
Shared Memory
Multiprocessors

Zeljko Zilic
McConnell Engineering Building
Room 546

Oct-21-09 ECSE 420
Parallel Computing

Recap: Performance Trade-offs
  Programmer’s View of Performance

  Different goals often have conflicting demands
  Load Balance

  Fine-grain tasks, random or dynamic assignment

  Communication
  Coarse grain tasks, decompose to obtain locality

  Extra Work
  Coarse grain tasks, simple assignment

  Communication Cost:
  Big transfers: amortize overhead and latency
  Small transfers: reduce contention

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup <

Oct-21-09 ECSE 420
Parallel Computing

Recap (cont)
 Architecture View

 Cannot solve load imbalance or eliminate
inherent communication

 But can:
 Reduce incentive for creating ill-behaved

programs
 Efficient naming, communication and

synchronization
 Reduce artifactual communication
 Provide efficient naming for flexible assignment
 Allow effective overlapping of communication

Oct-21-09 ECSE 420
Parallel Computing

Artifactual Communication

  Accesses not satisfied locally cause “communication”
  Inherent comm. (implicit or explicit) causes transfers

  Determined by program

  Artifactual communication
  Determined by program/architecture interaction
  Poor allocation of data across distributed memories
  Unnecessary data in a transfer
  Unnecessary transfers due to system granularities
  Redundant communication of data
  Finite replication capacity (in cache or main memory)

  Inherent communication: unlimited capacity, small
transfers, and perfect knowledge of what is needed.

Oct-21-09 ECSE 420
Parallel Computing

P

T
 i m e

 (s
)

1 0 0

7 5

5 0

2 5

Uniprocessor View
  Performance depends heavily on memory

hierarchy
 Managed by hardware
  Time spent by a program

  Timeprog(1) = Busy(1) + Data Access(1)
  Divide by cycles to get CPI equation

 Data access time can be reduced by:
  Optimizing machine

 Bigger caches, lower latency...

  Optimizing program
 Temporal and spatial locality

B u s y - u s e f u l
D a t a - l o c a l

Oct-21-09 ECSE 420
Parallel Computing

Same Processor-Centric Perspective

P 0 P 1 P 2 P 3

B u s y - o v e r h e a d B u s y - u s e f u l
D a t a - l o c a l

S y n c h r o n i z a t i o n
D a t a - r e m o t e

T
 i m e

 (s
)

T
 i m e

 (s
)

1 0 0

7 5

5 0

2 5

1 0 0

7 5

5 0

2 5

(a) S e q u e n t i a l e s s o r s (b) P a r a l l e l w i t h f o u r p r o c

Oct-21-09 ECSE 420
Parallel Computing

What is a Multiprocessor?
 A collection of communicating processors

  Goals: balance load, reduce inherent communication and
extra work

 A multi-cache, multi-memory system
  Role of these components essential regardless of

programming model
  Prog. model and comm. abstr. affect specific performance

tradeoffs

P P P

P P P

...

...

Oct-21-09 ECSE 420
Parallel Computing

Relating Perspectives

Synch wait

Data-remote

Data-localOrchestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Orchestration/
mapping

Load imbalance and
synchronization

Inherent
communication
volume

Artifactual
communication
and data locality

Communication
structure

Busy(1) + Data(1)
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p)

Speedup <

Oct-21-09 ECSE 420
Parallel Computing

Back to Basics – Small SMP
  Parallel Architecture = Computer Arch. + Comm. Arch.
  Small-scale shared memory

  Extend the memory system to support multiple processors
  Good for multiprogramming throughput and parallel computing
  Allows fine-grain sharing of resources

  Naming & synchronization
  Communication is implicit in store/load of shared address
  Synchronization is performed by operations on shared addresses

  Latency & Bandwidth
  Utilize the normal migration within the storage to avoid long

latency operations and to reduce bandwidth
  Economical medium with fundamental BW limit
=> focus on eliminating unnecessary traffic

Oct-21-09 ECSE 420
Parallel Computing

Layered Perspective for SMP

Multipr ogramming Shar ed
addr ess

Message
passing

Data
parallel

Pr ogramming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication har dwar e
Physical communication medium

