
Shared Memory
Multiprocessors

Zeljko Zilic
McConnell Engineering Building
Room 546

Oct-21-09 ECSE 420
Parallel Computing

Recap: Performance Trade-offs
  Programmer’s View of Performance

  Different goals often have conflicting demands
  Load Balance

  Fine-grain tasks, random or dynamic assignment

  Communication
  Coarse grain tasks, decompose to obtain locality

  Extra Work
  Coarse grain tasks, simple assignment

  Communication Cost:
  Big transfers: amortize overhead and latency
  Small transfers: reduce contention

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup <

Oct-21-09 ECSE 420
Parallel Computing

Recap (cont)
 Architecture View

 Cannot solve load imbalance or eliminate
inherent communication

 But can:
 Reduce incentive for creating ill-behaved

programs
 Efficient naming, communication and

synchronization
 Reduce artifactual communication
 Provide efficient naming for flexible assignment
 Allow effective overlapping of communication

Oct-21-09 ECSE 420
Parallel Computing

Artifactual Communication

  Accesses not satisfied locally cause “communication”
  Inherent comm. (implicit or explicit) causes transfers

  Determined by program

  Artifactual communication
  Determined by program/architecture interaction
  Poor allocation of data across distributed memories
  Unnecessary data in a transfer
  Unnecessary transfers due to system granularities
  Redundant communication of data
  Finite replication capacity (in cache or main memory)

  Inherent communication: unlimited capacity, small
transfers, and perfect knowledge of what is needed.

Oct-21-09 ECSE 420
Parallel Computing

P

T
 i m e

 (s
)

1 0 0

7 5

5 0

2 5

Uniprocessor View
  Performance depends heavily on memory

hierarchy
 Managed by hardware
  Time spent by a program

  Timeprog(1) = Busy(1) + Data Access(1)
  Divide by cycles to get CPI equation

 Data access time can be reduced by:
  Optimizing machine

 Bigger caches, lower latency...

  Optimizing program
 Temporal and spatial locality

B u s y - u s e f u l
D a t a - l o c a l

Oct-21-09 ECSE 420
Parallel Computing

Same Processor-Centric Perspective

P 0 P 1 P 2 P 3

B u s y - o v e r h e a d B u s y - u s e f u l
D a t a - l o c a l

S y n c h r o n i z a t i o n
D a t a - r e m o t e

T
 i m e

 (s
)

T
 i m e

 (s
)

1 0 0

7 5

5 0

2 5

1 0 0

7 5

5 0

2 5

(a) S e q u e n t i a l e s s o r s (b) P a r a l l e l w i t h f o u r p r o c

Oct-21-09 ECSE 420
Parallel Computing

What is a Multiprocessor?
 A collection of communicating processors

  Goals: balance load, reduce inherent communication and
extra work

 A multi-cache, multi-memory system
  Role of these components essential regardless of

programming model
  Prog. model and comm. abstr. affect specific performance

tradeoffs

P P P

P P P

...

...

Oct-21-09 ECSE 420
Parallel Computing

Relating Perspectives

Synch wait

Data-remote

Data-localOrchestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Orchestration/
mapping

Load imbalance and
synchronization

Inherent
communication
volume

Artifactual
communication
and data locality

Communication
structure

Busy(1) + Data(1)
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p)

Speedup <

Oct-21-09 ECSE 420
Parallel Computing

Back to Basics – Small SMP
  Parallel Architecture = Computer Arch. + Comm. Arch.
  Small-scale shared memory

  Extend the memory system to support multiple processors
  Good for multiprogramming throughput and parallel computing
  Allows fine-grain sharing of resources

  Naming & synchronization
  Communication is implicit in store/load of shared address
  Synchronization is performed by operations on shared addresses

  Latency & Bandwidth
  Utilize the normal migration within the storage to avoid long

latency operations and to reduce bandwidth
  Economical medium with fundamental BW limit
=> focus on eliminating unnecessary traffic

Oct-21-09 ECSE 420
Parallel Computing

Layered Perspective for SMP

Multipr ogramming Shar ed
addr ess

Message
passing

Data
parallel

Pr ogramming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication har dwar e
Physical communication medium

