
Performance Issues

Zeljko Zilic
McConnell Engineering Building
Room 546

Oct-7-09 ECSE 420
Parallel Computing

Overview

  Process of creating a parallel program
  Performance issues
  Architectural interactions

  Three major programming models
  What primitives must a system support?

Oct-7-09 ECSE 420
Parallel Computing

Performance Goal: Speedup
  Architect Goal

  Observe how program uses
machine and improve the
design to enhance
performance

  Programmer Goal
  observe how the program

uses the machine and
improve the
implementation to
enhance performance

  What do you observe?
  Who fixes what?

Oct-7-09 ECSE 420
Parallel Computing

Analysis Framework

  Communication and load balance NP-hard in general
  Heuristic solutions work well in practice

  Fundamental Tension among:
  Balanced load
  Minimal synchronization
  Minimal communication
  Minimal extra work

  Good machine design mitigates the trade-offs

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup <

Oct-7-09 ECSE 420
Parallel Computing

Load Balance and Synchronization
Sequential Work

Max Work on any Processor
Speedup problem(p) <

  Instantaneous load imbalance revealed as wait time
  at completion
  at barriers
  at receive
  at flags, even at mutex

P0

P1

P2

P3

P0

P1

P2

P3

Sequential Work
Max (Work + Synch Wait Time)

Oct-7-09 ECSE 420
Parallel Computing

Improving Load Balance
  Decompose into more smaller tasks (>>P)
  Distribute uniformly

  Variable-sized task
  Randomize
  Bin packing
  Dynamic assignment

  Schedule more carefully
  Avoid serialization
  Estimate work
  Use history info.

P 0

P 1

P 2

P 4

for_all i = 1 to n do

 for_all j = i to n do

 A[i, j] = A[i-1, j] + A[i, j-1] + ...

Oct-7-09 ECSE 420
Parallel Computing

(a) The spatial domain (b) Quadtree representation

Example: Barnes-Hut

  Divide space into roughly equal # particles
  Particles close together in space -> same processor
  Nonuniform, dynamically changing

Oct-7-09 ECSE 420
Parallel Computing

Dynamic Scheduling: Task Queues
  Centralized versus distributed queues
  Task stealing with distributed queues

  Compromise comm & locality, increase synchronization
  Whom to steal from, how many tasks to steal, when done...
  Maximum imbalance related to size of task

QQ 0 Q2Q1 Q3

All remove tasks

P0 inserts P1 inserts P2 inserts P3 inserts

P0 removes P1 removes P2 removes P3 removes

(b) Distributed task queues (one per pr ocess)

Others may
steal

All processes
insert tasks

(a) Centralized task queue

Oct-7-09 ECSE 420
Parallel Computing

Impact of Dynamic Assignment
  Barnes-Hut on SGI Origin 2000 (cache-coherent shared memory):

S
p
e
e
d
u
p











































1 3 5 7 9 11 13 15 17

Number of processors Number of processors

19 21 23 25 27 29 31
0

5

10

15
S
p
e
e
d
u
p

20

25

30

0(a) (b)

5

10

15

20

25

30











































1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

 Origin, dynamic
 Challenge, dynamic
 Origin, static
 Challenge, static

 Origin, semistatic
 Challenge, semistatic
 Origin, static
 Challenge, static

Oct-7-09 ECSE 420
Parallel Computing

Self-Scheduling
volatile int row_index = 0; /* shared index variable */

while (not done) {

 initialize row_index; barrier;

 while ((i = fetch_and_inc(&row_index) < n) {

 for (j = i; j < n; j++) {

 A[i, j] = A[i-1, j] + A[i, j-1] + ...

 }

 }

}

Oct-7-09 ECSE 420
Parallel Computing

Reducing Serialization
  Careful about assignment and orchestration

  Including scheduling

  Event synchronization
  Reduce use of conservative synchronization

  e.g. point-to-point instead of barriers, or granularity of pt-to-pt

  But fine-grained synch more difficult to program, more synch ops.

  Mutual exclusion
  Separate locks for separate data

  e.g. locking records in a database: lock per process, record, or field
  Lock per task in task queue, not per queue
  Finer grain => less contention/serialization, more space, less reuse

  Smaller, less frequent critical sections
  Don’t do reading/testing in critical section, only modification

  Stagger critical sections in time

Oct-7-09 ECSE 420
Parallel Computing

Impact of Load Balance Effort

  Parallelism Management overhead?
  Communication?

  Amount, size, frequency?

  Synchronization?
  Type? frequency?

  Opportunities for replication?

  What can architecture do?

