing

Simple Test&Set Lock

lock: !t&s !register, location
 bnz !lock /* if not 0, try again */
 ret /* return control to caller */

unlock: !st !location, #0 /* write 0 to location */
 ret /* return control to caller */

  Other read-modify-write primitives
  Swap
  Fetch&op
  Compare&swap

 Three operands: location, register to compare with,
register to swap with
 Not commonly supported by RISC instruction sets

  Cacheable or uncacheable

Oct-28-09 ECSE 420
Parallel Computing

Performance Criteria for Synch. Ops

  Latency (time per op)
  especially when light contention

  Bandwidth (ops per sec)
  especially under high contention

  Traffic
  load on critical resources
  especially on failures under contention

  Storage

  Fairness

Oct-28-09 ECSE 420
Parallel Computing

Number of processors

T ime
 (µ s)

11 13 15 0
2
4
6
8

10
12
14
16
18
20

 T est&set, c = 0
 T est&set, exponential backof f, c = 3.64
 T est&set, exponential backof f, c = 0
 Ideal

9 7 5 3

T&S Lock Microbenchmark: SGI Chal.

lock;
delay(c);
unlock;!

  Why does performance degrade?
  Bus Transactions on T&S?
  Hardware support in CC protocol?

Oct-28-09 ECSE 420
Parallel Computing

Enhancements to Simple Lock
  Reduce frequency of issuing test&sets while waiting

  Test&set lock with backoff
  Don’t back off too much or will be backed off when lock

becomes free
  Exponential backoff works quite well empirically: ith time =

k*ci

  Busy-wait with read operations rather than test&set
  Test-and-test&set lock
  Keep testing with ordinary load

  cached lock variable will be invalidated upon release
  When value changes (to 0), try to obtain lock with test&set

  only 1 attemptor will succeed; others fail and restart test

Oct-28-09 ECSE 420
Parallel Computing

Improved Hardware Primitives: LL-SC

  Goals:
  Test with reads
  Failed read-modify-write attempts don’t generate invalidations
  Nice if single primitive can implement few r-m-w operations

  Load-Locked (or -linked), Store-Conditional
  LL reads variable into register
  Follow with arbitrary instructions to manipulate its value
  SC tries to store back to location
  Succeed iff no other write to the variable since this processor’s LL

  indicated by condition codes;

  If SC succeeds, all three steps happened atomically
  If fails, doesn’t write or generate invalidations

  must retry aquire

Oct-28-09 ECSE 420
Parallel Computing

Simple Lock with LL-SC
lock: ! ll ! reg1, location /* LL location to reg1 */

 bnz !reg1, lock
 sc!location, reg2 /* SC reg2 into location*/
 beqz !reg2, lock /* if failed, start again */
 ret

unlock: !st !location, #0 /* write 0 to location */

 ret

  Can do more fancy atomic ops by changing what’s between LL & SC
  But keep it small so SC likely to succeed
  Don’t include instructions that would need to be undone (e.g. stores)

  SC can fail (without putting transaction on bus) if:
  Detects intervening write even before trying to get bus
  Tries to get bus but another processor’s SC gets bus first

  LL & SC are not lock & unlock, respectively
  Only guarantee no conflicting write to lock variable between them
  But can use directly to implement simple operations on shared variables

Oct-28-09 ECSE 420
Parallel Computing

Trade-offs So Far

  Latency?
  Bandwidth?
  Traffic?
  Storage?
  Fairness?

  What happens when several processors spinning on
lock and it is released?
  Traffic per P lock operations?

Oct-28-09 ECSE 420
Parallel Computing

Ticket Lock
  Only one r-m-w per acquire
  Two counters per lock (next_ticket, now_serving)

  Acquire: fetch&inc next_ticket;
 wait for now_serving == next_ticket
  atomic op when arrive at lock, not when it’s free (so less

contention)
  Release: increment now-serving

  Performance
  low latency for low-contention - if fetch&inc cacheable
  O(p) read misses at release, since all spin on same variable
  FIFO order

  like simple LL-SC lock, but no inval when SC succeeds, and fair
  Backoff?

  Wouldn’t it be nice to poll different locations ...

Oct-28-09 ECSE 420
Parallel Computing

Array-based Queuing Locks

  Waiting processes poll on different locations in an array of size
p
  Acquire

  fetch&inc to obtain address on which to spin (next array element)
  Ensure that the addresses are in different cache lines or memories

  Release
  set next location in array, thus waking up process spinning on it

  O(1) traffic per acquire with coherent caches
  FIFO ordering, as in ticket lock, but, O(p) space per lock
  Not so great for non-cache-coherent machines with distributed

memory
  array location I spin on not necessarily in my local memory

(solution later)

Oct-28-09 ECSE 420
Parallel Computing

Lock Performance on SGI Challenge
Loop: lock; !

