
Shared Memory 
Multiprocessors 

Zeljko Zilic 
McConnell Engineering Building 
Room 546 



Oct-21-09 ECSE 420 
Parallel Computing 

Recap: Performance Trade-offs 
  Programmer’s View of Performance 

  Different goals often have conflicting demands 
  Load Balance 

  Fine-grain tasks, random or dynamic assignment 

  Communication 
  Coarse grain tasks, decompose to obtain locality 

  Extra Work 
  Coarse grain tasks, simple assignment 

  Communication Cost: 
  Big transfers: amortize overhead and latency 
  Small transfers: reduce contention 

Sequential Work 
Max (Work + Synch Wait Time + Comm Cost + Extra Work) 

Speedup   < 
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Recap (cont) 
 Architecture View 

 Cannot solve load imbalance or eliminate 
inherent communication 

 But can: 
 Reduce incentive for creating ill-behaved 

programs  
 Efficient naming, communication and 

synchronization 
 Reduce artifactual communication 
 Provide efficient naming for flexible assignment 
 Allow effective overlapping of communication  
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Artifactual Communication 

  Accesses not satisfied locally cause “communication” 
  Inherent comm. (implicit or explicit) causes transfers 

  Determined by program 

    Artifactual communication 
  Determined by program/architecture interaction 
  Poor allocation of data across distributed memories 
  Unnecessary data in a transfer 
  Unnecessary transfers due to system granularities 
  Redundant communication of data 
  Finite replication capacity (in cache or main memory) 

  Inherent communication: unlimited capacity, small 
transfers, and perfect knowledge of what is needed.   
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Uniprocessor View 
  Performance depends heavily on memory 

hierarchy 
 Managed by hardware 
  Time spent by a program 

  Timeprog(1) = Busy(1) + Data Access(1) 
  Divide by cycles to get CPI equation 

 Data access time can be reduced by: 
    Optimizing machine 

 Bigger caches, lower latency... 

    Optimizing program 
 Temporal and spatial locality 

B u s y - u s e f u l 
D a t a - l o c a l 
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Same Processor-Centric Perspective 

P 0 P 1 P 2 P 3 

B u s y - o v e r h e a d B u s y - u s e f u l 
D a t a - l o c a l 

S y n c h r o n i z a t i o n 
D a t a - r e m o t e 
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( a ) S e q u e n t i a l e s s o r s ( b ) P a r a l l e l w i t h f o u r p r o c 
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What is a Multiprocessor? 
 A collection of communicating processors 

  Goals: balance load, reduce inherent communication and 
extra work 

 A multi-cache, multi-memory system 
  Role of these components essential regardless of  

programming model 
  Prog. model  and comm. abstr. affect specific performance 

tradeoffs 

P P P 

P P P 

... 

... 
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Relating Perspectives 

Synch wait

Data-remote

Data-localOrchestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Orchestration/
mapping

Load imbalance and 
synchronization

Inherent 
communication 
volume

Artifactual 
communication 
and data locality

Communication 
structure

Busy(1) + Data(1) 
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p) 

Speedup < 
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Back to Basics – Small SMP 
  Parallel Architecture = Computer Arch. + Comm. Arch. 
  Small-scale shared memory 

  Extend the memory system to support multiple processors 
  Good for multiprogramming throughput and parallel computing 
  Allows fine-grain sharing of resources 

  Naming & synchronization 
  Communication is implicit in store/load of shared address 
  Synchronization is performed by operations on shared addresses 

  Latency & Bandwidth 
  Utilize the normal migration within the storage to avoid long 

latency operations and to reduce bandwidth 
  Economical medium with fundamental BW limit 
=> focus on eliminating unnecessary traffic 
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Layered Perspective for SMP 