Har dwar e/softwar e boundary

Mem

P 1 P n
Conceptual
Picture

Oct-21-09 ECSE 420
Parallel Computing

Natural Extensions of Memory System

P 1
Switch

Main memory

P n

(Interleaved)

(Interleaved)

First-level $

P 1

$

Inter connection network

$

P n

Mem Mem

P 1

$

Inter connection network

$

P n

Mem Mem Shared Cache

Centralized Memory
Dance Hall, UMA

Distributed Memory (NUMA)

Scale

Oct-21-09 ECSE 420
Parallel Computing

Bus-Based Symmetric Shared Memory

  Dominate the server market
  Building blocks for larger systems; arriving to desktop

  Attractive as throughput servers and for parallel programs
  Fine-grain resource sharing
  Uniform access via loads/stores
  Automatic data movement and coherent replication in caches
  Cheap and powerful extension

  Normal uniprocessor mechanisms to access data
  Extension of memory hierarchy to support multiple processors

I/O devices Mem

P 1

$ $

P n

Bus

Oct-21-09 ECSE 420
Parallel Computing

Caches Critical for Performance
  Reduce average latency

  Automatic replication closer to
processor

  Reduce average bandwidth
  Data is logically transferred from

producer to consumer to memory
  store reg --> mem
  load reg <-- mem

P P P

•  What happens when store & load executed on different
processors?

•  Processors can share data
efficiently

Oct-21-09 ECSE 420
Parallel Computing

Example Cache Coherence Problem

  Processors see different values for u after event 3
  Write back caches: written back upon cache flushes or writes

  Processes accessing main memory may see very stale value

  Unacceptable to programs, and frequent!

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5
u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

Oct-21-09 ECSE 420
Parallel Computing

Caches and Cache Coherence
 Caches play key role in all cases

  Reduce average data access time
  Reduce bandwidth demands placed on shared interconnect

  Private processor caches create a problem
  Copies of a variable can be present in multiple caches
  A write by one processor may not become visible to others

 They’ll keep accessing stale value in their caches

=> Cache coherence problem

 What do we do about it?
  Organize the mem hierarchy to make it go away
  Detect and take actions to eliminate the problem

Oct-21-09 ECSE 420
Parallel Computing

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

  Reading an address should return the last value written
  Easy in uniprocessors

  Except for I/O

  Cache coherence problem in MPs is more pervasive and
more performance critical

Oct-21-09 ECSE 420
Parallel Computing

Snoopy Cache-Coherence Protocols

  Bus is a broadcast medium & Caches know their contents
  Cache Controller “snoops” transactions on the shared bus

  Relevant transaction if for a block it contains
  Take action to ensure coherence

  Invalidate, update, or supply value
  Depends on state of the block and the protocol

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Oct-21-09 ECSE 420
Parallel Computing

Example: Write-thru Invalidate

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5
u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

Oct-21-09 ECSE 420
Parallel Computing

Architectural Building Blocks
  Bus Transactions

  Fundamental system design abstraction
  Single set of wires connect several devices
  Bus protocol: arbitration, command/addr,

data
=> Every device observes every transaction

  Cache block state transition diagram
  FSM specifying how disposition of block

changes
  invalid, valid, dirty

Oct-21-09 ECSE 420
Parallel Computing

Design Choices
  Controller updates state of

blocks in response to
processor and snoop events
and generates bus
transactions

  Snoopy protocol
  Set of states
  State-transition diagram
  Actions

  Basic Choices
  Write-through vs Write-back
  Invalidate vs. Update

Snoop

State Tag Data

° ° °

Cache Controller

Processor
Ld/St

Oct-21-09 ECSE 420
Parallel Computing

Write-through Invalidate Protocol

  Two states per block in each cache
  As in uniprocessor
  State of a block is a p-vector of

states
  Hardware state bits associated with

blocks that are in the cache
  Other blocks can be seen as being

in invalid (not-present) state in that
cache

 Writes invalidate all other caches
  Can have multiple simultaneous

readers of block,but write
invalidates them

I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State Tag Data

I/O devices Mem

P 1

$ $

P n

Bus

State Tag Data

Oct-21-09 ECSE 420
Parallel Computing

Write-through vs. Write-back

  Write-through protocol is simple
  Every write is observable

  Every write goes on the bus
=> Only one write can take place at a time in any

processor

  Uses a lot of bandwidth!
Example: 200 MHz dual issue, CPI = 1, 15% stores of 8 bytes

=> 30 M stores per second per processor

=> 240 MB/s per processor

1GB/s bus can support only about 4
processors without saturating

Oct-21-09 ECSE 420
Parallel Computing

Invalidate vs. Update
  Basic question of program behavior:

  A block read by other processors before it is overwritten?

