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Recap: Performance Trade-offs 
  Programmer’s View of Performance 

  Different goals often have conflicting demands 
  Load Balance 

  Fine-grain tasks, random or dynamic assignment 

  Communication 
  Coarse grain tasks, decompose to obtain locality 

  Extra Work 
  Coarse grain tasks, simple assignment 

  Communication Cost: 
  Big transfers: amortize overhead and latency 
  Small transfers: reduce contention 

Sequential Work 
Max (Work + Synch Wait Time + Comm Cost + Extra Work) 

Speedup   < 
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Recap (cont) 
 Architecture View 

 Cannot solve load imbalance or eliminate 
inherent communication 

 But can: 
 Reduce incentive for creating ill-behaved 

programs  
 Efficient naming, communication and 

synchronization 
 Reduce artifactual communication 
 Provide efficient naming for flexible assignment 
 Allow effective overlapping of communication  
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Artifactual Communication 

  Accesses not satisfied locally cause “communication” 
  Inherent comm. (implicit or explicit) causes transfers 

  Determined by program 

    Artifactual communication 
  Determined by program/architecture interaction 
  Poor allocation of data across distributed memories 
  Unnecessary data in a transfer 
  Unnecessary transfers due to system granularities 
  Redundant communication of data 
  Finite replication capacity (in cache or main memory) 

  Inherent communication: unlimited capacity, small 
transfers, and perfect knowledge of what is needed.   
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Uniprocessor View 
  Performance depends heavily on memory 

hierarchy 
 Managed by hardware 
  Time spent by a program 

  Timeprog(1) = Busy(1) + Data Access(1) 
  Divide by cycles to get CPI equation 

 Data access time can be reduced by: 
    Optimizing machine 

 Bigger caches, lower latency... 

    Optimizing program 
 Temporal and spatial locality 

B u s y - u s e f u l 
D a t a - l o c a l 
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Same Processor-Centric Perspective 

P 0 P 1 P 2 P 3 

B u s y - o v e r h e a d B u s y - u s e f u l 
D a t a - l o c a l 

S y n c h r o n i z a t i o n 
D a t a - r e m o t e 
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( a ) S e q u e n t i a l e s s o r s ( b ) P a r a l l e l w i t h f o u r p r o c 
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What is a Multiprocessor? 
 A collection of communicating processors 

  Goals: balance load, reduce inherent communication and 
extra work 

 A multi-cache, multi-memory system 
  Role of these components essential regardless of  

programming model 
  Prog. model  and comm. abstr. affect specific performance 

tradeoffs 

P P P 

P P P 

... 

... 
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Relating Perspectives 

Synch wait

Data-remote

Data-localOrchestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Orchestration/
mapping

Load imbalance and 
synchronization

Inherent 
communication 
volume

Artifactual 
communication 
and data locality

Communication 
structure

Busy(1) + Data(1) 
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p) 

Speedup < 
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Back to Basics – Small SMP 
  Parallel Architecture = Computer Arch. + Comm. Arch. 
  Small-scale shared memory 

  Extend the memory system to support multiple processors 
  Good for multiprogramming throughput and parallel computing 
  Allows fine-grain sharing of resources 

  Naming & synchronization 
  Communication is implicit in store/load of shared address 
  Synchronization is performed by operations on shared addresses 

  Latency & Bandwidth 
  Utilize the normal migration within the storage to avoid long 

latency operations and to reduce bandwidth 
  Economical medium with fundamental BW limit 
=> focus on eliminating unnecessary traffic 
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Layered Perspective for SMP 

Multipr ogramming Shar ed 
addr ess 

Message 
passing 

Data 
parallel 

Pr ogramming models 

Communication abstraction 
User/system boundary 

Compilation 
or library 

Operating systems support 

Communication har dwar e 
Physical communication medium 

Har dwar e/softwar e boundary 

Mem 

P 1 P n 
Conceptual  
Picture 
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Natural Extensions of Memory System 

P 1 
Switch 

Main memory 

P n 

(Interleaved) 

(Interleaved) 

First-level $ 

P 1 

$ 

Inter connection network 

$ 

P n 

Mem Mem 

P 1 

$ 

Inter connection network 

$ 

P n 

Mem Mem Shared Cache 

Centralized Memory 
Dance Hall, UMA 

Distributed Memory (NUMA) 