Oct-7-09 ECSE 420
Parallel Computing

Arch. Implications of Load Balance

  Naming
  Global position-independent naming separates

decomposition from layout
  Allows diverse, even dynamic assignments

  Efficient Fine-grained communication & synch
  More, smaller

  Msgs
  Locks

  Point-to-point

  Automatic replication

Oct-7-09 ECSE 420
Parallel Computing

Reducing Extra Work
  Common sources of extra work:

  Computing a good partition
  e.g. partitioning in Barnes-Hut or sparse matrix

  Using redundant computation to avoid communication
  Task, data and process management overhead

  Applications, languages, runtime systems, OS
  Imposing structure on communication

  Coalescing messages, allowing effective naming

  Architectural Implications:
  Reduce need by making comm. and orchestration efficient

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup<

Oct-7-09 ECSE 420
Parallel Computing

Reducing Inherent Communication

  Communication is expensive!
  Measure: communication to computation ratio
  Inherent communication

  Determined by assignment of tasks to processes
  One produces data consumed by others

=> Use algorithms that communicate less
=> Assign tasks that access same data to same

process
  same row or block to same process in each iteration

Sequential Work
Max (Work + Synch Wait Time + Comm Cost)

Speedup<

Oct-7-09 ECSE 420
Parallel Computing

Perimeter to Area comm-to-comp ratio (area to volume in 3-d)
• Depends on n,p: decreases with n, increases with p

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14

P10

n

n n
p

n
p

P15

Domain Decomposition
  Works well for scientific, engineering, graphics, ...

applications
  Exploits local-biased nature of physical problems

  Information requirements often short-range
  Or long-range but fall off with distance

  Simple example: nearest-neighbor grid
computation

Oct-7-09 ECSE 420
Parallel Computing

Domain Decomposition (contd)

 Comm to comp: for block, for strip
 Application dependent: strip may be better in other cases

 E.g. particle flow in tunnel

4*√p
n

2*p
n

Best domain decomposition depends on information requirements
Nearest neighbor example: block versus strip decomposition:

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14 P15

P10

n

n

n

p

n

p

Oct-7-09 ECSE 420
Parallel Computing

Relation to load balance
  Scatter Decomposition, e.g. initial partition in Raytrace

Preserve locality in task stealing
• Steal large tasks for locality, steal from same queues, ...

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

43

Domain decomposition Scatter decomposition

Oct-7-09 ECSE 420
Parallel Computing

Implications of Comm-to-Comp Ratio

  Architects examine application needs to see where
to spend effort
  bandwidth requirements (operations / sec)

  latency requirements (sec/operation)
  time spent waiting

  Actual impact of comm. depends on structure and
cost as well

  Need to keep communication balanced across
processors as well

Sequential Work
Max (Work + Synch Wait Time + Comm Cost)

Speedup <

Oct-7-09 ECSE 420
Parallel Computing

Structuring Communication
 Given amount of comm., goal is to reduce cost
 Cost of communication as seen by process:

 C = f * (o + l + + tc - overlap)

  f = frequency of messages
 o = overhead per message (at both ends)
  l = network delay per message
 nc = total data sent

 m = number of messages
 B = bandwidth along path (determined by network, NI, assist)
  tc = cost induced by contention per message

 overlap = amount of latency hidden by overlap with comp. or comm.

  Portion in parentheses is cost of a message (as seen by processor)
  ignoring overlap, is latency of a message

 Goal: reduce terms in latency and increase overlap

nc/m
B

Oct-7-09 ECSE 420
Parallel Computing

Reducing Overhead
  Can reduce no. of messages m or overhead per message o

  o is usually determined by hardware or system software
  Program should try to reduce m by coalescing messages
  More control when communication is explicit

  Coalescing data into larger messages:
  Easy for regular, coarse-grained communication
  Can be difficult for irregular, naturally fine-grained

communication
  may require changes to algorithm and extra work

  coalescing data and determining what and to whom to send

  will discuss more in implications for programming models later

Oct-7-09 ECSE 420
Parallel Computing

Reducing Network Delay
  Network delay component = f*h*th

  h = number of hops traversed in network
  th = link+switch latency per hop

  Reducing f: communicate less, or make messages larger
  Reducing h:

  Map communication patterns to network topology
  e.g. nearest-neighbor on mesh and ring; all-to-all

  How important is this?

  used to be major focus of parallel algorithms

  depends on no. of processors, how th, compares with other
components

  less important on modern machines
  overheads, processor count, multiprogramming

Oct-7-09 ECSE 420
Parallel Computing

Reducing Contention
  All resources have nonzero occupancy

  Memory, communication controller, network link, etc.
  Can only handle so many transactions per unit time

  Effects of contention:
  Increased end-to-end cost for messages
  Reduced available bandwidth for individual messages
  Causes imbalances across processors

  Particularly insidious performance problem
  Easy to ignore when programming
  Slow down messages that don’t even need that resource

  by causing other dependent resources to also congest

  Effect can be devastating: Don’t flood a resource!