  Invalidate.
  yes: readers will take a miss
  no: multiple writes without addition traffic

  Also clears out copies that will not be used again

  Update.
  yes: avoids misses on later references
  no: multiple useless updates

  Appears wasteful

=> Need to look at program reference patterns and hw
complexity but first - correctness

Oct-21-09 ECSE 420
Parallel Computing

Remaining Topics

  Coherence vs. consistency
  Design Space of Snoopy-Cache

Coherence Protocols
  Write-back, update
  Protocol design
  Lower-level design choices

  Evaluation of protocol alternatives

Oct-21-09 ECSE 420
Parallel Computing

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model???

  Reading an address should return the last value
written to that address

  What does that mean in a multiprocessor?

Oct-21-09 ECSE 420
Parallel Computing

Coherence?
  Caches are supposed to be transparent

  What would happen if there were no caches?

  Every memory operation goes “to the memory location”
  May have multiple memory banks
  All operations on a particular location would be serialized

  All would see THE order

  Interleaving among accesses from different processors
  Within individual processor => program order
  Across processors => only constrained by explicit

synchronization

  Processor only observes state of memory system by
issuing memory operations!

Oct-21-09 ECSE 420
Parallel Computing

Definitions
  Memory operations: load, store, read-modify-write
  Issues

  Leaves processor and is presented to the memory
subsystem (caches, buffers, busses, DRAM, …)

  Performed with respect to a processor
  Write: subsequent reads return the value
  Read: subsequent writes cannot affect the value

  Coherent Memory System
  There is a serial order of memory operations s. t.

  Operations issued by a process appear in order issued
  Value returned by a read = previous write in serial order

=> write propagation + write serialization

Oct-21-09 ECSE 420
Parallel Computing

Is 2-state Protocol Coherent?
  Assume bus transactions and memory operations atomic, one-

level cache
  All phases of one bus transaction complete before next one starts
  Processor waits for mem. operation completion before issuing next
  With one-level cache, assume invalidations applied during bus

transaction

  All writes go to bus + atomicity
  Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

  How to insert reads in this order?
  Important since processors see writes through reads, so

determines whether write serialization is satisfied
  But read hits may happen independently and do not appear on bus

or enter directly in bus order

Oct-21-09 ECSE 420
Parallel Computing

Ordering Reads
  Read misses

  Appear on bus, and will “see” last write in bus order

  Read hits: do not appear on bus
  But value read was placed in cache by either

  Most recent write by this processor, or

  Most recent read miss by this processor

  Both these transactions appeared on the bus

  So read hits also see values as produced bus
order

Oct-21-09 ECSE 420
Parallel Computing

Determining Order More Generally

 mem op M2 is subsequent to mem op M1 (M2 >> M1) if
 the operations are issued by the same processor and
 M2 follows M1 in program order.

 read R >> write W if
 read generates bus transaction that follows that for W.

 write W >> read or write M if
 M generates bus transaction and the transaction for W follows

that for M.
 write W >> read R if

 read R does not generate a bus transaction and
  is not already separated from write W by another bus

transaction."

Oct-21-09 ECSE 420
Parallel Computing

Ordering

  Writes establish a partial order
  Doesn’t constrain ordering of reads, though bus will

order read misses too
–  Any order among reads between writes is fine, as long

as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

Oct-21-09 ECSE 420
Parallel Computing

Write-Through vs Write-Back
  Write-thru requires high bandwidth

  Write-back caches absorb most writes as cache hits
=> Write hits don’t go on bus

  But now how do we ensure write propagation and
serialization?