Scale 
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Bus-Based Symmetric Shared Memory 

  Dominate the server market 
  Building blocks for larger systems; arriving to desktop 

  Attractive as throughput servers and for parallel programs 
  Fine-grain resource sharing 
  Uniform access via loads/stores 
  Automatic  data movement and coherent replication in caches 
  Cheap and powerful extension 

  Normal uniprocessor mechanisms to access data 
  Extension of memory hierarchy to support multiple processors 

I/O devices Mem 

P 1 

$ $ 

P n 

Bus 
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Caches Critical for Performance 
  Reduce average latency 

  Automatic replication closer to 
processor 

  Reduce average bandwidth 
  Data is logically transferred from 

producer to consumer to memory 
  store reg --> mem 
  load  reg <-- mem 

P P P 

•  What happens when store & load executed  on different 
processors? 

•  Processors can share data 
efficiently 
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Example Cache Coherence Problem 

  Processors see different values for u after event 3 
  Write back caches: written back upon cache flushes or writes 

  Processes accessing main memory may see very stale value 

  Unacceptable to programs, and frequent! 

I/O devices 

Memory 

P 1 

$ $ $ 

P 2 P 3 

5 
u  = ? 

4 

u  = ? 

u  :5 
1 

u  :5 

2 

u  :5 

3 

u  = 7 
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Caches and Cache Coherence 
 Caches play key role in all cases 

  Reduce average data access time 
  Reduce bandwidth demands placed on shared interconnect 

  Private processor caches create a problem 
  Copies of a variable can be present in multiple caches  
  A write by one processor may not become visible to others 

 They’ll keep accessing stale value in their caches 

=> Cache coherence problem 

 What do we do about it? 
  Organize the mem hierarchy to make it go away  
  Detect and take actions to eliminate the problem 
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Intuitive Memory Model 

  Reading an address should return the last value written 
  Easy in uniprocessors 

  Except for I/O 

  Cache coherence problem in MPs is more pervasive and 
more performance critical 
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Snoopy Cache-Coherence Protocols 

  Bus is a broadcast medium & Caches know their contents 
  Cache Controller “snoops” transactions on the shared bus 

  Relevant transaction if for a block it contains 
  Take action to ensure coherence 

  Invalidate, update, or supply value 
  Depends on state of the block and the protocol 

State 
Address 
Data 

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction
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Example: Write-thru Invalidate 

I/O devices 

Memory 

P 1 

$ $ $ 

P 2 P 3 

5 
u  = ? 

4 

u  = ? 

u  :5 
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u  :5 
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u  :5 
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u  = 7 
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Architectural Building Blocks 
  Bus Transactions 

  Fundamental system design abstraction 
  Single set of wires connect several devices 
  Bus protocol: arbitration, command/addr, 

data 
=> Every device observes every transaction 

  Cache block state transition diagram 
  FSM specifying how disposition of block 

changes 
  invalid, valid, dirty 
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Design Choices 
  Controller updates state of 

blocks in response to 
processor and snoop events 
and generates bus 
transactions 

  Snoopy protocol 
  Set of states 
  State-transition diagram 
  Actions 

  Basic Choices 
  Write-through vs Write-back 
  Invalidate vs. Update 

Snoop 

State  Tag   Data 

° ° ° 

Cache Controller 

Processor 
Ld/St 
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Write-through Invalidate Protocol 

  Two states per block in each cache 
  As in uniprocessor 
  State of a block is a p-vector of 

states 
  Hardware state bits associated with 

blocks that are in the cache  
  Other blocks can be seen as being 

in invalid (not-present) state in that 
cache 

 Writes invalidate all other caches 
  Can have multiple simultaneous 

readers of block,but write 
invalidates them 

I 

V 
BusWr / - 

PrRd/ -- 
PrWr / BusWr 

PrWr / BusWr 

PrRd / BusRd 

State  Tag   Data 

I/O devices Mem 

P 1 

$ $ 

P n 

Bus 

State  Tag   Data 
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Write-through vs. Write-back 

  Write-through protocol is simple 
  Every write is observable 

  Every write goes on the bus 
=> Only one write can take place at a time in any 

processor 

  Uses a lot of bandwidth! 
Example: 200 MHz dual issue, CPI = 1, 15% stores of 8 bytes 

=> 30 M stores per second per processor 

=> 240 MB/s per processor 

1GB/s bus can support only about 4 
processors without saturating 
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Invalidate vs. Update 
  Basic question of program behavior: 

  A block read by other processors before it is overwritten? 

