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Overview 

  Process of creating a parallel program 
  Performance issues 
  Architectural interactions 

  Three major programming models 
  What primitives must a system support? 
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Performance Goal: Speedup 
  Architect Goal 

  Observe how program uses 
machine and improve the 
design to enhance 
performance 

  Programmer Goal 
  observe how the program 

uses the machine and 
improve the 
implementation to 
enhance performance 

  What do you observe? 
  Who fixes what? 
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Analysis Framework 

  Communication and load balance NP-hard in general 
  Heuristic solutions work well in practice 

  Fundamental Tension among: 
  Balanced load 
  Minimal synchronization 
  Minimal communication 
  Minimal extra work 

  Good machine design mitigates the trade-offs 

Sequential Work 
Max (Work + Synch Wait Time + Comm Cost + Extra Work) 

Speedup    < 
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Load Balance and Synchronization 
Sequential Work 

Max Work on any Processor 
Speedup problem(p)  < 

  Instantaneous load imbalance revealed as wait time 
  at completion 
  at barriers 
  at receive 
  at flags, even at mutex 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 

Sequential Work 
Max (Work + Synch Wait Time) 
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Improving Load Balance 
  Decompose into more smaller tasks (>>P) 
  Distribute uniformly 

  Variable-sized task 
  Randomize 
  Bin packing 
  Dynamic assignment 

  Schedule more carefully 
  Avoid serialization 
  Estimate work 
  Use history info. 

P 0 

P 1 

P 2 

P 4 

for_all i = 1 to n do  

     for_all j = i to n do  

               A[ i, j ] = A[i-1, j] + A[i, j-1] + ... 
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(a) The spatial domain (b) Quadtree representation

Example: Barnes-Hut  

  Divide space into roughly equal # particles 
  Particles close together in space -> same processor 
  Nonuniform,  dynamically changing 
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Dynamic Scheduling: Task Queues 
  Centralized versus distributed queues 
  Task stealing with distributed queues 

  Compromise comm & locality, increase synchronization 
  Whom to steal from, how many tasks to steal, when done... 
  Maximum imbalance related to size of task 

QQ 0 Q2Q1 Q3

All remove tasks

P0 inserts P1 inserts P2 inserts P3 inserts

P0 removes P1 removes P2 removes P3 removes

(b) Distributed task queues (one per pr ocess)

Others may
steal

All processes
insert tasks

(a) Centralized task queue
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Impact of Dynamic Assignment 
  Barnes-Hut on SGI Origin 2000 (cache-coherent shared memory): 
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Self-Scheduling 
volatile int row_index = 0;  /* shared index variable */ 

while (not done) { 

     initialize row_index; barrier; 

     while ((i = fetch_and_inc(&row_index) < n) { 

          for (j = i; j < n; j++) { 

               A[ i, j ] = A[i-1, j] + A[i, j-1] + ... 

          } 

     } 

} 
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Reducing Serialization 
  Careful about assignment and orchestration 

  Including scheduling 

  Event synchronization 
  Reduce use of conservative synchronization 

  e.g. point-to-point instead of barriers, or granularity of pt-to-pt 

  But fine-grained synch more difficult to program, more synch ops.  

  Mutual exclusion 
  Separate locks for separate data 

  e.g. locking records in a database: lock per process, record, or field 
  Lock per task in task queue, not per queue 
  Finer grain => less contention/serialization,  more space, less reuse 

  Smaller, less frequent critical sections 
  Don’t do  reading/testing in critical section, only modification 

  Stagger critical sections in time 
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Impact of Load Balance Effort 

  Parallelism Management overhead? 
  Communication? 

  Amount, size, frequency? 

  Synchronization? 
  Type? frequency? 

  Opportunities for replication? 

  What can architecture do? 