Har dwar e/softwar e boundary

Mem

P 1 P n
Conceptual
Picture

Oct-21-09 ECSE 420
Parallel Computing

Natural Extensions of Memory System

P 1
Switch

Main memory

P n

(Interleaved)

(Interleaved)

First-level $

P 1

$

Inter connection network

$

P n

Mem Mem

P 1

$

Inter connection network

$

P n

Mem Mem Shared Cache

Centralized Memory
Dance Hall, UMA

Distributed Memory (NUMA)

Scale

Oct-21-09 ECSE 420
Parallel Computing

Bus-Based Symmetric Shared Memory

  Dominate the server market
  Building blocks for larger systems; arriving to desktop

  Attractive as throughput servers and for parallel programs
  Fine-grain resource sharing
  Uniform access via loads/stores
  Automatic data movement and coherent replication in caches
  Cheap and powerful extension

  Normal uniprocessor mechanisms to access data
  Extension of memory hierarchy to support multiple processors

I/O devices Mem

P 1

$ $

P n

Bus

Oct-21-09 ECSE 420
Parallel Computing

Caches Critical for Performance
  Reduce average latency

  Automatic replication closer to
processor

  Reduce average bandwidth
  Data is logically transferred from

producer to consumer to memory
  store reg --> mem
  load reg <-- mem

P P P

•  What happens when store & load executed on different
processors?

•  Processors can share data
efficiently

Oct-21-09 ECSE 420
Parallel Computing

Example Cache Coherence Problem

  Processors see different values for u after event 3
  Write back caches: written back upon cache flushes or writes

  Processes accessing main memory may see very stale value

  Unacceptable to programs, and frequent!

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5
u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

Oct-21-09 ECSE 420
Parallel Computing

Caches and Cache Coherence
 Caches play key role in all cases

  Reduce average data access time
  Reduce bandwidth demands placed on shared interconnect

  Private processor caches create a problem
  Copies of a variable can be present in multiple caches
  A write by one processor may not become visible to others

 They’ll keep accessing stale value in their caches

=> Cache coherence problem

 What do we do about it?
  Organize the mem hierarchy to make it go away
  Detect and take actions to eliminate the problem

Oct-21-09 ECSE 420
Parallel Computing

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

  Reading an address should return the last value written
  Easy in uniprocessors

  Except for I/O

  Cache coherence problem in MPs is more pervasive and
more performance critical

Oct-21-09 ECSE 420
Parallel Computing

Snoopy Cache-Coherence Protocols

  Bus is a broadcast medium & Caches know their contents
  Cache Controller “snoops” transactions on the shared bus

  Relevant transaction if for a block it contains
  Take action to ensure coherence

  Invalidate, update, or supply value
  Depends on state of the block and the protocol

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Oct-21-09 ECSE 420
Parallel Computing

Example: Write-thru Invalidate

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5
u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

Oct-21-09 ECSE 420
Parallel Computing

Architectural Building Blocks
  Bus Transactions

  Fundamental system design abstraction
  Single set of wires connect several devices
  Bus protocol: arbitration, command/addr,

data
=> Every device observes every transaction

  Cache block state transition diagram
  FSM specifying how disposition of block

changes
  invalid, valid, dirty

Oct-21-09 ECSE 420
Parallel Computing

Design Choices
  Controller updates state of

blocks in response to
processor and snoop events
and generates bus
transactions

  Snoopy protocol
  Set of states
  State-transition diagram
  Actions

  Basic Choices
  Write-through vs Write-back
  Invalidate vs. Update

Snoop

State Tag Data

° ° °

Cache Controller

Processor
Ld/St

Oct-21-09 ECSE 420
Parallel Computing

Write-through Invalidate Protocol

  Two states per block in each cache
  As in uniprocessor
  State of a block is a p-vector of

states
  Hardware state bits associated with

blocks that are in the cache
  Other blocks can be seen as being

in invalid (not-present) state in that
cache

 Writes invalidate all other caches
  Can have multiple simultaneous

readers of block,but write
invalidates them

I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State Tag Data

I/O devices Mem

P 1

$ $

P n

Bus

State Tag Data

Oct-21-09 ECSE 420
Parallel Computing

Write-through vs. Write-back

  Write-through protocol is simple
  Every write is observable

  Every write goes on the bus
=> Only one write can take place at a time in any

processor

  Uses a lot of bandwidth!
Example: 200 MHz dual issue, CPI = 1, 15% stores of 8 bytes

=> 30 M stores per second per processor

=> 240 MB/s per processor

1GB/s bus can support only about 4
processors without saturating

Oct-21-09 ECSE 420
Parallel Computing

Invalidate vs. Update
  Basic question of program behavior:

  A block read by other processors before it is overwritten?