Multipr ogramming Shar ed 
addr ess 

Message 
passing 

Data 
parallel 

Pr ogramming models 

Communication abstraction 
User/system boundary 

Compilation 
or library 

Operating systems support 

Communication har dwar e 
Physical communication medium 

Har dwar e/softwar e boundary 

Mem 

P 1 P n 
Conceptual  
Picture 
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Natural Extensions of Memory System 

P 1 
Switch 

Main memory 

P n 

(Interleaved) 

(Interleaved) 

First-level $ 

P 1 

$ 

Inter connection network 

$ 

P n 

Mem Mem 

P 1 

$ 

Inter connection network 

$ 

P n 

Mem Mem Shared Cache 

Centralized Memory 
Dance Hall, UMA 

Distributed Memory (NUMA) 

Scale 
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Bus-Based Symmetric Shared Memory 

  Dominate the server market 
  Building blocks for larger systems; arriving to desktop 

  Attractive as throughput servers and for parallel programs 
  Fine-grain resource sharing 
  Uniform access via loads/stores 
  Automatic  data movement and coherent replication in caches 
  Cheap and powerful extension 

  Normal uniprocessor mechanisms to access data 
  Extension of memory hierarchy to support multiple processors 

I/O devices Mem 

P 1 

$ $ 

P n 

Bus 
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Caches Critical for Performance 
  Reduce average latency 

  Automatic replication closer to 
processor 

  Reduce average bandwidth 
  Data is logically transferred from 

producer to consumer to memory 
  store reg --> mem 
  load  reg <-- mem 

P P P 

•  What happens when store & load executed  on different 
processors? 

•  Processors can share data 
efficiently 
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Example Cache Coherence Problem 

  Processors see different values for u after event 3 
  Write back caches: written back upon cache flushes or writes 

  Processes accessing main memory may see very stale value 

  Unacceptable to programs, and frequent! 

I/O devices 

Memory 

P 1 

$ $ $ 

P 2 P 3 

5 
u  = ? 

4 

u  = ? 

u  :5 
1 

u  :5 

2 

u  :5 

3 

u  = 7 



Oct-21-09 ECSE 420 
Parallel Computing 

Caches and Cache Coherence 
 Caches play key role in all cases 

  Reduce average data access time 
  Reduce bandwidth demands placed on shared interconnect 

  Private processor caches create a problem 
  Copies of a variable can be present in multiple caches  
  A write by one processor may not become visible to others 

 They’ll keep accessing stale value in their caches 

=> Cache coherence problem 

 What do we do about it? 
  Organize the mem hierarchy to make it go away  
  Detect and take actions to eliminate the problem 
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Intuitive Memory Model 

  Reading an address should return the last value written 
  Easy in uniprocessors 

  Except for I/O 

  Cache coherence problem in MPs is more pervasive and 
more performance critical 
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Snoopy Cache-Coherence Protocols 

  Bus is a broadcast medium & Caches know their contents 
  Cache Controller “snoops” transactions on the shared bus 

  Relevant transaction if for a block it contains 
  Take action to ensure coherence 

  Invalidate, update, or supply value 
  Depends on state of the block and the protocol 

State 
Address 
Data 

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction
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Example: Write-thru Invalidate 

I/O devices 

Memory 
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Architectural Building Blocks 
  Bus Transactions 

  Fundamental system design abstraction 
  Single set of wires connect several devices 
  Bus protocol: arbitration, command/addr, 

data 
=> Every device observes every transaction 

  Cache block state transition diagram 
  FSM specifying how disposition of block 

changes 
  invalid, valid, dirty 
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Design Choices 
  Controller updates state of 

blocks in response to 
processor and snoop events 
and generates bus 
transactions 

  Snoopy protocol 
  Set of states 
  State-transition diagram 
  Actions 

  Basic Choices 
  Write-through vs Write-back 
  Invalidate vs. Update 

Snoop 

State  Tag   Data 

° ° ° 

Cache Controller 

Processor 
Ld/St 
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Write-through Invalidate Protocol 

