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Overview

O Process of creating a parallel program
o Performance issues

o Architectural interactions
m Three major programming models
m What primitives must a system support?
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Performance Goal: Speedup

o Architect Goal

m Observe how program uses
machine and improve the
design to enhance
performance

o Programmer Goal

m observe how the program
uses the machine and
improve the

implementation to
enhance performance

o What do you observe?
o Who fixes what?

10

—&— Version 12/94

60 - —l— Version 9/94

—— Version 8/94

50

|
100 150

Number of processors

Oct-7-09 ECSE 420
Parallel Computing

McGill



Analysis Framework

Sequential Work

Speedup _ < —
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

o Communication and load balance NP-hard in general
m Heuristic solutions work well in practice
o Fundamental Tension among:
m Balanced load
m  Minimal synchronization
= Minimal communication
= Minimal extra work

o Good machine design mitigates the trade-offs
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Load Balance and Synchronization

Speedup opem(P) < Sequential Work
—  Max Work on any Processor

P, QO e 0
P, IO > P, u@ [

> >

o Instantaneous load |mbalance revealed as wait time
m at completion

m at barriers Sequential Work
m at receive Max (Work + Synch Wait Time)
m at flags, even at mutex
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Improving Load Balance

Decompose into more smaller tasks (>>P)
Distribute uniformly — oo o000 0oo00
0 0O 0o o oo o o o o o
m Variable-sized task © 0 o0oloooooo
e © ¢ O |¢ © ¢ © © ©
m  Randomize mo| 0000009000
m Binpacking ® 06 ¢ 0|0 0 o ¢ 0 o
Py e 6 & o (&6 o o o o o
m  Dynamic assignment e 0 o0 0000
C O O O |C O Of © O O
Schedule more carefully B[ 2929291992999 °
m  Avoid serialization
= Estimate work for_all i =1ton do
m Use history info. for_all j=ito n do
Ali, j1=Ali-1, 1 +Al[, j-1] + ...
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Example: Barnes-Hut

(a) The spatial domain (b) Quadtree representation

o Divide space into roughly equal # particles
o Particles close together in space -> same processor

o Nonuniform, dynamically changing
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Dynamic Scheduling: Task Queues

o Centralized versus distributed queues

o Task stealing with distributed queues
m  Compromise comm & locality, increase synchronization
= Whom to steal from, how many tasks to steal, when done...
= Maximum imbalance related to size of task

process

insert tasks Py inserts R inserts P, inserts P inserts
| —
Others may
steal
All remove tasks Py removes P4 removes B removes P3 removes
(a) Centralized task queue (b) Distributed task queues (one per pr ocess)
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Impact of Dynamic Assignment

o Barnes-Hut on SGI Origin 2000 (cache-coherent shared memory):

Origin, semistatic

Origin, dynamic

30 30 — ®
—%— Challenge, semistatic —%— Challenge, dynamic
—— Origin, static —— Oirigin, static
25 —a— Challenge, static 25 —A— Challenge, static
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Self-Scheduling

volatile int row_index = 0;

while (not done) {

I* shared index variable */

initialize row_index; barrier;

while ((i = fetch_and_inc(&row_index) < n) {

for (j =i; j <n; j++) {

ALl j]=Ali-1, j] +Ali, j-1] + ...
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Reducing Serialization

Careful about assignment and orchestration
m  Including scheduling
Event synchronization

m  Reduce use of conservative synchronization

O e.g. point-to-point instead of barriers, or granularity of pt-to-pt
m  But fine-grained synch more difficult to program, more synch ops.
Mutual exclusion

m  Separate locks for separate data
o e.g. locking records in a database: lock per process, record, or field
o Lock per task in task queue, not per queue
o Finer grain => less contention/serialization, more space, less reuse
m  Smaller, less frequent critical sections
o Don’t do reading/testing in critical section, only modification
m  Stagger critical sections in time
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Impact of Load Balance Effort

o Parallelism Management overhead?

o Communication?
= Amount, size, frequency?