Oct-7-09 ECSE 420 
Parallel Computing 

Arch. Implications of Load Balance 

  Naming 
  Global position-independent naming separates 

decomposition from layout 
  Allows diverse, even dynamic assignments 

  Efficient Fine-grained communication & synch 
  More, smaller  

  Msgs 
  Locks 

  Point-to-point 

  Automatic replication 
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Reducing Extra Work 
  Common sources of extra work: 

  Computing a good partition 
  e.g. partitioning in Barnes-Hut or sparse matrix 

  Using redundant computation to avoid communication 
  Task, data and process management overhead 

  Applications, languages, runtime systems, OS 
    Imposing structure on communication 

  Coalescing messages, allowing effective naming 

  Architectural Implications: 
  Reduce need by making comm. and orchestration efficient 

Sequential Work 
Max (Work + Synch Wait Time + Comm Cost + Extra Work) 

Speedup< 
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Reducing Inherent Communication 

  Communication is expensive!  
  Measure: communication to computation ratio 
  Inherent communication  

  Determined by assignment of tasks to processes 
  One produces data consumed by others 

=> Use algorithms that communicate less 
=> Assign tasks that access same data to same 

process 
  same row or block to same process in each iteration 

Sequential Work 
Max (Work + Synch Wait Time + Comm Cost) 

Speedup< 
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Perimeter to Area comm-to-comp ratio (area to volume in 3-d) 
• Depends on n,p:  decreases with n, increases with p 

P0 P1 P2 P3
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n n
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n
p

P15

Domain Decomposition 
  Works well for scientific, engineering, graphics, ... 

applications 
  Exploits local-biased nature of physical problems 

  Information requirements often short-range 
  Or long-range but fall off with distance 

  Simple example:  nearest-neighbor grid 
computation 
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Domain Decomposition (contd) 

 Comm to comp:           for block,         for strip 
 Application dependent: strip may be better in other cases 

 E.g. particle flow in tunnel 

4*√p 
n 

2*p 
n 

Best domain decomposition depends on information requirements 
Nearest neighbor example:  block versus strip decomposition: 
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Relation to load balance 
  Scatter Decomposition, e.g. initial partition in Raytrace 

Preserve locality in task stealing 
• Steal large tasks for locality, steal from same queues, ... 
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Implications of Comm-to-Comp Ratio 

  Architects examine application needs to see where 
to spend effort 
  bandwidth requirements (operations / sec) 

  latency requirements (sec/operation) 
  time spent waiting 

  Actual impact of comm. depends on structure and  
cost as well 

  Need to keep communication balanced across 
processors as well 

Sequential Work 
Max (Work + Synch Wait Time + Comm Cost) 

Speedup   < 
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Structuring Communication 
 Given amount of comm., goal is to reduce cost 
 Cost of communication as seen by process: 

   C = f * ( o + l +           + tc - overlap) 

  f = frequency of messages 
 o = overhead per message (at both ends) 
  l = network delay per message 
 nc = total data sent 

 m = number of messages 
 B = bandwidth along path (determined by network, NI, assist) 
  tc = cost induced by contention per message 

 overlap = amount of latency hidden by overlap with comp. or comm. 

    Portion in parentheses is cost of a message (as seen by processor) 
  ignoring overlap, is latency of a message 

 Goal: reduce terms in latency and increase overlap 

nc/m 
B 
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Reducing Overhead 
  Can reduce no. of messages m or overhead per message o 

  o is usually determined by hardware or system software 
  Program should try to reduce m by coalescing messages 
  More control when communication is explicit 

  Coalescing data into larger messages: 
  Easy for regular, coarse-grained communication 
  Can be difficult for irregular, naturally fine-grained 

communication 
  may require changes to algorithm and extra work  

  coalescing data and determining what and to whom to send 

  will discuss more in implications for programming models later 



Oct-7-09 ECSE 420 
Parallel Computing 

Reducing Network Delay 
  Network delay component = f*h*th 

  h = number of hops traversed in network 
  th = link+switch latency per hop  

  Reducing f: communicate less, or make messages larger 
  Reducing h: 

  Map communication patterns to network topology 
  e.g. nearest-neighbor on mesh and ring; all-to-all 

  How important is this? 

  used to be major focus of parallel algorithms 

  depends on no. of processors, how th, compares with other 
components 

  less important on modern machines 
  overheads, processor count, multiprogramming 
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Reducing Contention 
  All resources have nonzero occupancy 

  Memory, communication controller, network link, etc. 
  Can only handle so many transactions per unit time 

  Effects of contention: 
  Increased end-to-end cost for messages 
  Reduced available bandwidth for individual messages 
  Causes imbalances across processors 

  Particularly insidious performance problem 
  Easy to ignore when programming 
  Slow down messages that don’t even need that resource 

  by causing other dependent resources to also congest 

  Effect can be devastating:  Don’t flood a resource! 
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• Module: all-to-all personalized comm. in matrix transpose 

– solution: stagger access by different processors to same 
node temporally 

• In general, reduce burstiness; may conflict with making 
messages larger 

Flat Tree structured

Contention Little contention

Types of Contention 
  Network contention and end-point contention (hot-spots) 
  Location and Module Hot-spots 

  Location: e.g. accumulating into global variable, barrier 
  solution: tree-structured communication 
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Overlapping Communication 
  Cannot afford to stall for high latencies 

    Even on uniprocessors! 