  Two states per block in each cache 
  As in uniprocessor 
  State of a block is a p-vector of 

states 
  Hardware state bits associated with 

blocks that are in the cache  
  Other blocks can be seen as being 

in invalid (not-present) state in that 
cache 

 Writes invalidate all other caches 
  Can have multiple simultaneous 

readers of block,but write 
invalidates them 

I 

V 
BusWr / - 

PrRd/ -- 
PrWr / BusWr 

PrWr / BusWr 

PrRd / BusRd 

State  Tag   Data 

I/O devices Mem 

P 1 

$ $ 

P n 

Bus 

State  Tag   Data 
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Write-through vs. Write-back 

  Write-through protocol is simple 
  Every write is observable 

  Every write goes on the bus 
=> Only one write can take place at a time in any 

processor 

  Uses a lot of bandwidth! 
Example: 200 MHz dual issue, CPI = 1, 15% stores of 8 bytes 

=> 30 M stores per second per processor 

=> 240 MB/s per processor 

1GB/s bus can support only about 4 
processors without saturating 
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Invalidate vs. Update 
  Basic question of program behavior: 

  A block read by other processors before it is overwritten? 

  Invalidate.   
  yes: readers will take a miss 
  no: multiple writes without addition traffic 

  Also clears out copies that will not be used again 

  Update.   
  yes: avoids misses on later references 
  no: multiple useless updates 

  Appears wasteful 

=> Need to look at program reference patterns and hw 
complexity      but first - correctness 



Oct-21-09 ECSE 420 
Parallel Computing 

Remaining Topics 

  Coherence vs. consistency 
  Design Space of Snoopy-Cache 

Coherence Protocols 
  Write-back, update 
  Protocol design 
  Lower-level design choices 

  Evaluation of protocol alternatives 
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Intuitive Memory Model??? 

  Reading an address should return the last value 
written to that address 

  What does that mean in a multiprocessor? 
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Coherence? 
  Caches are supposed to be transparent 

  What would happen if there were no caches? 

  Every memory operation goes “to the memory location” 
  May have multiple memory banks 
  All operations on a particular location would be serialized 

  All would see THE order 

  Interleaving among accesses from different processors 
  Within individual processor => program order 
  Across processors => only constrained by explicit 

synchronization 

  Processor only observes state of memory system by 
issuing memory operations! 
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Definitions 
  Memory operations: load, store, read-modify-write 
  Issues 

  Leaves processor and is presented to the memory 
subsystem (caches, buffers, busses, DRAM, …) 

  Performed with respect to a processor 
  Write: subsequent reads return the value 
  Read: subsequent writes cannot affect the value 

  Coherent Memory System 
  There is a serial order of memory operations s. t. 

  Operations issued by a process appear in order issued 
  Value returned by a read = previous write in serial order 

=> write propagation + write serialization 
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Is 2-state Protocol Coherent? 
  Assume bus transactions and memory operations atomic, one-

level cache 
  All phases of one bus transaction complete before next one starts 
  Processor waits for mem. operation completion before issuing next 
  With one-level cache, assume invalidations applied during bus 

transaction 

  All writes go to bus + atomicity 
  Writes serialized by order in which they appear on bus (bus order) 
=> invalidations applied to caches in bus order 

  How to insert reads in this order? 
  Important since processors see writes through reads, so 

determines whether write serialization is satisfied 
  But read hits may happen independently and do not appear on bus 

or enter directly in bus order 
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Ordering Reads 
  Read misses 

  Appear on bus, and will “see” last write in bus order 

  Read hits: do not appear on bus 
  But value read was placed in cache by either 

  Most recent write by this processor, or 

  Most recent read miss by this processor 

  Both these transactions appeared on the bus 

  So read hits also see values as produced bus 
order 
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Determining Order More Generally 

 mem op M2 is subsequent to mem op M1  (M2 >> M1)  if  
 the operations are issued by the same processor and  
 M2 follows M1 in program order.  