  Invalidate.   
  yes: readers will take a miss 
  no: multiple writes without addition traffic 

  Also clears out copies that will not be used again 

  Update.   
  yes: avoids misses on later references 
  no: multiple useless updates 

  Appears wasteful 

=> Need to look at program reference patterns and hw 
complexity      but first - correctness 
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Remaining Topics 

  Coherence vs. consistency 
  Design Space of Snoopy-Cache 

Coherence Protocols 
  Write-back, update 
  Protocol design 
  Lower-level design choices 

  Evaluation of protocol alternatives 
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Intuitive Memory Model??? 

  Reading an address should return the last value 
written to that address 

  What does that mean in a multiprocessor? 
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Coherence? 
  Caches are supposed to be transparent 

  What would happen if there were no caches? 

  Every memory operation goes “to the memory location” 
  May have multiple memory banks 
  All operations on a particular location would be serialized 

  All would see THE order 

  Interleaving among accesses from different processors 
  Within individual processor => program order 
  Across processors => only constrained by explicit 

synchronization 

  Processor only observes state of memory system by 
issuing memory operations! 
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Definitions 
  Memory operations: load, store, read-modify-write 
  Issues 

  Leaves processor and is presented to the memory 
subsystem (caches, buffers, busses, DRAM, …) 

  Performed with respect to a processor 
  Write: subsequent reads return the value 
  Read: subsequent writes cannot affect the value 

  Coherent Memory System 
  There is a serial order of memory operations s. t. 

  Operations issued by a process appear in order issued 
  Value returned by a read = previous write in serial order 

=> write propagation + write serialization 
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Is 2-state Protocol Coherent? 
  Assume bus transactions and memory operations atomic, one-

level cache 
  All phases of one bus transaction complete before next one starts 
  Processor waits for mem. operation completion before issuing next 
  With one-level cache, assume invalidations applied during bus 

transaction 

  All writes go to bus + atomicity 
  Writes serialized by order in which they appear on bus (bus order) 
=> invalidations applied to caches in bus order 

  How to insert reads in this order? 
  Important since processors see writes through reads, so 

determines whether write serialization is satisfied 
  But read hits may happen independently and do not appear on bus 

or enter directly in bus order 
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Ordering Reads 
  Read misses 

  Appear on bus, and will “see” last write in bus order 

  Read hits: do not appear on bus 
  But value read was placed in cache by either 

  Most recent write by this processor, or 

  Most recent read miss by this processor 

  Both these transactions appeared on the bus 

  So read hits also see values as produced bus 
order 
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Determining Order More Generally 

 mem op M2 is subsequent to mem op M1  (M2 >> M1)  if  
 the operations are issued by the same processor and  
 M2 follows M1 in program order.  

 read R >> write W if  
 read generates bus transaction that follows that for W. 

 write W >> read or write M if   
 M generates bus transaction and the transaction for W follows 

that for M. 
 write W >> read R if  

 read R does not generate a bus transaction and  
  is not already separated from write W by another bus 

transaction."
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Ordering 

  Writes establish a partial order 
  Doesn’t constrain ordering of reads, though bus will 

order read misses too 
–  Any order among reads between writes is fine, as long 

as in program order 

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:
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Write-Through vs Write-Back 
  Write-thru requires high bandwidth 

  Write-back caches absorb most writes as cache hits 
=> Write hits don’t go on bus 

  But now how do we ensure write propagation and 
serialization? 

  Need more sophisticated protocols: large design 
space 

  But first, let’s understand other ordering issues 
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Setup for Mem. Consistency 
  Coherence => Writes to  a single location 

become visible to all in the same order 
  But when does a write become visible? 

  How do we establish orders between a write and 
a read by different procs? 
–  use event synchronization 

–  Typically  use more than one location! 
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Example: Consistency Issue 

  Intuition not guaranteed by coherence 
  Expect memory to respect order between accesses to 

different locations issued by a given process 
  Preserve orders among accesses to same location by 

different processes 

  Coherence is not enough! 
  Pertains only to single location 

P 1 P 2 
/*Assume initial value of A and  ag is 0*/ 

A = 1; while (flag == 0);  /*spin idly*/ 
flag = 1; print A; 

Mem 

P 1 P n 

Conceptual  
Picture 
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Another Example of Ordering? 