  Invalidate.
  yes: readers will take a miss
  no: multiple writes without addition traffic

  Also clears out copies that will not be used again

  Update.
  yes: avoids misses on later references
  no: multiple useless updates

  Appears wasteful

=> Need to look at program reference patterns and hw
complexity but first - correctness

Oct-21-09 ECSE 420
Parallel Computing

Remaining Topics

  Coherence vs. consistency
  Design Space of Snoopy-Cache

Coherence Protocols
  Write-back, update
  Protocol design
  Lower-level design choices

  Evaluation of protocol alternatives

Oct-21-09 ECSE 420
Parallel Computing

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model???

  Reading an address should return the last value
written to that address

  What does that mean in a multiprocessor?

Oct-21-09 ECSE 420
Parallel Computing

Coherence?
  Caches are supposed to be transparent

  What would happen if there were no caches?

  Every memory operation goes “to the memory location”
  May have multiple memory banks
  All operations on a particular location would be serialized

  All would see THE order

  Interleaving among accesses from different processors
  Within individual processor => program order
  Across processors => only constrained by explicit

synchronization

  Processor only observes state of memory system by
issuing memory operations!

Oct-21-09 ECSE 420
Parallel Computing

Definitions
  Memory operations: load, store, read-modify-write
  Issues

  Leaves processor and is presented to the memory
subsystem (caches, buffers, busses, DRAM, …)

  Performed with respect to a processor
  Write: subsequent reads return the value
  Read: subsequent writes cannot affect the value

  Coherent Memory System
  There is a serial order of memory operations s. t.

  Operations issued by a process appear in order issued
  Value returned by a read = previous write in serial order

=> write propagation + write serialization

Oct-21-09 ECSE 420
Parallel Computing

Is 2-state Protocol Coherent?
  Assume bus transactions and memory operations atomic, one-

level cache
  All phases of one bus transaction complete before next one starts
  Processor waits for mem. operation completion before issuing next
  With one-level cache, assume invalidations applied during bus

transaction

  All writes go to bus + atomicity
  Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

  How to insert reads in this order?
  Important since processors see writes through reads, so

determines whether write serialization is satisfied
  But read hits may happen independently and do not appear on bus

or enter directly in bus order

Oct-21-09 ECSE 420
Parallel Computing

Ordering Reads
  Read misses

  Appear on bus, and will “see” last write in bus order

  Read hits: do not appear on bus
  But value read was placed in cache by either

  Most recent write by this processor, or

  Most recent read miss by this processor

  Both these transactions appeared on the bus

  So read hits also see values as produced bus
order

Oct-21-09 ECSE 420
Parallel Computing

Determining Order More Generally

 mem op M2 is subsequent to mem op M1 (M2 >> M1) if
 the operations are issued by the same processor and
 M2 follows M1 in program order.

 read R >> write W if
 read generates bus transaction that follows that for W.

 write W >> read or write M if
 M generates bus transaction and the transaction for W follows

that for M.
 write W >> read R if

 read R does not generate a bus transaction and
  is not already separated from write W by another bus

transaction."

Oct-21-09 ECSE 420
Parallel Computing

Ordering

  Writes establish a partial order
  Doesn’t constrain ordering of reads, though bus will

order read misses too
–  Any order among reads between writes is fine, as long

as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

Oct-21-09 ECSE 420
Parallel Computing

Write-Through vs Write-Back
  Write-thru requires high bandwidth

  Write-back caches absorb most writes as cache hits
=> Write hits don’t go on bus

  But now how do we ensure write propagation and
serialization?