!delay(c); !
!unlock; !
!delay(d);!

 A r r a y - b a s e d
 L L - S C
 L L - S C , e x p o n e n t i a l
 T i c k e t
 T i c k e t , p r o p o r t i o n a l

0
1

1 3 5 7 9 1 1 1 3 1 5 1 3 5 7 9 1 1 1 3 1 5 1 3 5 7 9 1 1 1 3 1 5

2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

(a) Null (c = 0, d = 0) (b) Critical-section (c = 3.64 µs, d = 0) (c) Delay (c = 3.64 µs, d = 1.29 µs)

Ti
m

e
(µ

s)

Ti
m

e
(µ

s)

Ti
m

e
(µ

s)

Number of processors Number of processors Number of processors

Oct-28-09 ECSE 420
Parallel Computing

Point to Point Event Synchronization
  Software methods:

  Interrupts

  Busy-waiting: use ordinary variables as flags

  Blocking: use semaphores

  Full hardware support: full-empty bit with each word in memory

  Set when word is “full” with newly produced data (i.e. when written)

  Unset when word is “empty” due to being consumed (i.e. when read)

  Natural for word-level producer-consumer synchronization
  producer: write if empty, set to full; consumer: read if full; set to empty

  Hardware preserves atomicity of bit manipulation with read or write

  Problem: flexiblity
  multiple consumers, or multiple writes before consumer reads?
  needs language support to specify when to use
  composite data structures?

Oct-28-09 ECSE 420
Parallel Computing

Barriers

  Software algorithms implemented using locks, flags,
counters

  Hardware barriers
  Wired-AND line separate from address/data bus

  Set input high when arrive, wait for output to be high to leave
  In practice, multiple wires to allow reuse
  Useful when barriers are global and very frequent
  Difficult to support arbitrary subset of processors

  even harder with multiple processes per processor
  Difficult to dynamically change number and identity of

participants
  e.g. latter due to process migration

  Not common today on bus-based machines

Oct-28-09 ECSE 420
Parallel Computing

struct bar_type {int counter; struct lock_type lock;
! ! ! ! ! !int flag = 0;} bar_name;!

BARRIER (bar_name, p) {!
!LOCK(bar_name.lock);!
!if (bar_name.counter == 0) !
! !bar_name.flag = 0; ! !/* reset flag if first to reach*/!
!mycount = bar_name.counter++; !/* mycount is private */!
!UNLOCK(bar_name.lock);!
!if (mycount == p) { ! !/* last to arrive */ !!
! !bar_name.counter = 0; ! !/* reset for next barrier */!
! !bar_name.flag = 1; ! !/* release waiters */!
!}!
!else while (bar_name.flag == 0) {}; /* busy wait for release */!

}!

A Simple Centralized Barrier
  Shared counter maintains number of processes that have

arrived
  increment when arrive (lock), check until reaches numprocs
  Problem?

Oct-28-09 ECSE 420
Parallel Computing

A Working Centralized Barrier
  Consecutively entering the same barrier doesn’t work

  Must prevent process from entering until all leave previous instance

  Could use another counter, but increases latency and contention

  Sense reversal: wait for flag to flip value in consecutive times
  Toggle this value only when all processes reach

BARRIER (bar_name, p) {!
!local_sense = !(local_sense); /* toggle private sense variable */!

 !LOCK(bar_name.lock);!
!mycount = bar_name.counter++;! !/* mycount is private */!
!if (bar_name.counter == p) !
! !UNLOCK(bar_name.lock); !
! !bar_name.flag = local_sense; !/* release waiters*/!
!else!
! { !UNLOCK(bar_name.lock);!
! !while (bar_name.flag != local_sense) {}; }!

}!

Oct-28-09 ECSE 420
Parallel Computing

Centralized Barrier Performance
  Latency

  Centralized has critical path length at least proportional to p

  Traffic
  About 3p bus transactions

  Storage Cost
  Very low: centralized counter and flag

  Fairness
  Same processor should not always be last to exit barrier

  No such bias in centralized

  Key problems for centralized barrier are latency and traffic
  Especially with distributed memory, traffic goes to same node

Oct-28-09 ECSE 420
Parallel Computing

Improved Barrier Algorithms for a Bus

  Separate arrival and exit trees, and use sense reversal

  Valuable in distributed network: communicate along different paths

  On bus, all traffic goes on same bus, and no less total traffic

  Higher latency (log p steps of work, and O(p) serialized bus xactions)

  Advantage on bus is use of ordinary reads/writes instead of locks

Software combining tree
• Only k processors access the same location, where k is tree degree