  Need more sophisticated protocols: large design
space

  But first, let’s understand other ordering issues

Oct-21-09 ECSE 420
Parallel Computing

Setup for Mem. Consistency
  Coherence => Writes to a single location

become visible to all in the same order
  But when does a write become visible?

  How do we establish orders between a write and
a read by different procs?
–  use event synchronization

–  Typically use more than one location!

Oct-21-09 ECSE 420
Parallel Computing

Example: Consistency Issue

  Intuition not guaranteed by coherence
  Expect memory to respect order between accesses to

different locations issued by a given process
  Preserve orders among accesses to same location by

different processes

  Coherence is not enough!
  Pertains only to single location

P 1 P 2
/*Assume initial value of A and ag is 0*/

A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Mem

P 1 P n

Conceptual
Picture

Oct-21-09 ECSE 420
Parallel Computing

Another Example of Ordering?

  What’s the intuition?
  Whatever it is, we need an ordering model for clear semantics

  Across different locations as well
  Goal: programmers can reason about what results are

possible

  This is the memory consistency model

P 1 P 2
/*Assume initial values of A and B are 0*/

(1a) A = 1; (2a) print B;
(1b) B = 2; (2b) print A;

Oct-21-09 ECSE 420
Parallel Computing

Memory Consistency Model
  Specifies constraints on the order in which memory

operations (from any process) can appear to execute with
respect to one another
  What orders are preserved?
  Given a load, constrains the possible values returned by it

  Without it, can’t tell much about an SAS program’s
execution

  Implications for both programmer and system designer
  Programmer uses to reason about correctness and results
  System designer can use to constrain how much accesses

can be reordered by compiler or hardware

  Contract between programmer and system

Oct-21-09 ECSE 420
Parallel Computing

Sequential Consistency

  Total order achieved by interleaving accesses from
processes
  Maintains program order, and memory operations, from all

processes, appear [issue, execute, complete] atomica
  as if there were no caches, and a single memory

Processors
issuing memory
references as
per program or der

P1 P2 Pn

Memory

The “switch” is randomly
set after each memory
reference

 “A multiprocessor is sequentially consistent if
the result of any execution is the same as if the
operations of all the processors were executed
in some sequential order, and the operations of
each individual processor appear in this
sequence in the order specified by its
program.” [Lamport, 1979]

Oct-21-09 ECSE 420
Parallel Computing

What Really is Program Order?

  Intuitively, order in which operations appear
in source code
  Straightforward translation of source code to

assembly
  At most one memory operation per instruction

  But not the same as order presented to
hardware by compiler

  So which is program order?
  Depends on which layer, and who’s reasoning

  We assume order as seen by programmer

Oct-21-09 ECSE 420
Parallel Computing

SC Example

  What matters is order in which operations appear to execute
  Possible outcomes for (A,B): (0,0), (1,0), (1,2)
  What about (0,2) ?

  program order => 1a->1b and 2a->2b
  A = 0 implies 2b->1a, which implies 2a->1b
  B = 2 implies 1b->2a, which leads to a contradiction

  What is actual execution 1b->1a->2b->2a ?
  appears just like 1a->1b->2a->2b as visible from results
  actual execution 1b->2a->2b->1a is not

P 1 P 2
/*Assume initial values of A and B are 0*/

(1a) A = 1; (2a) print B;
(1b) B = 2; (2b) print A; A=0

B=2

Oct-21-09 ECSE 420
Parallel Computing

Implementing SC
  Two kinds of requirements

  Program order
  memory operations issued by a process must appear

to execute (become visible to others and itself) in
program order

  Atomicity
  in the overall hypothetical total order, one memory

operation should appear to complete with respect to
all processes before the next one is issued

  guarantees that total order is consistent across
processes

  Hard part is making writes atomic

Oct-21-09 ECSE 420
Parallel Computing

Write-back Caches
  2 processor operations

  PrRd, PrWr

  3 states
  invalid, valid (clean), modified (dirty)
  ownership: who supplies block

  2 bus transactions:
  read (BusRd), write-back (BusWB)
  only cache-block transfers

=> treat Valid as “shared” and Modified as
“exclusive”