O Synchronization?
m [ype? frequency?
o Opportunities for replication?

o What can architecture do?
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Arch. Implications of Load Balance

o Naming

m  Global position-independent naming separates
decomposition from layout

m Allows diverse, even dynamic assignments
o Efficient Fine-grained communication & synch

m More, smaller
o Msgs
o Locks
m  Point-to-point
o Automatic replication
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Reducing Extra Work

o Common sources of extra work:
m  Computing a good partition
O e.g. partitioning in Barnes-Hut or sparse matrix
m  Using redundant computation to avoid communication

m Task, data and process management overhead
o Applications, languages, runtime systems, OS

O Imposing structure on communication
o Coalescing messages, allowing effective naming

o Architectural Implications:

m  Reduce need by making comm. and orchestration efficient
Sequential Work

Max (Work + Synch Wait Time + Comm Cost + Extra Work)
== Paralllzé:ISCEoﬁ*\zpouting \Cy; MC Glll

Speedup<




Reducing Inherent Communication

Sequential Work

Speedup<
Max (Work + Synch Wait Time + Comm Cost)

o Communication is expensive!
o Measure: communication to computation ratio
o Inherent communication

m  Determined by assignment of tasks to processes
m  One produces data consumed by others

=> Use algorithms that communicate less

=> Assign tasks that access same data to same
process

m  same row or block to same process in each iteration
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Domain Decomposition

o Works well for scientific, engineering, graphics, ...
applications

o Exploits local-biased nature of physical problems
m  Information requirements often short-range
m  Or long-range but fall off with distance

o Simple example: nearest-neighbor grid

- n — -

- n
m tation P
computatio o1, P
000000000
CeeeeeeeO
Py Ps Ps P 000000 e@0O0
Ceeeeeee0 n
000000000 D
l Ps P Pio | P Ceee0eee0eeO
oooooooooi
T X X X X X N X N¢
Po | P3| Py | Ps 000000000

Perimeter to Area comm-to-comp ratio (area to volume in 3-d)
-Depends on n,p: decreases with n, increases with p
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Domain Decomposition (contd)

Best domain decomposition depends on information requirements
Nearest neighbor example: block versus strip decomposition:

N/E) - n -

A

«[p Pg P Pio | P11

\/

%
oComm to comp: 7 for block, 2_np for strip

oApplication depende’ﬁt: strip may be better in other cases
m E.g. particle flow in tunnel
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Relation to load balance

o Scatter Decomposition, e.q. initial partition in Raytrace

12 12 12 12

3 4 3 4 3 4 3 4
12

12 12 12 12

3 4 3 4 3 4 3 4

12 12 12 12

34 | 3| 4a]|3|a]3]4
3 4

12 12 12 12

3 la | 343|434

Domain decomposition Scatter decomposition

Preserve locality in task stealing
-Steal large tasks for locality, steal from same queues, ...
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Implications of Comm-to-Comp Ratio

o Architects examine application needs to see where
to spend effort

m  bandwidth requirements (operations / sec)
m |latency requirements (sec/operation)
o time spent waiting

o Actual impact of comm. depends on structure and
cost as well

o Need to keep communication balanced across
processors as well

Sequential Work
Max (Work + Synch Wait Time + Comm Cost)
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Structuring Communication

OGIVGI’\ amounE O| comm., goa| IS EO reauce cost

o Cost of communication as seen by process:

n.J/m
C=f*(o+1+ —Cé—+tc-over/ap)

o f = frequency of messages

0 0 = overhead per message (at both ends)

o | = network delay per message

o n. = total data sent

O m = number of messages

o B = bandwidth along path (determined by network, NI, assist)

o t.= cost induced by contention per message

o overlap = amount of latency hidden by overlap with comp. or comm.

m Portion in parentheses is cost of a message (as seen by processor)
o ignoring overlap, is latency of a message

m Goal: reduce terms in latency and increase overlap
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Reducing Overhead

o Can reduce no. of messages m or overhead per message o

o o0 is usually determined by hardware or system software
m  Program should try to reduce m by coalescing messages
m  More control when communication is explicit

o Coalescing data into larger messages:
m Easy for reqular, coarse-grained communication

m  Can be difficult for irregular, naturally fine-grained
communication

O may require changes to algorithm and extra work
m coalescing data and determining what and to whom to send

o will discuss more in implications for programming models later
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Reducing Network Delay

o Network delay component = f*h*t,
O h = number of hops traversed in network
o t, = link+switch latency per hop

o Reducing f: communicate less, or make messages larger
o Reducing h:

= Map communication patterns to network topology
O e.g. nearest-neighbor on mesh and ring; all-to-all

= How important is this?
O used to be major focus of parallel algorithms

o depends on no. of processors, how t,, compares with other
components

o less important on modern machines
m  overheads, processor count, multiprogramming
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Reducing Contention

Q

All resources have nonzero occupancy

= Memory, communication controller, network link, etc.

m  Can only handle so many transactions per unit time

Effects of contention:

m Increased end-to-end cost for messages

m  Reduced available bandwidth for individual messages

m  Causes imbalances across processors

Particularly insidious performance problem

m Easy to ignore when programming

= Slow down messages that don’t even need that resource
O by causing other dependent resources to also congest

m Effect can be devastating: Don't flood a resource!
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Types of Contention

o Network contention and end-point contention (hot-spots)

o Location and Module Hot-spots

m Location: e.g. accumulating into global variable, barrier
@) sqution' tree-structured communlcatlon