  Overlap with computation or communication to hide 
latency 

  Requires extra concurrency (slackness), higher 
bandwidth 

  Techniques: 
  Prefetching 
  Block data transfer 
  Proceeding past communication 
  Multithreading 
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Communication Scaling (NPB2) 

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0 10 20 30 40

FT
IS
LU
MG
SP
BT

0

1

2

3

4

5

6

7

8

0 10 20 30 40

FT
IS
LU
MG
SP
BT

Normalized Msgs per Proc Average Message Size 



Oct-7-09 ECSE 420 
Parallel Computing 

Communication Scaling: Volume 
Bytes per Processor
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What is a Multiprocessor? 

  A collection of communicating processors 
  View taken so far 
  Goals: balance load, reduce inherent 

communication and extra work 

  A multi-cache, multi-memory system 
  Role of these components essential regardless of  

programming model 
  Prog. model  and comm. abstr. affect specific 

performance tradeoffs 
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Memory-oriented View 
  Multiprocessor as Extended Memory Hierarchy 

  as seen by a given processor 

  Levels in extended hierarchy: 
  Registers, caches, local memory, remote memory 

(topology) 
  Glued together by communication architecture 
  Levels communicate at a certain granularity of data 

transfer 

  Need to exploit spatial and temporal locality in hierarchy 
  Otherwise extra communication may also be caused 
  Especially important since communication is expensive 
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Uniprocessor 
  Performance depends heavily on memory hierarchy 
  Time spent by a program 

Timeprog(1) = Busy(1) + Data Access(1) 

  Divide by cycles to get CPI equation 

  Data access time can be reduced by: 
    Optimizing machine: bigger caches, lower latency... 
    Optimizing program: temporal and spatial locality 
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Extended Hierarchy 
  Idealized view: local cache hierarchy + single main memory 
  But reality is more complex 

  Centralized Memory: caches of other processors 
  Distributed Memory: some  local, some remote; + network 

topology 
  Management of levels 

  caches managed by hardware 
  main memory depends on programming model 

  SAS: data movement between local and remote transparent 

  message passing: explicit 

  Levels closer to processor are lower latency and higher bandwidth 
  Improve performance through architecture or program locality 
  Tradeoff with parallelism; need good node performance and 

parallelism 
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Artifactual Communication 

  Accesses not satisfied in local portion of memory 
hierachy cause communication 
  Inherent communication,  implicit or explicit, causes 

transfers 
  determined by program 

    Artifactual communication 
  determined by program implementation and arch. 

interactions 
  poor allocation of data across distributed memories 
  unnecessary data in a transfer 
  unnecessary transfers due to system granularities 
  redundant communication of data 
  finite replication capacity (in cache or main memory) 

  Inherent communication assumes unlimited capacity, small 
transfers, perfect knowledge of what is needed.   



Oct-7-09 ECSE 420 
Parallel Computing 

Communication and Replication 
  Comm induced by finite capacity is most fundamental artifact 

  Like cache size and miss rate or memory traffic in uniprocessors 
  Extended memory hierarchy view  useful for this relationship 

  View as three level hierarchy for simplicity 
  Local cache, local memory, remote memory (ignore network 

topology) 

  Classify “misses” in “cache” at any level as for uniprocessors 
  compulsory or cold misses (no size effect) 
  capacity misses (yes) 
  conflict  or collision misses (yes) 
  communication  or coherence misses (no) 

    Each may be helped/hurt by large transfer granularity (spatial 
locality) 
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Working Set Perspective 

  Hierarchy of working sets 
  At first level cache (fully assoc, one-word block), inherent to algorithm 

  working set curve for program 
  Traffic from any type of miss can be local or nonlocal (communication) 