=> introduce one new bus transaction
  read-exclusive: read for purpose of

modifying (read-to-own)

PrRd/—

PrRd/—
PrW r/BusRd

BusRd/—

PrW r/—

V

M

I

Replace/BusWB

PrW

PrRd/BusRd

Replace/-

Oct-21-09 ECSE 420
Parallel Computing

MSI Invalidate Protocol
  Read obtains block in

“shared”
  even if only cache copy

  Obtain exclusive ownership
before writing
  BusRdx causes others to

invalidate (demote)
  If M in another cache, flush
  BusRdx even if hit in S

  promote to M (upgrade)

  What about replacement?
  S->I, M->I as before

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd

Oct-21-09 ECSE 420
Parallel Computing

Example: Write-Back Protocol

I/O devices

Memory

u :5

P0 P1 P4 PrRd U

U S 5

BusRd U

PrRd U

BusRd U

U S 5

PrWr U 7

U M 7

BusRdx U

PrRd U

U S 7 U S 7

7

BusRd

Flush

Oct-21-09 ECSE 420
Parallel Computing

Correctness

  When is write miss performed?
  How does writer “observe” write?
  How is it “made visible” to others?
  How do they “observe” the write?

  When is write hit made visible?

Oct-21-09 ECSE 420
Parallel Computing

Write Serialization for Coherence
  Writes that appear on the bus (BusRdX) are ordered by bus

  performed in writer’s cache before other transactions, so
ordered same w.r.t. all processors (incl. writer)

  Read misses also ordered wrt these

  Write that don’t appear on the bus:
  P issues BusRdX B.
  further mem operations on B until next transaction are from P

  read and write hits
  these are in program order

  for read or write from another processor
  separated by intervening bus transaction

  Reads hits?

Oct-21-09 ECSE 420
Parallel Computing

Sequential Consistency
  Bus imposes total order on bus xactions for all locations

  Between xactions, procs perform reads/writes (locally) in
program order

  So any execution defines a natural partial order
  Mj subsequent to Mi if

  (I) follows in program order on same processor,
  (ii) Mj generates bus xaction that follows the memory

operation for Mi

  In segment between two bus transactions, any interleaving
of local program orders leads to consistent total order

  w/i segment writes observed by proc P serialized as:
  Writes from other processors by previous bus xaction P issued
  Writes from P by program order

Oct-21-09 ECSE 420
Parallel Computing

Sufficient conditions
Issued in program order
After write issues, the issuing process waits for the write to

complete before issuing next memory operation
After read is issued, the issuing process waits for the read to

complete and for the write whose value is being returned
to complete (globally) before issuing its next operation

  Write completion

  can detect when write appears on bus

  Write atomicity:
  if a read returns the value of a write, that write has already

become visible to all others already

Oct-21-09 ECSE 420
Parallel Computing

Lower-level Protocol Choices
  BusRd observed in M state: what transitition to make?

  M ----> I
  M ----> S

  Depends on expectations of access patterns

  How does memory know whether or not to supply data
on BusRd?

  Problem: Read/Write is 2 bus xactions, even if no
sharing

  BusRd (I->S) followed by BusRdX or BusUpgr (S->M)

  What happens on sequential programs?

Oct-21-09 ECSE 420
Parallel Computing

MESI Invalidation Protocol
  Add exclusive state

  Distinguish exclusive (writable) and owned (written)
  Main memory is up to date, so cache not necessarily

owner
  Can be written locally

  States
  invalid
  exclusive or exclusive-clean (only this cache has copy, but

not modified)
  shared (two or more caches may have copies)
  modified (dirty)

  I -> E on PrRd if no cache has copy
=> How can you tell?

Oct-21-09 ECSE 420
Parallel Computing

Hardware Support for MESI

 All cache controllers snoop on BusRd
 Assert ‘shared’ if present (S? E? M?)
  Issuer chooses between S and E

  how does it know when all have voted?