Contentlon Little contentlon

%\Q Ty

6‘\ /\

Flat . Iree struct

«Module: all-to-all personalized comm. in"matfix transpose

-solution: stagger access by different processors to same
node temporally

«In general, reduce burstiness; may conflict with making
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Overlapping Communication

o Cannot afford to stall for high latencies
0 Even on uniprocessors!

o Overlap with computation or communication to hide
latency

o Requires extra concurrency (slackness), higher
bandwidth
o Techniques:
m Prefetching
m Block data transfer
m Proceeding past communication
= Multithreading
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Communication Scaling (NPB2)

Normalized Msgs per Proc
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Communication Scaling: Volume
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What is a Multiprocessor?

o A collection of communicating processors
m \View taken so far
m  Goals: balance load, reduce inherent
communication and extra work
o A multi-cache, multi-memory system

m Role of these components essential regardless of
programming model

m Prog. model and comm. abstr. affect specific
performance tradeoffs
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Memory-oriented View

o Multiprocessor as Extended Memory Hierarchy
O as seen by a given processor
o Levels in extended hierarchy:
m Registers, caches, local memory, remote memory

(topology)
m  Glued together by communication architecture

m Levels communicate at a certain granularity of data
transfer

o Need to exploit spatial and temporal locality in hierarchy
m  Otherwise extra communication may also be caused
m  Especially important since communication is expensive
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Uniprocessor

@

Performance depends heavily on memory hierarchy
o Time spent by a program
Time,,,(1) = Busy(1) + Data Access(1)

m Divide by cycles to get CPI equation
o Data access time can be reduced by:

0 Optimizing machine: bigger caches, lower latency...
O Optimizing program: temporal and spatial locality
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Extended Hierarchy

o Idealized view: local cache hierarchy + single main memory
o But reality is more complex
m Centralized Memory: caches of other processors
m Distributed Memory: some local, some remote; + network
topology
= Management of levels
o caches managed by hardware
O main memory depends on programming model
n SAS: data movement between local and remote transparent
n message passing: explicit
m Levels closer to processor are lower latency and higher bandwidth
m  Improve performance through architecture or program locality
m  Tradeoff with parallelism; need good node performance and
parallelism
Oct-7-09
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Artifactual Communication

o AcCCesses not satistied in local portion of memory

hierachy cause communication

m  Inherent communication, implicit or explicit, causes
transfers

O determined by program
m Artifactual communication

o determined by program implementation and arch.
interactions

poor allocation of data across distributed memories
unnecessary data in a transfer

unnecessary transfers due to system granularities
redundant communication of data

o finite replication capacity (in cache or main memory)

m  Inherent communication assumes unlimited capacity, small
transfers, perfect knowledge of what is needed.
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Communication and Replication

o Comm induced by finite capacity is most fundamental artifact
m Like cache size and miss rate or memory traffic in uniprocessors
m  Extended memory hierarchy view useful for this relationship

o View as three level hierarchy for simplicity
m Local cache, local memory, remote memory (ignore network
topology)
o Classify "misses” in “cache” at any level as for uniprocessors
O compulsory or cold misses (no size effect)
O capacity misses (yes)
o conflict or collision misses (yes)
O communication or coherence misses (no)

m Each may be helped/hurt by large transfer granularity (spatial
locality)

” o
= e McGill
Parallel Computing w



Working Set Perspective
mme next further one)

CapaC|ty generated traffi
|nc|ud|ng conflicts
Se/c? working set

[Other capacity-independent communicatiof
VWL WL WL W W W W W W
Lherent communlcatlon|

Data traffic

Cold-start (compulsory) traffig
Replication capacity (cache size)

Hierarchy of working sets
At first level cache (fully assoc, one-word block), inherent to algorithm

O  working set curve for program
Traffic from any type of miss can be local or nonlocal (communication)

B <]
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Orchestration for Performance

o Reducing amount of communication:

m Inherent: change logical data sharing
patterns in algorithm

m Artifactual: exploit spatial, temporal
locality in extended hierarchy

o Techniques often similar to those on
UNiprocessors

o Structuring communication to reduce
cost

” o
= e McGill
Parallel Computing w



Reducing Artifactual
Communication

o Message passing model
m  Communication and replication are both explicit
m  Even artifactual communication is in explicit messages
o send data that is not used
o Shared address space model
m  More interesting from an architectural perspective

m  Occurs transparently due to interactions of program and
system

O sizes and granularities in extended memory hierarchy
O Use shared address space to illustrate issues
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Exploiting Temporal Locality

m Structure algorithm so working sets map well to hierarchy
o often techniques to reduce inherent communication do well here
o schedule tasks for data reuse once assigned

m  Multiple data structures in same phase
O e.g. database records: local versus remote