  What’s the intuition? 
  Whatever it is, we need an ordering model for clear semantics 

  Across different locations as well 
  Goal: programmers can reason about what results are 

possible 

    This is the memory consistency model 

P 1 P 2 
/*Assume initial values of A and B are  0*/ 

(1a) A = 1; (2a) print B; 
(1b) B = 2; (2b) print A; 
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Memory Consistency Model 
  Specifies constraints on the order in which memory 

operations (from any process) can appear to execute with 
respect to one another 
  What orders are preserved? 
  Given a load, constrains the possible values returned by it 

  Without it, can’t tell much about an SAS program’s 
execution 

  Implications for both programmer and system designer 
  Programmer uses to reason about correctness and results 
  System designer can use to constrain how much accesses 

can be reordered by compiler or hardware 

  Contract between programmer and system 



Oct-21-09 ECSE 420 
Parallel Computing 

Sequential Consistency 

  Total order achieved by interleaving accesses from 
processes 
  Maintains program order, and memory operations, from all 

processes, appear [issue, execute, complete] atomica 
  as if there were no caches, and a single memory 

Processors 
issuing memory 
references as 
per program or der

P1 P2 Pn

Memory

The “switch” is randomly 
set after each memory
reference

 “A multiprocessor is sequentially consistent if 
the result of any execution is the same as if the 
operations of all the processors were executed 
in some sequential order, and the operations of 
each individual processor appear in this 
sequence in the order specified by its 
program.” [Lamport, 1979] 
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What Really is Program Order? 

  Intuitively, order in which operations appear 
in source code 
  Straightforward translation of source code to 

assembly 
  At most one memory operation per instruction 

  But not the same as order presented to 
hardware by compiler 

  So which is program order? 
  Depends on which layer, and who’s reasoning 

  We assume order as seen by programmer 



Oct-21-09 ECSE 420 
Parallel Computing 

SC Example 

  What matters is order in which operations appear to execute 
  Possible outcomes for (A,B): (0,0), (1,0), (1,2) 
  What about (0,2) ? 

  program order => 1a->1b and 2a->2b 
  A = 0 implies 2b->1a, which implies 2a->1b 
  B = 2 implies 1b->2a, which leads to a contradiction 

  What is actual execution 1b->1a->2b->2a ? 
  appears just like 1a->1b->2a->2b as visible from results 
  actual execution 1b->2a->2b->1a is not 

P 1 P 2 
/*Assume initial values of A and B are 0*/ 

(1a) A = 1; (2a) print B; 
(1b) B = 2; (2b) print A; A=0 

B=2 
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Implementing SC 
  Two kinds of requirements 

  Program order 
  memory operations issued by a process must appear 

to execute (become visible to others and itself) in 
program order 

  Atomicity 
  in the overall hypothetical total order, one memory 

operation should appear to complete with respect to 
all processes before the next one is issued 

  guarantees that total order is consistent across 
processes  

  Hard part is making writes atomic 
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Write-back Caches 
  2 processor operations 

  PrRd, PrWr 

  3 states 
  invalid, valid (clean), modified (dirty) 
  ownership: who supplies block 

  2 bus transactions:  
  read (BusRd), write-back (BusWB) 
  only cache-block transfers 

=> treat Valid as “shared” and Modified as 
“exclusive” 

=> introduce one new bus transaction 
  read-exclusive: read for purpose of 

modifying (read-to-own) 

PrRd/— 

PrRd/— 
PrW r/BusRd 

BusRd/— 

PrW r/— 

V 

M 

I 

Replace/BusWB 

PrW 

PrRd/BusRd 

Replace/- 
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MSI Invalidate Protocol 
  Read obtains block in 

“shared” 
  even if only cache copy 

  Obtain exclusive ownership 
before writing 
  BusRdx causes others to 

invalidate (demote) 
  If M in another cache, flush 
  BusRdx even if hit in S 

  promote to M (upgrade) 

  What about replacement? 
  S->I, M->I as before 

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd
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Example: Write-Back Protocol 

I/O devices 

Memory 

u  :5 

P0 P1 P4 PrRd U 

U S 5 

BusRd U 

PrRd U 

BusRd U 

U S 5 

PrWr U 7 

U M 7 

BusRdx U 

PrRd U 

U S 7 U S 7 

7 

BusRd 

Flush 
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Correctness 

  When is write miss performed?   
  How does writer “observe” write? 
  How is it “made visible” to others? 
  How do they “observe” the write? 