Flat Tree structured

Contention Little contention

Oct-28-09 ECSE 420
Parallel Computing

Barrier Performance on SGI Challenge

  Centralized does quite well
  Will need fancier barrier algorithms for distributed machines

  Helpful hw support: piggybacking of reads misses (for flag) on bus
  Also for spinning on highly contended locks

Number of processors

Ti
m
e

(

µ
s
)

12345678
0

5

10

15

20

25

30

35
 Centralized
 Combining tree
 Tournament
 Dissemination

Oct-28-09 ECSE 420
Parallel Computing

Synchronization Summary

  Rich interaction of hardware-software tradeoffs
  Must evaluate hardware primitives and software algorithms

together
  primitives determine which algorithms perform well

  Evaluation methodology is challenging
  Use of delays, microbenchmarks
  Should use both microbenchmarks and real workloads

  Simple software algorithms with common hardware primitives
do well on bus
  Will see more sophisticated techniques for distributed machines
  Hardware support still subject of debate

  Research argues for swap or compare&swap, not fetch&op
  Algorithms that ensure constant-time access, but complex

Oct-28-09 ECSE 420
Parallel Computing

Implications for Software

  Processor caches do well with temporal locality
  Synch. algorithms reduce inherent communication
  Large cache lines (spatial locality) less effective

First working set

Capacity-generated traffic
(including conflicts)

Second working set

B
us

 tr
af
 fic

True sharing (inherent communication)
Cold-start (compulsory) traffic

Cache size

False sharing

Oct-28-09 ECSE 420
Parallel Computing

Bag of Tricks for Spatial Locality
  Assign tasks to reduce spatial interleaving of accesses from procs

  Contiguous rather than interleaved assignment of array elements

  Structure data to reduce spatial interleaving of accesses
  Higher-dimensional arrays to keep partitions contiguous
  Reduce false sharing and fragmentation as well as conflict misses

C o n t i g u i t y i n m e m o r y l a y o u t C a c h e b l o c k
s t r a d d l e s p a r t i t i o n C a c h e b l o c k i s

w i t h i n a p a r t i t b o u n d a r y

(a) T w o - d i m e n s i o n a l a r r a y (b) F o u r - d i m e n s i o n a l a r r a y

P 1 P 0 P 2 P 3

P 5 P 6 P 7 P 4

P 8

P 2 P 3

P 5 P 6 P 7 P 4

P 8

P 0 P 1

Oct-28-09 ECSE 420
Parallel Computing

Conflict Misses in a 2-D Array Grid

  Consecutive subrows of partition are not contiguous
  Problem when both array and cache size is power of 2

C a c h e
e n t r i e s

P 1 P 0 P 2 P 3

P 5 P 6 P 7 P 4

P 8

Locations in subrows
and

Map to the same entries
(indices) in the same cache.
The rest of the processor’s
cache entries are not mapped
to by locations in its partition
(but would have been mapped
to by subrows
in other processor’s partitions)
and are thus wasted.

Oct-28-09 ECSE 420
Parallel Computing

Bag of Tricks (contd.)
  Beware conflict misses more generally

  Allocate non-power-of-2 even if application needs power-of-2
  Conflict misses across data structures: ad-hoc padding/alignment
  Conflict misses on small, seemingly harmless data

  Use per-processor heaps for dynamic memory allocation

  Copy data to increase locality
  If noncontiguous data are to be reused

  Must trade off against cost of copying

  Pad and align arrays: can have false sharing v. fragmentation
tradeoff

  Organize arrays of records for spatial locality
  E.g. particles with fields: organize by particle or by field
  In vector programs by field for unit-stride, in parallel often by particle
  Phases of program may have different access patterns and needs

Oct-28-09 ECSE 420
Parallel Computing

Logical Protocol Algorithm

  Set of States
  Events causing

state transitions
  Actions on

Transition

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd

Oct-28-09 ECSE 420
Parallel Computing

Reality
  Protocol defines logical

FSM for each block
  Cache controller FSM

  multiple states per miss

  Bus controller FSM
  Other $Ctrls Get bus
  Multiple Bus transactions

  write-back

  Multi-Level Caches
  Split-Transaction Busses

Σ Tag Data

Proc

$ Ctrl

Oct-28-09 ECSE 420
Parallel Computing

Typical Bus Protocol

  Bus state machine
  Assert request for bus
  Wait for bus grant
  Drive address and command lines
  Wait for command to be accepted by relevant device
  Transfer data