  Need more sophisticated protocols: large design
space

  But first, let’s understand other ordering issues

Oct-21-09 ECSE 420
Parallel Computing

Setup for Mem. Consistency
  Coherence => Writes to a single location

become visible to all in the same order
  But when does a write become visible?

  How do we establish orders between a write and
a read by different procs?
–  use event synchronization

–  Typically use more than one location!

Oct-21-09 ECSE 420
Parallel Computing

Example: Consistency Issue

  Intuition not guaranteed by coherence
  Expect memory to respect order between accesses to

different locations issued by a given process
  Preserve orders among accesses to same location by

different processes

  Coherence is not enough!
  Pertains only to single location

P 1 P 2
/*Assume initial value of A and ag is 0*/

A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Mem

P 1 P n

Conceptual
Picture

Oct-21-09 ECSE 420
Parallel Computing

Another Example of Ordering?

  What’s the intuition?
  Whatever it is, we need an ordering model for clear semantics

  Across different locations as well
  Goal: programmers can reason about what results are

possible

  This is the memory consistency model

P 1 P 2
/*Assume initial values of A and B are 0*/

(1a) A = 1; (2a) print B;
(1b) B = 2; (2b) print A;

Oct-21-09 ECSE 420
Parallel Computing

Memory Consistency Model
  Specifies constraints on the order in which memory

operations (from any process) can appear to execute with
respect to one another
  What orders are preserved?
  Given a load, constrains the possible values returned by it

  Without it, can’t tell much about an SAS program’s
execution

  Implications for both programmer and system designer
  Programmer uses to reason about correctness and results
  System designer can use to constrain how much accesses

can be reordered by compiler or hardware

  Contract between programmer and system

Oct-21-09 ECSE 420
Parallel Computing

Sequential Consistency

  Total order achieved by interleaving accesses from
processes
  Maintains program order, and memory operations, from all

processes, appear [issue, execute, complete] atomica
  as if there were no caches, and a single memory

Processors
issuing memory
references as
per program or der

P1 P2 Pn

Memory

The “switch” is randomly
set after each memory
reference

 “A multiprocessor is sequentially consistent if
the result of any execution is the same as if the
operations of all the processors were executed
in some sequential order, and the operations of
each individual processor appear in this
sequence in the order specified by its
program.” [Lamport, 1979]

Oct-21-09 ECSE 420
Parallel Computing

What Really is Program Order?

  Intuitively, order in which operations appear
in source code
  Straightforward translation of source code to

assembly
  At most one memory operation per instruction

  But not the same as order presented to
hardware by compiler

  So which is program order?
  Depends on which layer, and who’s reasoning

  We assume order as seen by programmer

Oct-21-09 ECSE 420
Parallel Computing

SC Example

  What matters is order in which operations appear to execute
  Possible outcomes for (A,B): (0,0), (1,0), (1,2)
  What about (0,2) ?

  program order => 1a->1b and 2a->2b
  A = 0 implies 2b->1a, which implies 2a->1b
  B = 2 implies 1b->2a, which leads to a contradiction

  What is actual execution 1b->1a->2b->2a ?
  appears just like 1a->1b->2a->2b as visible from results
  actual execution 1b->2a->2b->1a is not

P 1 P 2
/*Assume initial values of A and B are 0*/

(1a) A = 1; (2a) print B;
(1b) B = 2; (2b) print A; A=0

B=2

Oct-21-09 ECSE 420
Parallel Computing

Implementing SC
  Two kinds of requirements

  Program order
  memory operations issued by a process must appear

to execute (become visible to others and itself) in
program order

  Atomicity
  in the overall hypothetical total order, one memory

operation should appear to complete with respect to
all processes before the next one is issued

  guarantees that total order is consistent across
processes

  Hard part is making writes atomic

Oct-21-09 ECSE 420
Parallel Computing

Write-back Caches
  2 processor operations

  PrRd, PrWr

  3 states
  invalid, valid (clean), modified (dirty)
  ownership: who supplies block

  2 bus transactions:
  read (BusRd), write-back (BusWB)
  only cache-block transfers

=> treat Valid as “shared” and Modified as
“exclusive”