I/O devices

Memory

u :5

P0 P1 P4

shared signal
 - wired-OR

Oct-21-09 ECSE 420
Parallel Computing

MESI State Transition Diagram

  BusRd(S) means shared
line asserted on BusRd
transaction

  Flush’: if cache-to-cache
xfers
  only one cache flushes data

  MOESI protocol: Owned
state: exclusive but
memory not valid

PrW r/—

BusRd/Flush

PrRd/

BusRdX/Flush

PrW r/BusRdX

PrW r/—

PrRd/—

PrRd/—
BusRd/Flush’ ʹ′

E

M

I

S

PrRd

BusRd(S)

BusRdX/Flush’ ʹ′

BusRdX/Flush
BusRd/
Flush

PrW r/BusRdX

PrRd/
BusRd (S)

Oct-21-09 ECSE 420
Parallel Computing

Lower-level Protocol Choices
  Who supplies data on miss when not M state: memory or cache?

  Original, lllinois MESI: cache, since assumed faster than memory
  Not true in modern systems

  Intervening in another cache more expensive than getting from
memory

  Cache-to-cache sharing adds complexity
  How does memory know it should supply data (must wait for caches)
  Selection algorithm if multiple caches have valid data

  Valuable for cache-coherent machines with distributed memory
  May be cheaper to obtain from nearby cache than distant memory,

Especially when constructed out of SMP nodes (Stanford DASH)

Oct-21-09 ECSE 420
Parallel Computing

Update Protocols

  If data is to be communicated
between processors, invalidate
protocols seem inefficient

  Consider shared flag
  p0 waits for it to be zero, then does work

and sets it one
  p1 waits for it to be one, then does work

and sets it zero

  How many transactions?

Oct-21-09 ECSE 420
Parallel Computing

Dragon Write-back Update
Protocol

  4 states
  Exclusive-clean or exclusive (E): I and memory have it

  Shared clean (Sc): I, others, and maybe memory, but I’m not owner
  Shared modified (Sm): I and others but not memory, and I’m owner

  Sm and Sc can coexist in different caches, with only one Sm

  Modified or dirty (D): I and, noone else

  No invalid state
  If in cache, cannot be invalid
  If not present in cache, view as being in not-present or invalid state

  New processor events: PrRdMiss, PrWrMiss
  Introduced to specify actions when block not present in cache

  New bus transaction: BusUpd
  Broadcasts single word written on bus; updates relevant caches

Oct-21-09 ECSE 420
Parallel Computing

Dragon State Transition Diagram

E Sc

Sm M

PrW r/—
PrRd/—

PrRd/—

PrRd/—

PrRdMiss/BusRd(S) PrRdMiss/BusRd(S)
PrW r/—

PrW rMiss/(BusRd(S); BusUpd) PrW rMiss/BusRd(S)

PrW r/BusUpd(S)

PrW r/BusUpd(S)

BusRd/—

BusRd/Flush

PrRd/— BusUpd/Update

BusUpd/Update

BusRd/Flush

PrW r/BusUpd(S)

PrW r/BusUpd(S)

Oct-21-09 ECSE 420
Parallel Computing

Lower-level Protocol Choices
  Can shared-modified state be eliminated?

  If update memory as well on BusUpd transactions (DEC
Firefly)

  Dragon protocol doesn’t (assumes DRAM slow to update)

  Should replacement of an Sc block be broadcast?
  Would allow last copy to go to E state and no updates sent
  Replacement bus transaction is not in critical path, later

update may be

  Can local copy be updated on write hit before controller
gets bus?
  Can mess up serialization

  Coherence, consistency much like write-through case

Oct-21-09 ECSE 420
Parallel Computing

Assessing Protocol Tradeoffs

  Tradeoffs affected by technology
characteristics and design complexity

  Part art and part science
  Art: experience, intuition and aesthetics

of designers
  Science: Workload-driven evaluation for

cost-performance
  want a balanced system: no expensive

resource heavily underutilized Break?