BReq

BGnt

Addr

OK

Data

BR

Addr

Data

BG

BG

OK

OK

OK

others
may get
bus

Oct-28-09 ECSE 420
Parallel Computing

B

A

Correctness Issues
  Fulfill conditions for coherence and consistency

  write propagation and atomicity

  Deadlock: all system activity ceases
  Cycle of resource dependences

  Livelock: no processor makes forward progress although transactions
are performed at hardware level
  e.g. simultaneous writes in invalidation-based protocol

  each requests ownership, invalidating other, but loses it before getting bus

  Starvation: some processors make no progress while others do.
  e.g. interleaved memory system with NACK on bank busy
  Often not completely eliminated (not likely, not catastrophic)

Oct-28-09 ECSE 420
Parallel Computing

Preliminary Design Issues
  Design of cache controller and tags

  Both processor and bus need to look up

  How and when to present snoop results on bus
  Dealing with write-backs
  Overall set of actions for memory operation not

atomic
  Can introduce race conditions

  Atomic operations

  New issues deadlock, livelock, starvation,
serialization, etc.

Oct-28-09 ECSE 420
Parallel Computing

Contention for Cache Tags
  Cache controller must monitor bus and processor

  Can view as two controllers: bus-side, and processor-side
  With single-level cache: dual tags (not data) or dual-

ported tag RAM
  Must reconcile when updated, but usually only looked up

  Respond to bus transactions

Tags TagsCached Data

Tags used by
the bus snooper

Tags used by
the processor

Oct-28-09 ECSE 420
Parallel Computing

Reporting Snoop Results: How?
  Collective response from $’s must appear on bus
  Example: in MESI protocol, need to know

  Is block dirty; i.e. should memory respond or not?
  Is block shared; i.e. transition to E or S state on read miss?

  Three wired-OR signals
  Shared: asserted if any cache has a copy
  Dirty: asserted if some cache has a dirty copy

  needn’t know which, since it will do what’s necessary

  Snoop-valid: asserted when OK to check other two signals
  actually inhibit until OK to check

  Illinois MESI requires priority scheme for cache-to-cache transfers
  Which cache should supply data when in shared state?
  Commercial implementations allow memory to provide data

Oct-28-09 ECSE 420
Parallel Computing

Reporting Snoop Results: When?
  Memory needs to know what, if anything, to do
  Fixed number of clocks from address appearing on bus

  Dual tags required to reduce contention with processor
  Still must be conservative (update both on write: E -> M)
  Pentium Pro, HP servers, Sun Enterprise

  Variable delay
  Memory assumes cache will supply data till all say “sorry”
  Less conservative, more flexible, more complex
  Memory can fetch data and hold just in case (SGI

Challenge)

  Immediately: Bit-per-block in memory
  Extra hardware complexity in commodity main memory

system

Oct-28-09 ECSE 420
Parallel Computing

Writebacks

  Allow processor to continue quickly
  Want to service miss first and then process the

write back caused by the miss asynchronously
  Need write-back buffer

  Must handle bus transactions relevant to
buffered block
  Snoop the WB buffer

Oct-28-09 ECSE 420
Parallel Computing

Basic design

  Comparison to NUMAchine (later)

Addr CmdSnoop state Data buffer

Write-back buffer

Cache data RAM

Comparator

Comparator

P

Tag

Addr Cmd

Data
Addr Cmd

To
controller

System bus

Bus-
side

controller
To
controller

Tags
and
state
for
snoop

Tags
and
state
for
P

Processor-
side

controller

Oct-28-09 ECSE 420
Parallel Computing

NUMAchine Processor Board

  Much more
realistic support
for
  CC
  Split-tx bus
  Scalability
  Development
  Debug
  Multi-clocks

Oct-28-09 ECSE 420
Parallel Computing

Non-Atomic State Transitions

  Memory operation involves actions by many entities, incl. bus
  Look up cache tags, bus arbitration, actions by other controllers, ...
  Even if bus is atomic, overall set of actions is not
  Can have race conditions among components of different operations

  Suppose P1 and P2 attempt to write cached block A
simultaneously
  Each decides to issue BusUpgr to allow S –> M

  Issues
  Must handle requests for other blocks while waiting to acquire bus
  Must handle requests for this block A

  e.g. if P2 wins, P1 must invalidate copy and modify request to
BusRdX

Oct-28-09 ECSE 420
Parallel Computing

Handling Non-atomicity:
Transient States

  Increases complexity
  e.g. don’t use BusUpgr, rather other

mechanisms to avoid data transfer

Two types of states
• Stable (e.g. MESI)
• Transient or Intermediate

PrWr/—

BusGrant/BusUpgr

BusRd/Flush

BusGrant/

BusRdX/Flush

BusGrant/BusRdX

PrRd/BusReq

PrWr/—

PrRd/—

PrRd/—
BusRd/Flushʹ′

E

M

I

S

PrRd/—

BusRd (S)