=> introduce one new bus transaction
  read-exclusive: read for purpose of

modifying (read-to-own)

PrRd/—

PrRd/—
PrW r/BusRd

BusRd/—

PrW r/—

V

M

I

Replace/BusWB

PrW

PrRd/BusRd

Replace/-

Oct-21-09 ECSE 420
Parallel Computing

MSI Invalidate Protocol
  Read obtains block in

“shared”
  even if only cache copy

  Obtain exclusive ownership
before writing
  BusRdx causes others to

invalidate (demote)
  If M in another cache, flush
  BusRdx even if hit in S

  promote to M (upgrade)

  What about replacement?
  S->I, M->I as before

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd

Oct-21-09 ECSE 420
Parallel Computing

Example: Write-Back Protocol

I/O devices

Memory

u :5

P0 P1 P4 PrRd U

U S 5

BusRd U

PrRd U

BusRd U

U S 5

PrWr U 7

U M 7

BusRdx U

PrRd U

U S 7 U S 7

7

BusRd

Flush

Oct-21-09 ECSE 420
Parallel Computing

Correctness

  When is write miss performed?
  How does writer “observe” write?
  How is it “made visible” to others?
  How do they “observe” the write?

  When is write hit made visible?

Oct-21-09 ECSE 420
Parallel Computing

Write Serialization for Coherence
  Writes that appear on the bus (BusRdX) are ordered by bus

  performed in writer’s cache before other transactions, so
ordered same w.r.t. all processors (incl. writer)

  Read misses also ordered wrt these

  Write that don’t appear on the bus:
  P issues BusRdX B.
  further mem operations on B until next transaction are from P

  read and write hits
  these are in program order

  for read or write from another processor
  separated by intervening bus transaction

  Reads hits?

Oct-21-09 ECSE 420
Parallel Computing

Sequential Consistency
  Bus imposes total order on bus xactions for all locations

  Between xactions, procs perform reads/writes (locally) in
program order

  So any execution defines a natural partial order
  Mj subsequent to Mi if

  (I) follows in program order on same processor,
  (ii) Mj generates bus xaction that follows the memory

operation for Mi

  In segment between two bus transactions, any interleaving
of local program orders leads to consistent total order

  w/i segment writes observed by proc P serialized as:
  Writes from other processors by previous bus xaction P issued
  Writes from P by program order

Oct-21-09 ECSE 420
Parallel Computing

Sufficient conditions
Issued in program order
After write issues, the issuing process waits for the write to

complete before issuing next memory operation
After read is issued, the issuing process waits for the read to

complete and for the write whose value is being returned
to complete (globally) before issuing its next operation

  Write completion

  can detect when write appears on bus

  Write atomicity:
  if a read returns the value of a write, that write has already

become visible to all others already

Oct-21-09 ECSE 420
Parallel Computing

Lower-level Protocol Choices
  BusRd observed in M state: what transitition to make?

  M ----> I
  M ----> S

  Depends on expectations of access patterns

  How does memory know whether or not to supply data
on BusRd?

  Problem: Read/Write is 2 bus xactions, even if no
sharing

  BusRd (I->S) followed by BusRdX or BusUpgr (S->M)

  What happens on sequential programs?

Oct-21-09 ECSE 420
Parallel Computing

MESI Invalidation Protocol
  Add exclusive state

  Distinguish exclusive (writable) and owned (written)
  Main memory is up to date, so cache not necessarily

owner
  Can be written locally

  States
  invalid
  exclusive or exclusive-clean (only this cache has copy, but

not modified)
  shared (two or more caches may have copies)
  modified (dirty)

  I -> E on PrRd if no cache has copy
=> How can you tell?

Oct-21-09 ECSE 420
Parallel Computing

Hardware Support for MESI

 All cache controllers snoop on BusRd
 Assert ‘shared’ if present (S? E? M?)
  Issuer chooses between S and E

  how does it know when all have voted?