Oct-21-09 ECSE 420
Parallel Computing

Bandwidth per transition

Bus Transaction Address / Cmd Data

BusRd 6 64

BusRdX 6 64

BusWB 6 64

BusUpgd 6 --

 NP I E S M

NP 0 0 1.25 0.96 0.001

I 0.64 0 0 1.87 0.001

E 0.20 0 14.00 0.0 2.24

S 0.42 2.50 0 134.72 2.24

M 2.63 0.00 0 2.30 843.57

Ocean Data Cache Frequency Matrix (per 1000)

PrW r/—

BusRd/Flush

PrRd/

BusRdX/Flush

PrW r/BusRdX

PrW r/—

PrRd/—

PrRd/—
BusRd/Flush’ ʹ′

E

M

I

S

PrRd

BusRd(S)

BusRdX/Flush’ ʹ′

BusRdX/Flush
BusRd/
Flush

PrW r/BusRdX

PrRd/
BusRd (S)

Oct-21-09 ECSE 420
Parallel Computing

Miss Classification
Miss Classi?cation

reason
for miss

?rst reference to
memory block by PE

?rst access
system wide

yes

no

written
before

yes

no

modi?ed
word(s) accessed
during lifetime

yes

no

1. pure-cold

2. cold

4. cold-

3. cold-
false-sharing

true-sharing

reason for
elimination of

last copy
replacement

invalidation

old copy
with state=invalid

still there?
yesno

8. pure-7. pure-6. inval-cap-
true-sharing

5. inval-cap-
false-sharing

modi?ed
word(s) accessed
during lifetime

modi?ed
word(s) accessed
during lifetime

yesno yesno

false-sharing true-sharing

other

has block
been modi?ed since

replacement
yes no

12. capacity-11. pure-10. cap-inval-
true-sharing

9. cap-inval-
false-sharing

modi?ed
word(s) accessed
during lifetime

modi?ed
word(s) accessed
during lifetime

yesno yesno

capacity true-sharing

modified word accessed during lifetime
means access to word(s) within a block
that have been modified since the last
“essential” (4,6,8,10,12) miss to this
block by this processor

Oct-21-09 ECSE 420
Parallel Computing

Update versus Invalidate
  Much debate over the years: depends on sharing patterns
  Intuition:

  If those that used continue to use, and writes between use are few,
update should do better
  e.g. producer-consumer pattern

  If those that use unlikely to use again, or many writes between
reads, updates not good
  “pack rat” phenomenon particularly bad under process migration
  useless updates where only last one will be used

  Can construct scenarios where one or other is much better
  Can combine them in hybrid schemes (see text)

  E.g. competitive: observe patterns at runtime and change protocol

Oct-21-09 ECSE 420
Parallel Computing

Update vs Invalidate: Miss Rates

  Lots of coherence misses: updates help

  Lots of capacity misses: updates hurt (keep data in cache uselessly)
  Updates seem to help, but this ignores upgrade and update traffic

M
i
s
s

r
a
t
e

(
%
)

M
i
s
s

r
a
t
e

(
%
)

L
U
/
i
n
v

L
U
/
u
p
d

O
c
e
a
n
/
i
n
v

O
c
e
a
n
/
m
i
x

O
c
e
a
n
/
u
p
d

R
a
y
t
r
a
c
e
/
i
n
v

R
a
y
t
r
a
c
e
/
u
p
d

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Cold

Capacity

True sharing

False sharing

R
a
d
i
x
/
i
n
v

R
a
d
i
x
/
m
i
x

R
a
d
i
x
/
u
p
d

0.00

0.50

1.00

1.50

2.00

2.50

Oct-21-09 ECSE 420
Parallel Computing

Upgrade and Update Rates (Traffic)

  Update traffic is substantial
  Main cause is multiple writes by a

processor before a read by other
  many bus transactions versus

one in invalidation case
  could delay updates or use

merging

  Overall, trend is away from
update based protocols as default
  bandwidth, complexity, large

blocks trend, pack rat for
process migration

  Will see that updates have greater
problems for scalable systems

LU/inv

LU/upd

Ocean/inv

Upgrade/update rate (%)

Upgrade/update rate (%)

Ocean/mix

Ocean/upd

Raytrace/inv

Raytrace/upd

0
.
0
0

0
.
5
0

1
.
0
0

1
.
5
0

2
.
0
0

2
.
5
0

Radix/inv

Radix/mix

Radix/upd

0
.
0
0

1
.
0
0

2
.
0
0

3
.
0
0

4
.
0
0

5
.
0
0

6
.
0
0

7
.
0
0

8
.
0
0