  When is write hit made visible? 
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Write Serialization for Coherence 
  Writes that appear on the bus (BusRdX) are ordered by bus 

  performed in writer’s cache before other transactions, so 
ordered same w.r.t. all processors (incl. writer) 

  Read misses also ordered wrt these 

  Write that don’t appear on the bus: 
  P issues BusRdX B. 
  further mem operations on B until next transaction are from P 

  read and write hits 
  these are in program order 

  for read or write from another processor 
  separated by intervening bus transaction 

  Reads hits? 
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Sequential Consistency 
  Bus imposes total order on bus xactions for all locations 

  Between xactions, procs perform reads/writes (locally) in 
program order 

  So any execution defines a natural partial order 
  Mj subsequent to Mi if  

  (I) follows in program order on same processor,  
  (ii) Mj generates bus xaction that follows the memory 

operation for Mi 

  In segment between two bus transactions, any interleaving 
of local program orders leads to consistent total order 

  w/i segment writes observed by proc P serialized as: 
  Writes from other processors by previous bus xaction P issued 
  Writes from P by program order 
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Sufficient conditions 
Issued in program order 
After write issues, the issuing process waits for the write to 

complete before issuing next memory operation 
After read is issued, the issuing process waits for the read to 

complete and for the write whose value is being returned 
to complete (globally) before issuing its next operation 

  Write completion 

   can detect when write appears on bus 

  Write atomicity:  
  if a read returns the value of a write, that write has already 

become visible to all others already 
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Lower-level Protocol Choices 
  BusRd observed in M state: what transitition to make? 

  M ----> I 
  M ----> S 

  Depends on expectations of access patterns 

  How does memory know whether or not to supply data 
on BusRd? 

  Problem: Read/Write is 2 bus xactions, even if no 
sharing 

  BusRd (I->S) followed by BusRdX or BusUpgr (S->M) 

  What happens on sequential programs? 
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MESI Invalidation Protocol 
  Add exclusive state 

  Distinguish exclusive (writable) and owned (written) 
  Main memory is up to date, so cache not necessarily 

owner 
  Can be written locally 

  States 
  invalid 
  exclusive or exclusive-clean (only this cache has copy, but 

not modified) 
  shared (two or more caches may have copies) 
  modified (dirty) 

  I -> E on PrRd if no cache has copy 
=> How can you tell? 
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Hardware Support for MESI 

 All cache controllers snoop on BusRd 
 Assert ‘shared’ if present (S? E? M?) 
  Issuer chooses between S and E 

  how does it know when all have voted? 

I/O devices 

Memory 

u  :5 

P0 P1 P4 

shared signal 
 - wired-OR 
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MESI State Transition Diagram 

  BusRd(S) means shared 
line asserted on BusRd 
transaction 

  Flush’: if cache-to-cache 
xfers 
  only one cache flushes data 

  MOESI protocol: Owned 
state: exclusive but 
memory not valid 
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Lower-level Protocol Choices 
  Who supplies data on miss when not M state: memory or cache? 

  Original, lllinois MESI: cache, since assumed faster than memory 
  Not true in modern systems 

  Intervening in another cache more expensive than getting from 
memory 

  Cache-to-cache sharing adds complexity 
  How does memory know it should supply data (must wait for caches) 
  Selection algorithm if multiple caches have valid data 

  Valuable for cache-coherent machines with distributed memory 
  May be cheaper to obtain from nearby cache than distant memory, 

Especially when constructed out of SMP nodes (Stanford DASH) 
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Update Protocols 

  If data is to be communicated 
between processors, invalidate 
protocols seem inefficient 

  Consider shared flag 
  p0 waits for it to be zero, then does work 

and sets it one 
  p1 waits for it to be one, then does work 

and sets it zero 

  How many transactions? 
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Dragon Write-back Update 
Protocol 