I/O devices

Memory

u :5

P0 P1 P4

shared signal
 - wired-OR

Oct-21-09 ECSE 420
Parallel Computing

MESI State Transition Diagram

  BusRd(S) means shared
line asserted on BusRd
transaction

  Flush’: if cache-to-cache
xfers
  only one cache flushes data

  MOESI protocol: Owned
state: exclusive but
memory not valid

PrW r/—

BusRd/Flush

PrRd/

BusRdX/Flush

PrW r/BusRdX

PrW r/—

PrRd/—

PrRd/—
BusRd/Flush’ ʹ′

E

M

I

S

PrRd

BusRd(S)

BusRdX/Flush’ ʹ′

BusRdX/Flush
BusRd/
Flush

PrW r/BusRdX

PrRd/
BusRd (S)

Oct-21-09 ECSE 420
Parallel Computing

Lower-level Protocol Choices
  Who supplies data on miss when not M state: memory or cache?

  Original, lllinois MESI: cache, since assumed faster than memory
  Not true in modern systems

  Intervening in another cache more expensive than getting from
memory

  Cache-to-cache sharing adds complexity
  How does memory know it should supply data (must wait for caches)
  Selection algorithm if multiple caches have valid data

  Valuable for cache-coherent machines with distributed memory
  May be cheaper to obtain from nearby cache than distant memory,

Especially when constructed out of SMP nodes (Stanford DASH)

Oct-21-09 ECSE 420
Parallel Computing

Update Protocols

  If data is to be communicated
between processors, invalidate
protocols seem inefficient

  Consider shared flag
  p0 waits for it to be zero, then does work

and sets it one
  p1 waits for it to be one, then does work

and sets it zero

  How many transactions?

Oct-21-09 ECSE 420
Parallel Computing

Dragon Write-back Update
Protocol

  4 states
  Exclusive-clean or exclusive (E): I and memory have it

  Shared clean (Sc): I, others, and maybe memory, but I’m not owner
  Shared modified (Sm): I and others but not memory, and I’m owner

  Sm and Sc can coexist in different caches, with only one Sm

  Modified or dirty (D): I and, noone else

  No invalid state
  If in cache, cannot be invalid
  If not present in cache, view as being in not-present or invalid state

  New processor events: PrRdMiss, PrWrMiss
  Introduced to specify actions when block not present in cache

  New bus transaction: BusUpd
  Broadcasts single word written on bus; updates relevant caches

Oct-21-09 ECSE 420
Parallel Computing

Dragon State Transition Diagram

E Sc

Sm M

PrW r/—
PrRd/—

PrRd/—

PrRd/—

PrRdMiss/BusRd(S) PrRdMiss/BusRd(S)
PrW r/—

PrW rMiss/(BusRd(S); BusUpd) PrW rMiss/BusRd(S)

PrW r/BusUpd(S)

PrW r/BusUpd(S)

BusRd/—

BusRd/Flush

PrRd/— BusUpd/Update

BusUpd/Update

BusRd/Flush

PrW r/BusUpd(S)

PrW r/BusUpd(S)

Oct-21-09 ECSE 420
Parallel Computing

Lower-level Protocol Choices
  Can shared-modified state be eliminated?

  If update memory as well on BusUpd transactions (DEC
Firefly)

  Dragon protocol doesn’t (assumes DRAM slow to update)

  Should replacement of an Sc block be broadcast?
  Would allow last copy to go to E state and no updates sent
  Replacement bus transaction is not in critical path, later

update may be

  Can local copy be updated on write hit before controller
gets bus?
  Can mess up serialization

  Coherence, consistency much like write-through case

Oct-21-09 ECSE 420
Parallel Computing

Assessing Protocol Tradeoffs

  Tradeoffs affected by technology
characteristics and design complexity

  Part art and part science
  Art: experience, intuition and aesthetics

of designers
  Science: Workload-driven evaluation for

cost-performance
  want a balanced system: no expensive

resource heavily underutilized Break?