Oct-7-09 ECSE 420
Parallel Computing

• Module: all-to-all personalized comm. in matrix transpose

– solution: stagger access by different processors to same
node temporally

• In general, reduce burstiness; may conflict with making
messages larger

Flat Tree structured

Contention Little contention

Types of Contention
  Network contention and end-point contention (hot-spots)
  Location and Module Hot-spots

  Location: e.g. accumulating into global variable, barrier
  solution: tree-structured communication

Oct-7-09 ECSE 420
Parallel Computing

Overlapping Communication
  Cannot afford to stall for high latencies

  Even on uniprocessors!

  Overlap with computation or communication to hide
latency

  Requires extra concurrency (slackness), higher
bandwidth

  Techniques:
  Prefetching
  Block data transfer
  Proceeding past communication
  Multithreading

Oct-7-09 ECSE 420
Parallel Computing

Communication Scaling (NPB2)

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0 10 20 30 40

FT
IS
LU
MG
SP
BT

0

1

2

3

4

5

6

7

8

0 10 20 30 40

FT
IS
LU
MG
SP
BT

Normalized Msgs per Proc Average Message Size

Oct-7-09 ECSE 420
Parallel Computing

Communication Scaling: Volume
Bytes per Processor

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

FT
IS
LU
MG
SP
BT

Total Bytes

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

0 10 20 30 40

FT

IS

LU

MG

SP

BT

Oct-7-09 ECSE 420
Parallel Computing

What is a Multiprocessor?

  A collection of communicating processors
  View taken so far
  Goals: balance load, reduce inherent

communication and extra work

  A multi-cache, multi-memory system
  Role of these components essential regardless of

programming model
  Prog. model and comm. abstr. affect specific

performance tradeoffs

Oct-7-09 ECSE 420
Parallel Computing

Memory-oriented View
  Multiprocessor as Extended Memory Hierarchy

  as seen by a given processor

  Levels in extended hierarchy:
  Registers, caches, local memory, remote memory

(topology)
  Glued together by communication architecture
  Levels communicate at a certain granularity of data

transfer

  Need to exploit spatial and temporal locality in hierarchy
  Otherwise extra communication may also be caused
  Especially important since communication is expensive

Oct-7-09 ECSE 420
Parallel Computing

Uniprocessor
  Performance depends heavily on memory hierarchy
  Time spent by a program

Timeprog(1) = Busy(1) + Data Access(1)

  Divide by cycles to get CPI equation

  Data access time can be reduced by:
  Optimizing machine: bigger caches, lower latency...
  Optimizing program: temporal and spatial locality

Oct-7-09 ECSE 420
Parallel Computing

Extended Hierarchy
  Idealized view: local cache hierarchy + single main memory
  But reality is more complex

  Centralized Memory: caches of other processors
  Distributed Memory: some local, some remote; + network

topology
  Management of levels

  caches managed by hardware
  main memory depends on programming model

  SAS: data movement between local and remote transparent

  message passing: explicit

  Levels closer to processor are lower latency and higher bandwidth
  Improve performance through architecture or program locality
  Tradeoff with parallelism; need good node performance and

parallelism

Oct-7-09 ECSE 420
Parallel Computing

Artifactual Communication

  Accesses not satisfied in local portion of memory
hierachy cause communication
  Inherent communication, implicit or explicit, causes

transfers
  determined by program

  Artifactual communication
  determined by program implementation and arch.

interactions
  poor allocation of data across distributed memories
  unnecessary data in a transfer
  unnecessary transfers due to system granularities
  redundant communication of data
  finite replication capacity (in cache or main memory)

  Inherent communication assumes unlimited capacity, small
transfers, perfect knowledge of what is needed.

Oct-7-09 ECSE 420
Parallel Computing

Communication and Replication
  Comm induced by finite capacity is most fundamental artifact

  Like cache size and miss rate or memory traffic in uniprocessors
  Extended memory hierarchy view useful for this relationship

  View as three level hierarchy for simplicity
  Local cache, local memory, remote memory (ignore network

topology)

  Classify “misses” in “cache” at any level as for uniprocessors
  compulsory or cold misses (no size effect)
  capacity misses (yes)
  conflict or collision misses (yes)
  communication or coherence misses (no)

  Each may be helped/hurt by large transfer granularity (spatial
locality)

Oct-7-09 ECSE 420
Parallel Computing

Working Set Perspective

  Hierarchy of working sets
  At first level cache (fully assoc, one-word block), inherent to algorithm

  working set curve for program
  Traffic from any type of miss can be local or nonlocal (communication)

• At a given level of the hierarchy (to the next further one)

First working set

Capacity-generated traf fic
(including conflicts)