PrWr/BusReq

I → M

S → M

PrWr/
BusReq

BusRdX/Flushʹ′

I → S,E

BusRdX/Flush

BusRdX/Flushʹ′

BusGrant/
BusRd (S) BusRd/Flush

Oct-28-09 ECSE 420
Parallel Computing

Serialization

  Processor-cache handshake must
preserve serialization of bus order
  e.g. on write to block in S state, mustn’t

write data in block until ownership is
acquired.
  Other transactions that get bus before this

one may seem to appear later

Oct-28-09 ECSE 420
Parallel Computing

Write completion for SC?
  Needn’t wait for inval to actually happen

  Just wait till it gets bus

  Commit versus complete
  Don’t know when inval actually inserted in destination process’s

local order, only that it’s before next xaction and in same order for
all procs

  Local write hits become visible not before next bus transaction

  Same argument will extend to more complex systems

  What matters is not when written data gets on the bus (write
back), but when subsequent reads are guaranteed to see it

  Write atomicity: if a read returns value of a write W, W has
already gone to bus and therefore completed if it needed to

Oct-28-09 ECSE 420
Parallel Computing

Deadlock, Livelock
  Request-reply protocols can lead to protocol-level,

fetch deadlock
  In addition to buffer deadlock discussed earlier
  When attempting to issue requests, must service

incoming transactions
  Cache controller awaiting bus grant must snoop and

even flush blocks
  else may not respond to request that will release bus

pending
request

snoop
service

Oct-28-09 ECSE 420
Parallel Computing

Livelock, Starvation
  Many processors try to write same line.
  Each one:

  Obtains exclusive ownership via bus transaction
(assume not in cache)

  Realizes block is in cache and tries to write it
  Livelock: I obtain ownership, but you steal it before I

can write, etc.

  Solution: don’t let exclusive ownership be taken
away before write is done

  Starvation: Solve by using fair arbitration on bus
and FIFO buffers

Oct-28-09 ECSE 420
Parallel Computing

Implementing Atomic Operations

  In cache or memory?
  Cacheable

  Better latency and bandwidth on self-reacquisition
  Allows spinning in cache without making traffic while waiting

  At-memory
  Lower transfer time
  Used to be done with “locked” read-write pair of bus transitions
  Not viable with modern, pipelined busses

  Usually traffic and latency considerations dominate, so use
cacheable
  What is the implementation strategy?

Oct-28-09 ECSE 420
Parallel Computing

Use Cache Exclusivity for Atomicity

  Get exclusive ownership, read-
modify-write

  Error/don’t allow conflicting bus
transactions (Read or ReadEx)

  Can actually buffer request if R-W is
committed

Oct-28-09 ECSE 420
Parallel Computing

Implementing LL-SC
  Lock flag and lock address register at each processor
  LL reads block, sets lock flag, puts block address in register
  Incoming invalidations checked against address: if match, reset flag

  Also if block is replaced and at context switches

  SC checks lock flag as indicator of intervening conflicting write
  If reset, fail; if not, succeed

  Livelock considerations
  Don’t allow replacement of lock variable between LL and SC

  split or set-assoc. cache, and don’t allow memory accesses between LL, SC
  (also don’t allow reordering of accesses across LL or SC)

  Don’t allow failing SC to generate invalidations (not an ordinary write)

  Performance: both LL and SC can miss in cache
  Prefetch block in exclusive state at LL
  But exclusive request reintroduces livelock possibility: use backoff

Oct-28-09 ECSE 420
Parallel Computing

Multilevel Cache Hierarchies

  Independent snoop hardware for each level?
  processor pins for shared bus
  contention for processor cache access ?

  Snoop only at L2 and propagate relevant transactions
  Inclusion property

(1) contents L1 is a subset of L
(2) any block in modified state in L1 is in modified state in L2
1 => all transactions relevant to L1 are relevant to L2
2 => on BusRd L2 can wave off memory access and inform L1

P

L1

L2

P

L1

L2 ° ° °

P

L1

L2

snoop

snoop ???

Processor Chip

Oct-28-09 ECSE 420
Parallel Computing

P

L1

L2

associativity: a1
block size: b1
number of sets: n1

Capacity S1 = a1*b1*n1

associativity: a2
block size: b2
number of sets: n2

Maintaining Inclusion
  The two caches (L1, L2) may choose to replace different block

  Differences in reference history
  set-associative first-level cache with LRU replacement
  example: blocks m1, m2, m3 fall in same set of L1 cache...

  Split higher-level caches
  instruction, data blocks go in different caches at L1, but may

collide in L2
  what if L2 is set-associative?