Oct-21-09 ECSE 420
Parallel Computing

Bandwidth per transition

Bus Transaction Address / Cmd Data

BusRd 6 64

BusRdX 6 64

BusWB 6 64

BusUpgd 6 --

 NP I E S M

NP 0 0 1.25 0.96 0.001

I 0.64 0 0 1.87 0.001

E 0.20 0 14.00 0.0 2.24

S 0.42 2.50 0 134.72 2.24

M 2.63 0.00 0 2.30 843.57

Ocean Data Cache Frequency Matrix (per 1000)

PrW r/—

BusRd/Flush

PrRd/

BusRdX/Flush

PrW r/BusRdX

PrW r/—

PrRd/—

PrRd/—
BusRd/Flush’ ʹ′

E

M

I

S

PrRd

BusRd(S)

BusRdX/Flush’ ʹ′

BusRdX/Flush
BusRd/
Flush

PrW r/BusRdX

PrRd/
BusRd (S)

Oct-21-09 ECSE 420
Parallel Computing

Miss Classification
Miss Classi?cation

reason
for miss

?rst reference to
memory block by PE

?rst access
system wide

yes

no

written
before

yes

no

modi?ed
word(s) accessed
during lifetime

yes

no

1. pure-cold

2. cold

4. cold-

3. cold-
false-sharing

true-sharing

reason for
elimination of

last copy
replacement

invalidation

old copy
with state=invalid

still there?
yesno

8. pure-7. pure-6. inval-cap-
true-sharing

5. inval-cap-
false-sharing

modi?ed
word(s) accessed
during lifetime

modi?ed
word(s) accessed
during lifetime

yesno yesno

false-sharing true-sharing

other

has block
been modi?ed since

replacement
yes no

12. capacity-11. pure-10. cap-inval-
true-sharing

9. cap-inval-
false-sharing

modi?ed
word(s) accessed
during lifetime

modi?ed
word(s) accessed
during lifetime

yesno yesno

capacity true-sharing

modified word accessed during lifetime
means access to word(s) within a block
that have been modified since the last
“essential” (4,6,8,10,12) miss to this
block by this processor

Oct-21-09 ECSE 420
Parallel Computing

Update versus Invalidate
  Much debate over the years: depends on sharing patterns
  Intuition:

  If those that used continue to use, and writes between use are few,
update should do better
  e.g. producer-consumer pattern

  If those that use unlikely to use again, or many writes between
reads, updates not good
  “pack rat” phenomenon particularly bad under process migration
  useless updates where only last one will be used

  Can construct scenarios where one or other is much better
  Can combine them in hybrid schemes (see text)

  E.g. competitive: observe patterns at runtime and change protocol

Oct-21-09 ECSE 420
Parallel Computing

Update vs Invalidate: Miss Rates

  Lots of coherence misses: updates help

  Lots of capacity misses: updates hurt (keep data in cache uselessly)
  Updates seem to help, but this ignores upgrade and update traffic

M
i
s
s

r
a
t
e

(
%
)

M
i
s
s

r
a
t
e

(
%
)

L
U
/
i
n
v

L
U
/
u
p
d

O
c
e
a
n
/
i
n
v

O
c
e
a
n
/
m
i
x

O
c
e
a
n
/
u
p
d

R
a
y
t
r
a
c
e
/
i
n
v

R
a
y
t
r
a
c
e
/
u
p
d

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Cold

Capacity

True sharing

False sharing

R
a
d
i
x
/
i
n
v

R
a
d
i
x
/
m
i
x

R
a
d
i
x
/
u
p
d

0.00

0.50

1.00

1.50

2.00

2.50

Oct-21-09 ECSE 420
Parallel Computing

Upgrade and Update Rates (Traffic)

  Update traffic is substantial
  Main cause is multiple writes by a

processor before a read by other
  many bus transactions versus

one in invalidation case
  could delay updates or use

merging

  Overall, trend is away from
update based protocols as default
  bandwidth, complexity, large

blocks trend, pack rat for
process migration

  Will see that updates have greater
problems for scalable systems

LU/inv

LU/upd

Ocean/inv

Upgrade/update rate (%)

Upgrade/update rate (%)

Ocean/mix

Ocean/upd

Raytrace/inv

Raytrace/upd

0
.
0
0

0
.
5
0

1
.
0
0

1
.
5
0

2
.
0
0

2
.
5
0

Radix/inv

Radix/mix

Radix/upd

0
.
0
0

1
.
0
0

2
.
0
0

3
.
0
0

4
.
0
0

5
.
0
0

6
.
0
0

7
.
0
0

8
.
0
0