 read R >> write W if  
 read generates bus transaction that follows that for W. 

 write W >> read or write M if   
 M generates bus transaction and the transaction for W follows 

that for M. 
 write W >> read R if  

 read R does not generate a bus transaction and  
  is not already separated from write W by another bus 

transaction."
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Ordering 

  Writes establish a partial order 
  Doesn’t constrain ordering of reads, though bus will 

order read misses too 
–  Any order among reads between writes is fine, as long 

as in program order 

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:
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Write-Through vs Write-Back 
  Write-thru requires high bandwidth 

  Write-back caches absorb most writes as cache hits 
=> Write hits don’t go on bus 

  But now how do we ensure write propagation and 
serialization? 

  Need more sophisticated protocols: large design 
space 

  But first, let’s understand other ordering issues 
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Setup for Mem. Consistency 
  Coherence => Writes to  a single location 

become visible to all in the same order 
  But when does a write become visible? 

  How do we establish orders between a write and 
a read by different procs? 
–  use event synchronization 

–  Typically  use more than one location! 
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Example: Consistency Issue 

  Intuition not guaranteed by coherence 
  Expect memory to respect order between accesses to 

different locations issued by a given process 
  Preserve orders among accesses to same location by 

different processes 

  Coherence is not enough! 
  Pertains only to single location 

P 1 P 2 
/*Assume initial value of A and  ag is 0*/ 

A = 1; while (flag == 0);  /*spin idly*/ 
flag = 1; print A; 

Mem 

P 1 P n 

Conceptual  
Picture 
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Another Example of Ordering? 

  What’s the intuition? 
  Whatever it is, we need an ordering model for clear semantics 

  Across different locations as well 
  Goal: programmers can reason about what results are 

possible 

    This is the memory consistency model 

P 1 P 2 
/*Assume initial values of A and B are  0*/ 

(1a) A = 1; (2a) print B; 
(1b) B = 2; (2b) print A; 
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Memory Consistency Model 
  Specifies constraints on the order in which memory 

operations (from any process) can appear to execute with 
respect to one another 
  What orders are preserved? 
  Given a load, constrains the possible values returned by it 

  Without it, can’t tell much about an SAS program’s 
execution 

  Implications for both programmer and system designer 
  Programmer uses to reason about correctness and results 
  System designer can use to constrain how much accesses 

can be reordered by compiler or hardware 

  Contract between programmer and system 
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Sequential Consistency 

  Total order achieved by interleaving accesses from 
processes 
  Maintains program order, and memory operations, from all 

processes, appear [issue, execute, complete] atomica 
  as if there were no caches, and a single memory 

Processors 
issuing memory 
references as 
per program or der

P1 P2 Pn

Memory

The “switch” is randomly 
set after each memory
reference

 “A multiprocessor is sequentially consistent if 
the result of any execution is the same as if the 
operations of all the processors were executed 
in some sequential order, and the operations of 
each individual processor appear in this 
sequence in the order specified by its 
program.” [Lamport, 1979] 
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What Really is Program Order? 

  Intuitively, order in which operations appear 
in source code 
  Straightforward translation of source code to 

assembly 
  At most one memory operation per instruction 

  But not the same as order presented to 
hardware by compiler 

  So which is program order? 
  Depends on which layer, and who’s reasoning 

  We assume order as seen by programmer 
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SC Example 

  What matters is order in which operations appear to execute 
  Possible outcomes for (A,B): (0,0), (1,0), (1,2) 
  What about (0,2) ? 

  program order => 1a->1b and 2a->2b 
  A = 0 implies 2b->1a, which implies 2a->1b 
  B = 2 implies 1b->2a, which leads to a contradiction 

  What is actual execution 1b->1a->2b->2a ? 
  appears just like 1a->1b->2a->2b as visible from results 
  actual execution 1b->2a->2b->1a is not 