Second working set

D
at

a
tra

f fic

Other capacity-independent communication
Cold-start (compulsory) traf fic

Replication capacity (cache size)
Inher ent communication

Oct-7-09 ECSE 420
Parallel Computing

Orchestration for Performance

  Reducing amount of communication:
  Inherent: change logical data sharing

patterns in algorithm
  Artifactual: exploit spatial, temporal

locality in extended hierarchy
  Techniques often similar to those on

uniprocessors

  Structuring communication to reduce
cost

Oct-7-09 ECSE 420
Parallel Computing

Reducing Artifactual
Communication
  Message passing model

  Communication and replication are both explicit
  Even artifactual communication is in explicit messages

  send data that is not used

  Shared address space model
  More interesting from an architectural perspective
  Occurs transparently due to interactions of program and

system
  sizes and granularities in extended memory hierarchy

  Use shared address space to illustrate issues

Oct-7-09 ECSE 420
Parallel Computing

Exploiting Temporal Locality
  Structure algorithm so working sets map well to hierarchy

  often techniques to reduce inherent communication do well here
  schedule tasks for data reuse once assigned

  Multiple data structures in same phase
  e.g. database records: local versus remote

  Solver example: blocking

• More useful when O(nk+1) computation on O(nk) data

– many linear algebra computations (factorization, matrix multiply)

(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B = 4

Oct-7-09 ECSE 420
Parallel Computing

Exploiting Spatial Locality
  Besides capacity, granularities are important:

  Granularity of allocation
  Granularity of communication or data transfer
  Granularity of coherence

  Major spatial-related causes of artifactual communication:
  Conflict misses
  Data distribution/layout (allocation granularity)
  Fragmentation (communication granularity)
  False sharing of data (coherence granularity)

  All depend on how spatial access patterns interact with data
structures
  Fix problems by modifying data structures, or layout/alignment

  Examine later in context of architectures
  one simple example here: data distribution in SAS solver

Oct-7-09 ECSE 420
Parallel Computing

Spatial Locality Example
  Repeated sweeps over 2-d grid, each time adding 1 to

elements
  Natural 2-d versus higher-dimensional array

representation

P 6 P 7 P 4

P 8

P 0 P 3

P 5 P 6 P 7 P 4

P 8

P 0 P 1 P 2 P 3

P 5

P 2 P 1

Page straddles
partition boundaries:
difficult to distribute
memory well

Cache block
straddles partition
boundary

(a) Two-dimensional array

Page does
not straddle
partition
boundary

Cache block is
within a partition

(b) Four-dimensional array

Contiguity in memory layout

Oct-7-09 ECSE 420
Parallel Computing

Architectural Implications of
Locality
  Communication abstraction that makes exploiting it easy
  For cache-coherent SAS, e.g.:

  Size and organization of levels of memory hierarchy
  cost-effectiveness: caches are expensive
  caveats: flexibility for different and time-shared workloads

  Replication in main memory useful? If so, how to manage?
  hardware, OS/runtime, program?

  Granularities of allocation, communication, coherence (?)
  small granularities => high overheads, but easier to

program

  Machine granularity (resource division among
processors, memory...)

Oct-7-09 ECSE 420
Parallel Computing

Tradeoffs with Inherent
Communication
  Partitioning grid solver: blocks versus rows

  Blocks still have a spatial locality problem on remote data
  Rowwise can perform better despite worse inherent c-to-c ratio

• Result depends on n and p

Good spacial locality on
nonlocal accesses at
row-oriented boudary

Poor spacial locality on
nonlocal accesses at
column-oriented
boundary

Oct-7-09 ECSE 420
Parallel Computing

Example Performance Impact
  Equation solver on SGI Origin2000

S
p
e
e
d
u
p

Number of processors

S
p
e
e
d
u
p

Number of processors
































1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

5

10

15

20

25

30
























































1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

5

10

15

20

25

30

35

40

45

50
4D
4D-rr

 2D-rr
 2D
 Rows-rr

 Rows 2D
 4D
 Rows

Oct-7-09 ECSE 420
Parallel Computing

Working Sets Change with P

8-fold reduction
in miss rate from
4 to 8 proc

Oct-7-09 ECSE 420
Parallel Computing

Where the Time Goes: LU-a

0

500

1000

1500

2000

2500

3000

4 8 16 32

Processors

To
ta

l T
im

e Wait
Receive
Send
Compute

Oct-7-09 ECSE 420
Parallel Computing

Summary of Tradeoffs
  Different goals often have conflicting demands

  Load Balance
  fine-grain tasks
  random or dynamic assignment

  Communication
  usually coarse grain tasks
  decompose to obtain locality: not random/dynamic

  Extra Work
  coarse grain tasks
  simple assignment

  Communication Cost:
  big transfers: amortize overhead and latency
  small transfers: reduce contention