  Differences in block size

  Common case - automatical
  L1 direct-mapped,

 fewer sets than in L2, and block
size same

Oct-28-09 ECSE 420
Parallel Computing

Preserving Inclusion Explicitly
  Propagate lower-level (L2) replacements to higher-

level (L1)
  Invalidate or flush (if dirty) messages

  Propagate bus transactions from L2 to L1
  Propagate all L2 transactions?
  use inclusion bits?

  Propagate modified state from L1 to L2 on writes?
  if L1 is write-through, just invalidate
  if L1 is write-back

  add extra state to L2 (dirty-but-stale)
  request flush from L1 on Bus Rd

Oct-28-09 ECSE 420
Parallel Computing

Contention of Cache Tags

  L2 filter reduces contention on L1
tags

Tags TagsCached Data

Tags used by
the bus snooper

Tags used by
the processor

TagsCached Data

Cached
DataTags

Tags used mainly
 by processor

Tags used mainly
 by bus snooper

L1 Cache

L2 Cache

Oct-28-09 ECSE 420
Parallel Computing

Correctness

  Issues altered?
  Not really, if all propagation occurs

correctly and is waited for
  Writes commit when they reach the bus,

acknowledged immediately
  But performance problems, so want to

not wait for propagation
  Same issues as split-transaction busses

Oct-28-09 ECSE 420
Parallel Computing

Split-Transaction Bus

Mem Access Delay

Address/CMD

Mem Access Delay

Data

Address/CMD

Data

Address/CMD

Bus
arbitration

  Split bus transaction into request and response xactions
  Separate arbitration for each phase

  Other transactions may intervene
  Improves bandwidth dramatically
  Response is matched to request
  Buffering between bus and cache controllers

  Reduce serialization down to the actual bus arbitration

Oct-28-09 ECSE 420
Parallel Computing

Impact of 2-stage Miss Processing

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 2 4 6 8

Processors

S
pe
ed
up

Z = 50 cycles
S = 20 cycles

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 2 4 6 8

Processors

S
pe
ed
up

Z = 60 cycles
S = 10 cycles

Oct-28-09 ECSE 420
Parallel Computing

SGI Challenge Overview

  36 MIPS R4400 (peak 2.7 GFLOPS, 4 per board) or 18 MIPS
R8000 (peak 5.4 GFLOPS, 2 per board)

  8-way interleaved memory (up to 16 GB)

  4 I/O busses of 320 MB/s each

  1.2 GB/s Powerpath-2 bus @ 47.6 MHz, 16 slots, 329 signals

  128 Bytes lines (1 + 4 cycles)

  Split-transaction with up to 8 outstanding reads
  all transactions take five cycles

(a) A four-processor board

V
M
E
-6
4

S
C
S
I-2

G
ra
ph
ic
s

H
P
P
I

I/O subsystem

Interleaved
memory:

16 GB maximum

Powerpath-2 bus (256 data, 40 address, 47.6 MHz)

R4400 CPUs
and caches

(b) Machine organization

Oct-28-09 ECSE 420
Parallel Computing

SUN Enterprise Overview

  Up to 30 UltraSPARC processors (peak 9 GFLOPs)
  GigaplaneTM bus has peak bw 2.67 GB/s; upto 30GB memory
  16 bus slots, for processing or I/O boards

  2 CPUs and 1GB memory per board
  memory distributed, unlike Challenge, but protocol treats as

centralized
  Each I/O board has 2 64-bit 25Mhz SBUSes

GigaplaneTM bus (256 data, 41 address, 83 MHz)

I/O Cards

P

$2

$
P

$2

$

mem ctrl

Bus Interface / Switch
Bus Interface

CPU/Mem
Cards

Oct-28-09 ECSE 420
Parallel Computing

Complications
  New request can appear on bus before previous one serviced

  Even before snoop result obtained

  Conflicting operations to same block may be outstanding on bus
  e.g. P1, P2 write block in S state at same time

  both get bus before either gets snoop result, so both think they won

  Buffers are small, so may need flow control
  Buffering implies revisiting snoop issues

  When and how snoop results and data responses are provided

  In order w.r.t. requests? (PPro, DEC Turbolaser: yes; SGI, Sun: no)

  Snoop and data response together or separately?
  SGI together, SUN separately

Oct-28-09 ECSE 420
Parallel Computing

Example (based on SGI Challenge)
  No conflicting requests for same block allowed on bus

  8 outstanding requests total, makes conflict detection tractable

  Flow-control through negative acknowledgement (NACK)
  NACK as soon as request appears on bus, requestor retries
  Separate command (incl. NACK) + address and tag + data buses