P 1 P 2 
/*Assume initial values of A and B are 0*/ 

(1a) A = 1; (2a) print B; 
(1b) B = 2; (2b) print A; A=0 

B=2 
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Implementing SC 
  Two kinds of requirements 

  Program order 
  memory operations issued by a process must appear 

to execute (become visible to others and itself) in 
program order 

  Atomicity 
  in the overall hypothetical total order, one memory 

operation should appear to complete with respect to 
all processes before the next one is issued 

  guarantees that total order is consistent across 
processes  

  Hard part is making writes atomic 
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Write-back Caches 
  2 processor operations 

  PrRd, PrWr 

  3 states 
  invalid, valid (clean), modified (dirty) 
  ownership: who supplies block 

  2 bus transactions:  
  read (BusRd), write-back (BusWB) 
  only cache-block transfers 

=> treat Valid as “shared” and Modified as 
“exclusive” 

=> introduce one new bus transaction 
  read-exclusive: read for purpose of 

modifying (read-to-own) 

PrRd/— 

PrRd/— 
PrW r/BusRd 

BusRd/— 

PrW r/— 

V 

M 

I 

Replace/BusWB 

PrW 

PrRd/BusRd 

Replace/- 
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MSI Invalidate Protocol 
  Read obtains block in 

“shared” 
  even if only cache copy 

  Obtain exclusive ownership 
before writing 
  BusRdx causes others to 

invalidate (demote) 
  If M in another cache, flush 
  BusRdx even if hit in S 

  promote to M (upgrade) 

  What about replacement? 
  S->I, M->I as before 

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd
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Example: Write-Back Protocol 

I/O devices 

Memory 

u  :5 

P0 P1 P4 PrRd U 

U S 5 

BusRd U 

PrRd U 

BusRd U 
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PrWr U 7 

U M 7 

BusRdx U 

PrRd U 

U S 7 U S 7 
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BusRd 

Flush 
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Correctness 

  When is write miss performed?   
  How does writer “observe” write? 
  How is it “made visible” to others? 
  How do they “observe” the write? 

  When is write hit made visible? 
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Write Serialization for Coherence 
  Writes that appear on the bus (BusRdX) are ordered by bus 

  performed in writer’s cache before other transactions, so 
ordered same w.r.t. all processors (incl. writer) 

  Read misses also ordered wrt these 

  Write that don’t appear on the bus: 
  P issues BusRdX B. 
  further mem operations on B until next transaction are from P 

  read and write hits 
  these are in program order 

  for read or write from another processor 
  separated by intervening bus transaction 

  Reads hits? 
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Sequential Consistency 
  Bus imposes total order on bus xactions for all locations 

  Between xactions, procs perform reads/writes (locally) in 
program order 

  So any execution defines a natural partial order 
  Mj subsequent to Mi if  

  (I) follows in program order on same processor,  
  (ii) Mj generates bus xaction that follows the memory 

operation for Mi 

  In segment between two bus transactions, any interleaving 
of local program orders leads to consistent total order 

  w/i segment writes observed by proc P serialized as: 
  Writes from other processors by previous bus xaction P issued 
  Writes from P by program order 
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Sufficient conditions 
Issued in program order 
After write issues, the issuing process waits for the write to 

complete before issuing next memory operation 
After read is issued, the issuing process waits for the read to 

complete and for the write whose value is being returned 
to complete (globally) before issuing its next operation 

  Write completion 

   can detect when write appears on bus 

  Write atomicity:  
  if a read returns the value of a write, that write has already 

become visible to all others already 
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Lower-level Protocol Choices 
  BusRd observed in M state: what transitition to make? 

  M ----> I 
  M ----> S 

  Depends on expectations of access patterns 

  How does memory know whether or not to supply data 
on BusRd? 