= Solver example: blocking

600 0 0 0 0 00 0 00 000
00 0 0 0 0 0 0 00 0 000 00 0O 0O 0 0 00 0 0 0 000
00 oo e o 0 e T =>0--0-0
0 o | &Fr—o—0—0—0—0—0— =0 [0 O oo //// 00
oo%oo oo oo
0 o | &=<Fo—o—0—0—0—0— =0 |0 0 00|t = oxe
0o ———— 00 o0 o0
00 00 o0 00
oo oo oo fele
00 00 o © 00
0 0 00 0 o 00
00 06 oo 00
00 0 0 0 0 0 0 0 0 0 000 00 0 0O 0 0 0 0 0 0 000
T o . = < — = === === )= O O O

(@)

€]

(3) Unblocked a £ ina .(b) Blocked a { ith B

-More useful when ‘O{#*% computation on O(r) data
-many linear algebra computations (factorization, matrix multiply)
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Exploiting Spatial Locality

O Besides capacity, granularities are important:
m  Granularity of allocation
m  Granularity of communication or data transfer
m  Granularity of coherence
o Major spatial-related causes of artifactual communication:
m  Conflict misses
m Data distribution/layout (allocation granularity)
m  Fragmentation (communication granularity)
m  False sharing of data (coherence granularity)
o All depend on how spatial access patterns interact with data
structures
m Fix problems by modifying data structures, or layout/alignment
o Examine later in context of architectures
m  one simple example here: data distribution in SAS solver
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Spatial Locality Example

o Repeated sweeps over 2-d grid, each time adding 1 to
elements Contiguity in memory layout

m Natural 2-d versus hi -

r‘-;AH:l! I';AQ\;A! !;LIr;A!L-!L‘l! !I
Pg Pi 122 E3

1 | I

1 1 1

Py Ps f Ps Py
Pg / |:

L]

/ \
Pag§ > tragdles daries: Cache block
P grtmon Sinetien straddles partition
difficult to distribute
boundary

memory well

sional array
BE S
Po P1 Bp Pi
Py Ps Be Py
1 4

Page does

not straddle Cache block is
partition within a partition
boundary

(a) Two-dimensional array
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Architectural Implications of
Locality

o Communication abstraction that makes exploiting it easy

o For cache-coherent SAS, e.g.:

m Size and organization of levels of memory hierarchy
o cost-effectiveness: caches are expensive
O caveats: flexibility for different and time-shared workloads
m  Replication in main memory useful? If so, how to manage?
o hardware, OS/runtime, program?
m  Granularities of allocation, communication, coherence (?)
o small granularities => high overheads, but easier to
program
o Machine granularity (resource division among
processors, memory...)
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Tradeoffs with Inherent
Communication

o Partitioning grid solver: blocks versus rows
m  Blocks still have a spatial locality problem on remote data
m  Rowwise can perform better despite worse inherent c-to-c ratio

Good spacial locality on
nonlocal accesses at

O 0 O 0 O O 0
@ © 0[C0 @& © @] e © row-oriented boudary
© 0| 0o o070 O 5="210 O  Ppoor spacial locality on
0@ | & 06o6—66—66——E—~6—%|0 0O nonlocal accesses at
SIN0) —— )9 ® o / column-oriented
00| KT O 66 6 ©6—F£——66—0 ¢ O boundary
00| FTo o o006 6o 663000 |
ocoe| O O O O O 0 0O O 0 0|0 oo
ce| O 0 O 0 O o 0o O 0 O0joo
ocoe|O0 O O 0O O 0 O O O O|e o
oe|O0O 0 O O O 0 O O O O|e o
0O@|0 O 0O 00O O 0 O 0 O0|®o0
¢ ¢ 6 6 6 6 6 ¢ ¢ ¢
o o o 0 o0 O 0 O O O
-Result depends on n and p
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Example Performance Impact
o Equation solver on SGI Orig5i0n_2000
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Worklng Sets Change W|th P
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Summary of Tradeoffs

o Different goals often have conflicting demands
m Load Balance
o fine-grain tasks
o random or dynamic assignment
s Communication
o usually coarse grain tasks
o decompose to obtain locality: not random/dynamic
m Extra Work
O coarse grain tasks
o simple assignment
m  Communication Cost:
o big transfers: amortize overhead and latency
o small transfers: reduce contention
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