  Responses may be in different order than requests
  Order of transactions determined by requests
  Snoop results presented on bus with response

  Look at
  Bus design, and how requests and responses are matched
  Snoop results and handling conflicting requests
  Flow control
  Path of a request through the system

Oct-28-09 ECSE 420
Parallel Computing

Bus Design and Req-Resp
Matching

  Essentially two separate buses, arbitrated independently
  “Request” bus for command and address
  “Response” bus for data

  Out-of-order responses imply need for matching req-
response
  Request gets 3-bit tag when wins arbitration

  max 8 outstanding
  Response includes data as well as corresponding request

tag
  Tags allow response to not use address bus, leaving it free

  Separate bus lines for arbitration, and for snoop results

Req / Addr

Resp / Data

Oct-28-09 ECSE 420
Parallel Computing

Bus Design (continued)

  Each of request and response phase is 5 bus cycles
  Response: 4 cycles for data (128 bytes, 256-bit bus), 1 turnaround

  Request phase: arbitration, resolution, address, decode, ack

  Request-response transaction takes 3 or more of these

  Cache tags looked up in decode; extend ack cycle if not possible

  Determine who will respond, if any

  Actual response comes later, with re-arbitration

  Write-backs only request phase : arbitrate both data+addr buses

  Upgrades have only request part; ack’ed by bus on grant (commit)

Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack

Addr
req

Addr Addr

Data
req

Tag

D0 D1 D2 D3

Addr
req

Addr Addr

Data
req

Tag

Grant

D0

check check

ackack

Time

Address
bus

Data
arbitration

Data
bus

Read operation 1
Read operation 2

Oct-28-09 ECSE 420
Parallel Computing

Bus Design (continued)

  Tracking outstanding requests and matching responses

  Eight-entry “request table” in each cache controller

  New request on bus added to all at same index,
determined by tag

  Entry holds address, request type, state in that cache (if
determined already), ...

  All entries checked on bus or processor accesses for
match, so fully associative

  Entry freed when response appears, so tag can be
reassigned by bus

Oct-28-09 ECSE 420
Parallel Computing

Bus Interface with Request
Table

Addr + cmd
Snoop Data buffer

Write-back buffer

Comparator

Tag

Addr + cmd

To
control

TagTag

Data to/from $

Request
buffer

Request table

Ta
g

7

A
dd
re
ss

Request +

M
is
ce
lla
ne
ou
s

response
queue

Addr + cmd bus

Data + tag bus

Snoop state
from $

state

Issue +
merge

W
rit
e
ba
ck
s

R
es
po
ns
es

check

0

O
rig
in
at
or

M
y
re
sp
on
se

in
fo
rm
at
io
n

R
es
po
ns
e

qu
eu
e

Oct-28-09 ECSE 420
Parallel Computing

Snoop Results and Conflicting
Requests

  Variable-delay snooping
  Shared, dirty and inhibit wired-OR lines
  Snoop results presented when response appears

  Determined earlier, in request phase, and kept in request
table entry

  Also determined who will respond
  Writebacks and upgrades don’t have data response or

snoop result

  Avoiding conflicting requests on bus
  don’t issue request for conflicting request that is in request

table
  adds delay to issue logic

  Recall writes committed when request gets bus

Oct-28-09 ECSE 420
Parallel Computing

Flow Control

  Where?
  incoming request buffers from bus to cache controller
  response buffer

  Controller limits number of outstanding requests

  Mainly needed at main memory in this design
  Each of the 8 transactions can generate a writeback
  Can happen in quick succession (no response needed)
  SGI Challenge: separate NACK lines for address and data buses

  Asserted before ack phase of request (response) cycle is done
  Request (response) cancelled everywhere, and retries later
  Backoff and priorities to reduce traffic and starvation

  SUN Enterprise: destination initiates retry when it has a free buffer
  source keeps watch for this retry
  guaranteed space will still be there, only two “tries” needed at most

Oct-28-09 ECSE 420
Parallel Computing

Handling a Read Miss

  Need to issue BusRd
  First check request table. If hit:

  If prior request exists for same block, want to grab data too!
  “want to grab response” bit
  “original requestor” bit

  non-original grabber must assert sharing line so others will load in S rather than
E state

  If prior request incompatible with BusRd (e.g. BusRdX)
  wait for it to complete and retry (processor-side controller)

  If no prior request, issue request and watch out for race conditions
  conflicting request may win arbitration before this one, but this one

receives bus grant before conflict is apparent
  watch for conflicting request in slot before own, degrade request to “no action”

and withdraw till conflicting request satisfied

Oct-28-09 ECSE 420
Parallel Computing

Upon Issuing the BusRd Request
  All processors enter request into table, snoop for request in cache
  Memory starts fetching block
  1. Cache with dirty block responds before memory ready