  Problem: Read/Write is 2 bus xactions, even if no 
sharing 

  BusRd (I->S) followed by BusRdX or BusUpgr (S->M) 

  What happens on sequential programs? 
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MESI Invalidation Protocol 
  Add exclusive state 

  Distinguish exclusive (writable) and owned (written) 
  Main memory is up to date, so cache not necessarily 

owner 
  Can be written locally 

  States 
  invalid 
  exclusive or exclusive-clean (only this cache has copy, but 

not modified) 
  shared (two or more caches may have copies) 
  modified (dirty) 

  I -> E on PrRd if no cache has copy 
=> How can you tell? 
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Hardware Support for MESI 

 All cache controllers snoop on BusRd 
 Assert ‘shared’ if present (S? E? M?) 
  Issuer chooses between S and E 

  how does it know when all have voted? 

I/O devices 

Memory 

u  :5 

P0 P1 P4 

shared signal 
 - wired-OR 
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MESI State Transition Diagram 

  BusRd(S) means shared 
line asserted on BusRd 
transaction 

  Flush’: if cache-to-cache 
xfers 
  only one cache flushes data 

  MOESI protocol: Owned 
state: exclusive but 
memory not valid 

PrW r/— 

BusRd/Flush 

PrRd/  

BusRdX/Flush 

PrW r/BusRdX 

PrW r/— 

PrRd/— 

PrRd/— 
BusRd/Flush’ ʹ′ 

E 

M 

I 

S 

PrRd 

BusRd(S) 

BusRdX/Flush’ ʹ′ 

BusRdX/Flush 
BusRd/ 
Flush 

PrW r/BusRdX 

PrRd/ 
BusRd (S )  
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Lower-level Protocol Choices 
  Who supplies data on miss when not M state: memory or cache? 

  Original, lllinois MESI: cache, since assumed faster than memory 
  Not true in modern systems 

  Intervening in another cache more expensive than getting from 
memory 

  Cache-to-cache sharing adds complexity 
  How does memory know it should supply data (must wait for caches) 
  Selection algorithm if multiple caches have valid data 

  Valuable for cache-coherent machines with distributed memory 
  May be cheaper to obtain from nearby cache than distant memory, 

Especially when constructed out of SMP nodes (Stanford DASH) 
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Update Protocols 

  If data is to be communicated 
between processors, invalidate 
protocols seem inefficient 

  Consider shared flag 
  p0 waits for it to be zero, then does work 

and sets it one 
  p1 waits for it to be one, then does work 

and sets it zero 

  How many transactions? 
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Dragon Write-back Update 
Protocol 

    4 states 
  Exclusive-clean or exclusive (E): I and memory have it 

  Shared clean (Sc):  I, others, and maybe memory, but I’m not owner 
  Shared modified (Sm): I and others but not memory, and I’m owner 

  Sm and Sc can coexist in different caches, with only one Sm 

  Modified or dirty (D): I and, noone else 

  No invalid state 
  If in cache, cannot be invalid 
  If not present in cache, view as being in not-present or invalid state 

    New processor events: PrRdMiss, PrWrMiss 
  Introduced to specify actions when block not present in cache 

    New bus transaction: BusUpd 
  Broadcasts single word written on bus; updates relevant caches 
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Dragon State Transition Diagram 

E Sc 

Sm M 

PrW r/— 
PrRd/— 

PrRd/— 

PrRd/— 

PrRdMiss/BusRd(S) PrRdMiss/BusRd(S) 
PrW r/— 

PrW rMiss/(BusRd(S); BusUpd) PrW rMiss/BusRd(S) 

PrW r/BusUpd(S) 

PrW r/BusUpd(S) 

BusRd/— 

BusRd/Flush 

PrRd/— BusUpd/Update 

BusUpd/Update 

BusRd/Flush 

PrW r/BusUpd(S) 

PrW r/BusUpd(S) 



Oct-21-09 ECSE 420 
Parallel Computing 

Lower-level Protocol Choices 
  Can shared-modified state be eliminated? 