• At a given level of the hierarchy (to the next further one) 

First working set 

Capacity-generated traf fic 
(including conflicts) 

Second working set 

D
at

a 
tra

f fic 

Other capacity-independent communication 
Cold-start (compulsory) traf fic 

Replication capacity (cache size) 
Inher ent communication 
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Orchestration for Performance 

  Reducing amount of communication: 
  Inherent: change logical data sharing 

patterns in algorithm 
  Artifactual: exploit spatial, temporal 

locality in extended hierarchy 
  Techniques often similar to those on 

uniprocessors 

  Structuring communication to reduce 
cost 
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Reducing Artifactual 
Communication 
  Message  passing model 

  Communication and replication are both explicit 
  Even artifactual communication is in explicit messages 

  send data that is not used 

  Shared address space model 
  More interesting from an architectural perspective 
  Occurs transparently due to interactions of program and 

system 
  sizes and granularities in extended memory  hierarchy 

  Use shared address space to illustrate issues 
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Exploiting Temporal Locality 
  Structure algorithm so working sets map well to hierarchy 

  often techniques to reduce inherent communication do well here 
  schedule tasks for data reuse once assigned 

  Multiple data structures in same phase 
  e.g. database records: local versus remote 

  Solver example: blocking 

• More useful when O(nk+1) computation on O(nk) data  

– many linear algebra computations (factorization, matrix multiply) 

(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B = 4 
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Exploiting Spatial Locality 
  Besides capacity, granularities are important: 

  Granularity of allocation 
  Granularity of communication or data transfer 
  Granularity of coherence 

  Major spatial-related causes of artifactual communication: 
  Conflict misses 
  Data distribution/layout (allocation granularity) 
  Fragmentation (communication granularity) 
  False sharing of data (coherence granularity) 

  All depend on how spatial access patterns interact with data 
structures 
  Fix problems by modifying data structures, or layout/alignment 

  Examine later in context of architectures 
  one simple example here: data distribution in SAS solver 



Oct-7-09 ECSE 420 
Parallel Computing 

Spatial Locality Example 
    Repeated sweeps over 2-d grid, each time adding 1 to 

elements 
    Natural 2-d versus higher-dimensional array 

representation 

P 6 P 7 P 4 

P 8 

P 0 P 3 

P 5 P 6 P 7 P 4 

P 8 

P 0 P 1 P 2 P 3 

P 5 

P 2 P 1 

Page straddles 
partition boundaries: 
difficult to distribute  
memory well 

Cache block 
straddles partition 
boundary 

(a) Two-dimensional array 

Page does 
not straddle 
partition 
boundary 

Cache block is  
within a partition 

(b) Four-dimensional array 

Contiguity in memory layout 
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Architectural Implications of 
Locality 
  Communication abstraction that makes exploiting it easy 
  For cache-coherent SAS, e.g.: 

  Size and organization of  levels of memory hierarchy 
  cost-effectiveness: caches are expensive 
  caveats: flexibility for different and time-shared workloads 

  Replication in main memory useful? If so, how to manage? 
  hardware, OS/runtime, program? 

  Granularities of allocation, communication, coherence (?) 
  small granularities => high overheads, but easier to 

program 

  Machine granularity (resource division among 
processors, memory...) 
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Tradeoffs with Inherent 
Communication 
  Partitioning grid solver: blocks versus rows 

  Blocks still have a spatial locality problem on remote data 
  Rowwise can perform better despite worse inherent c-to-c ratio 

• Result depends on n and p 

Good spacial locality on 
nonlocal accesses at 
row-oriented boudary 

Poor spacial locality on 
nonlocal accesses at 
column-oriented 
boundary 
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Example Performance Impact 
  Equation solver on SGI Origin2000 
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Working Sets Change with P 

8-fold reduction 
in miss rate from 
4 to 8 proc 
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Where the Time Goes: LU-a 
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Summary of Tradeoffs 
  Different goals often have conflicting demands 

  Load Balance 
  fine-grain tasks 
  random or dynamic assignment 

  Communication 
  usually coarse grain tasks 
  decompose to obtain locality:  not random/dynamic 

  Extra Work 
  coarse grain tasks 
  simple assignment 

  Communication Cost: 
  big transfers: amortize overhead and latency 
  small transfers: reduce contention 