  Memory aborts on seeing response
  Waiters grab data

  some may assert inhibit to extend response phase till done snooping
  memory must accept response as WB (might even have to NACK)

  2. Memory responds before cache with dirty block
  Cache with dirty block asserts inhibit line till done with snoop
  When done, asserts dirty, causing memory to cancel response
  Cache with dirty issues response, arbitrating for bus

  3. No dirty block: memory responds when inhibit line released
  Assume cache-to-cache sharing not used (for non-modified data)

Oct-28-09 ECSE 420
Parallel Computing

Handling a Write Miss

  Similar to read miss, except:
  Generate BusRdX
  Main memory does not sink response since will

be modified again
  No other processor can grab the data

  If block present in shared state, issue
BusUpgr instead
  No response needed
  If another processor was going to issue

BusUpgr, changes to BusRdX as with atomic bus

Oct-28-09 ECSE 420
Parallel Computing

Write Serialization

  With split-transaction buses, usually bus order is
determined by order of requests appearing on bus
  actually, the ack phase, since requests may be NACKed
  by end of this phase, they are committed for visibility in order

  A write that follows a read transaction to the same location
should not be able to affect the value returned by that read
  Easy in this case, since conflicting requests not allowed
  Read response precedes write request on bus

  Similarly, a read that follows a write transaction won’t return
old value

Oct-28-09 ECSE 420
Parallel Computing

Detecting Write Completion
  Problem: invalidations don’t happen as soon as request appears on bus

  They’re buffered between bus and cache
  Commitment does not imply performing or completion
  Need additional mechanisms

  Key property to preserve: processor shouldn’t see new value produced
by a write before previous writes in bus order are visible to it
  1. Don’t let certain types of incoming transactions be reordered in buffers

  in particular, data reply should not overtake invalidation request
  okay for invalidations to be reordered: only reply actually brings data in

  2. Allow reordering in buffers, but ensure important orders preserved at key
points
  e.g. flush incoming invalidations/updates from queues and apply before

processor completes operation that may enable it to see a new value

Oct-28-09 ECSE 420
Parallel Computing

Commitment of Writes
(Operations)

  More generally, distinguish between performing and
commitment of a write w:

  Performed w.r.t a processor: invalidation actually applied
  Committed w.r.t a processor: guaranteed that once that

processor sees the new value associated with W, any
subsequent read by it will see new values of all writes that
were committed w.r.t that processor before W.

  Global bus serves as point of commitment, if buffers are FIFO
  benefit of a serializing broadcast medium for interconnect

  Note: acks from bus to processor must logically come via
same FIFO
  not via some special signal, since otherwise can violate ordering

Oct-28-09 ECSE 420
Parallel Computing

Write Atomicity

  Still provided naturally by broadcast nature of
bus

  Recall that bus implies:
  writes commit in same order w.r.t. all processors
  read cannot see value produced by write before

write has committed on bus and hence w.r.t. all
processors

  Previous techniques allow substitution of
“complete” for “commit” in above statements
  that’s write atomicity

  Will discuss deadlock, livelock, starvation after
multilevel caches plus split transaction bus

Oct-28-09 ECSE 420
Parallel Computing

Alternatives: In-order
Responses

  FIFO request table suffices
  Dirty cache does not release inhibit

line till it is ready to supply data
  No deadlock problem since does not rely

on anyone else

  Performance problems possible at
interleaved memory

  Allow conflicting requests more easily

Oct-28-09 ECSE 420
Parallel Computing

Handling Conflicting Requests
  Two BusRdX requests one after the other on bus for same

block
  latter controller invalidates its block, as before, but earlier

requestor sees later request before its own data response

  With out-of-order response, not known which response will
appear first

  With in-order, known, and can use performance optimization
  earlier controller responds to latter request by noting that latter

is pending
  when its response arrives, updates word, short-cuts block back

on to bus, invalidates its copy (reduces ping-pong latency)

Oct-28-09 ECSE 420
Parallel Computing

Other Alternatives

  Fixed delay from request to snoop result also makes it easier
  Can have conflicting requests even if data responses not in order
  e.g. SUN Enterprise

  64-byte line and 256-bit bus => 2 cycle data transfer
  so 2-cycle request phase used too, for uniform pipelines
  too little time to snoop and extend request phase
  snoop results presented 5 cycles after address (unless inhibited)
  by later data response arrival, conflicting requestors know what to

do

  Don’t even need request to go on same bus, as long as order is
well-defined
  SUN SparcCenter2000 had 2 busses, Cray 6400 had 4
  Multiple requests go on bus in same cycle
  Priority order established among them is logical order