  If update memory as well on BusUpd transactions (DEC 
Firefly) 

  Dragon protocol doesn’t (assumes DRAM slow to update) 

  Should replacement of an Sc block be broadcast? 
  Would allow last copy to go to E state and no updates sent 
  Replacement bus transaction is not in critical path, later 

update may be 

  Can local copy be updated on write hit before controller 
gets bus? 
  Can mess up serialization 

  Coherence, consistency much like write-through case 
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Assessing Protocol Tradeoffs 

  Tradeoffs affected by technology 
characteristics and design complexity 

  Part art and part science 
  Art: experience, intuition and aesthetics 

of designers 
  Science: Workload-driven evaluation for 

cost-performance 
  want a balanced system: no expensive 

resource heavily underutilized Break? 
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Bandwidth per transition 

Bus Transaction  Address / Cmd  Data 

BusRd  6  64 

BusRdX  6  64 

BusWB  6  64 

BusUpgd  6  -- 

 NP  I  E  S  M 

NP  0  0  1.25  0.96  0.001 

I  0.64  0  0  1.87  0.001 

E  0.20  0  14.00  0.0  2.24 

S  0.42  2.50  0  134.72  2.24 

M  2.63  0.00  0  2.30  843.57 

Ocean Data Cache Frequency Matrix (per 1000) 
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BusRd/Flush’ ʹ′ 
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S 

PrRd 

BusRd(S) 

BusRdX/Flush’ ʹ′ 

BusRdX/Flush 
BusRd/ 
Flush 

PrW r/BusRdX 

PrRd/ 
BusRd (S )  
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Miss Classification 
Miss Classi?cation

reason
for miss

?rst reference to
memory block by PE

?rst access
system wide

yes

no

written
before

yes

no

modi?ed 
word(s) accessed
during lifetime

yes

no

1. pure-cold

2. cold

4. cold-

3. cold-
false-sharing

true-sharing

reason for
elimination of

last copy
replacement

invalidation

old copy
with state=invalid 

still there?
yesno

8. pure-7. pure-6. inval-cap-
true-sharing

5. inval-cap-
false-sharing

modi?ed 
word(s) accessed
during lifetime

modi?ed 
word(s) accessed
during lifetime

yesno yesno

false-sharing true-sharing

other

has block
been modi?ed since

replacement
yes no

12. capacity-11. pure-10. cap-inval-
true-sharing

9. cap-inval-
false-sharing

modi?ed 
word(s) accessed
during lifetime

modi?ed 
word(s) accessed
during lifetime

yesno yesno

capacity true-sharing

modified word accessed during lifetime 
means access to word(s) within a block 
that have been modified since the last 
“essential” (4,6,8,10,12) miss to this  
block by this processor 
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Update versus Invalidate 
  Much debate over the years: depends on sharing patterns 
  Intuition: 

  If those that used continue to use, and writes between use are few, 
update should do better 
  e.g. producer-consumer pattern 

  If those that use unlikely to use again, or many writes between 
reads, updates not good 
  “pack rat” phenomenon particularly bad under process migration 
  useless updates where only last one will be used 

  Can construct scenarios where one or other is much better 
  Can combine them in hybrid schemes (see text) 

  E.g. competitive: observe patterns at runtime and change protocol 



Oct-21-09 ECSE 420 
Parallel Computing 

Update vs Invalidate: Miss Rates 

  Lots of coherence misses: updates help 

  Lots of capacity misses: updates hurt (keep data in cache uselessly) 
  Updates seem to help, but this ignores upgrade and update traffic 
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Upgrade and Update Rates (Traffic) 

  Update traffic is substantial 
  Main cause is multiple writes by a 

processor before a read by other 
  many bus transactions versus 

one in invalidation case 
  could delay updates or use 

merging  

  Overall, trend is away from 
update based protocols as default 
  bandwidth, complexity, large 

blocks trend, pack rat for 
process migration 

  Will see that updates have greater 
problems for scalable systems 
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