    4 states 
  Exclusive-clean or exclusive (E): I and memory have it 

  Shared clean (Sc):  I, others, and maybe memory, but I’m not owner 
  Shared modified (Sm): I and others but not memory, and I’m owner 

  Sm and Sc can coexist in different caches, with only one Sm 

  Modified or dirty (D): I and, noone else 

  No invalid state 
  If in cache, cannot be invalid 
  If not present in cache, view as being in not-present or invalid state 

    New processor events: PrRdMiss, PrWrMiss 
  Introduced to specify actions when block not present in cache 

    New bus transaction: BusUpd 
  Broadcasts single word written on bus; updates relevant caches 
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Dragon State Transition Diagram 
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Lower-level Protocol Choices 
  Can shared-modified state be eliminated? 

  If update memory as well on BusUpd transactions (DEC 
Firefly) 

  Dragon protocol doesn’t (assumes DRAM slow to update) 

  Should replacement of an Sc block be broadcast? 
  Would allow last copy to go to E state and no updates sent 
  Replacement bus transaction is not in critical path, later 

update may be 

  Can local copy be updated on write hit before controller 
gets bus? 
  Can mess up serialization 

  Coherence, consistency much like write-through case 
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Assessing Protocol Tradeoffs 

  Tradeoffs affected by technology 
characteristics and design complexity 

  Part art and part science 
  Art: experience, intuition and aesthetics 

of designers 
  Science: Workload-driven evaluation for 

cost-performance 
  want a balanced system: no expensive 

resource heavily underutilized Break? 
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Bandwidth per transition 

Bus Transaction  Address / Cmd  Data 

BusRd  6  64 

BusRdX  6  64 

BusWB  6  64 

BusUpgd  6  -- 

 NP  I  E  S  M 

NP  0  0  1.25  0.96  0.001 

I  0.64  0  0  1.87  0.001 

E  0.20  0  14.00  0.0  2.24 

S  0.42  2.50  0  134.72  2.24 

M  2.63  0.00  0  2.30  843.57 

Ocean Data Cache Frequency Matrix (per 1000) 
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Miss Classification 
Miss Classi?cation

reason
for miss

?rst reference to
memory block by PE

?rst access
system wide

yes

no

written
before

yes

no

modi?ed 
word(s) accessed
during lifetime

yes

no

1. pure-cold

2. cold

4. cold-

3. cold-
false-sharing

true-sharing

reason for
elimination of

last copy
replacement

invalidation

old copy
with state=invalid 

still there?
yesno

8. pure-7. pure-6. inval-cap-
true-sharing

5. inval-cap-
false-sharing

modi?ed 
word(s) accessed
during lifetime

modi?ed 
word(s) accessed
during lifetime

yesno yesno

false-sharing true-sharing

other

has block
been modi?ed since

replacement
yes no

12. capacity-11. pure-10. cap-inval-
true-sharing

9. cap-inval-
false-sharing

modi?ed 
word(s) accessed
during lifetime

modi?ed 
word(s) accessed
during lifetime

yesno yesno

capacity true-sharing

modified word accessed during lifetime 
means access to word(s) within a block 
that have been modified since the last 
“essential” (4,6,8,10,12) miss to this  
block by this processor 
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Update versus Invalidate 
  Much debate over the years: depends on sharing patterns 
  Intuition: 

  If those that used continue to use, and writes between use are few, 
update should do better 
  e.g. producer-consumer pattern 

  If those that use unlikely to use again, or many writes between 
reads, updates not good 
  “pack rat” phenomenon particularly bad under process migration 
  useless updates where only last one will be used 

  Can construct scenarios where one or other is much better 
  Can combine them in hybrid schemes (see text) 

  E.g. competitive: observe patterns at runtime and change protocol 
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Update vs Invalidate: Miss Rates 

  Lots of coherence misses: updates help 

  Lots of capacity misses: updates hurt (keep data in cache uselessly) 
  Updates seem to help, but this ignores upgrade and update traffic 
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Upgrade and Update Rates (Traffic) 

  Update traffic is substantial 
  Main cause is multiple writes by a 

processor before a read by other 
  many bus transactions versus 

one in invalidation case 
  could delay updates or use 

merging  

  Overall, trend is away from 
update based protocols as default 
  bandwidth, complexity, large 

blocks trend, pack rat for 
process migration 

  Will see that updates have greater 
problems for scalable systems 
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