
Application and
Programming Overview

Zeljko Zilic
McConnell Engineering Building
Room 546

Sep-28-09 ECSE 420
Parallel Computing

Overview
  Motivating Problems (application case

studies)

  Process of creating a parallel program

  What a simple parallel program looks like
  Three major programming models
  What primitives must a system support?

  Later: Performance issues and architectural
interactions

Sep-28-09 ECSE 420
Parallel Computing

Simulating Ocean Currents

  Model as two-dimensional grids
  Discretize in space and time
  finer spatial and temporal resolution => greater accuracy

  Many different computations per time step
  set up and solve equations

  Concurrency across and within grid computations
  Static and regular

(a) Cross sections (b) Spatial discretization of a cross section

Sep-28-09 ECSE 420
Parallel Computing

Simulating Galaxy Evolution
 Simulate the interactions of many stars evolving over time
 Computing forces is expensive

 O(n2) brute force approach

 Barnes-Hut: Hierarchical Method for gravtation: G
m1m2

r2

• Many time-steps, plenty of concurrency across stars within one

Star on which for ces
are being computed

Star too close to
approximate

Small group far enough away to
approximate to center of mass

Large gr oup far
enough away to
approximate

Sep-28-09 ECSE 420
Parallel Computing

Rendering Scenes by Ray Tracing
  Shoot rays into scene through pixels in image plane
  Follow their paths

  they bounce around as they strike objects
  they generate new rays: ray tree per input ray

  Result is color and opacity for that pixel
  Parallelism across rays

  How much concurrency in these examples?

Sep-28-09 ECSE 420
Parallel Computing

Creating a Parallel Program

 Pieces of the job:
 Identify work that can be done in parallel

 work includes computation, data access and I/O

 Partition work and perhaps data among processes
 Manage data access, communication and
synchronization

Sep-28-09 ECSE 420
Parallel Computing

Definitions
  Task:

  Arbitrary piece of work (fine- or coarse-grain)

  Executed sequentially; concurrency is only across tasks

  E.g. a particle/cell in Barnes-Hut, a ray or ray group in Raytrace

  Process (thread):

  Abstract entity that performs the tasks assigned to processes

  Processes communicate and synchronize to perform their tasks

  Processor:
  Physical engine on which process executes
  Processes virtualize machine to programmer

  Write program in terms of processes, then map to processors

Sep-28-09 ECSE 420
Parallel Computing

Steps in Making Parallel Programs

  Decomposition of computation in tasks
  Assignment of tasks to processes
  Orchestration of data access, comm, synch.
  Mapping processes to processors

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Sep-28-09 ECSE 420
Parallel Computing

Decomposition
  Identify concurrency and decide level at which

to exploit it
  Break up computation into tasks to be divided

among processes
  Tasks may become available dynamically
  No. of available tasks may vary with time

  Goal: Enough tasks to keep processes busy, but
not too many
  Number of tasks available at a time is upper bound on

achievable speedup

Sep-28-09 ECSE 420
Parallel Computing

Working Around Amdahl’s Law
 If fraction s of seq execution is inherently serial,

 speedup <= 1/s
 Example: 2-phase calculation

  sweep over n-by-n grid and do some independent computation
  sweep again and add each value to global sum

 Time for first phase = n2/p
 Second phase serialized at global variable, so time = n2

 Speedup <= or at most 2

 Trick: divide second phase into two
 Accumulate into private sum during sweep
 Add per-process private sum into global sum

 Parallel time is n2/p + n2/p + p, and speedup at best

2n2
n2
p + n2

p*2n2

2n2 + p2

Sep-28-09 ECSE 420
Parallel Computing

Visualizing Amdahl’s Law

1

p

1

p

1

n2/p

n2

p

w
or

k
do

ne
 c

on
cu

rr
en

tly

n2

n2

Time
n2/p n2/p

(c)

(b)

(a)

Sep-28-09 ECSE 420
Parallel Computing

Concurrency Profiles

 Area under curve is total work done (with 1 processor)
 Horizontal extent is lower bound on time (infinite processors)

 Speedup is the ratio: , base case:

C
o
n
c
u
r
r
e
n
c
y

1
5
0

2
1
9

2
4
7

2
8
6

3
1
3

3
4
3

3
8
0

4
1
5

4
4
4

4
8
3

5
0
4

5
2
6

5
6
4

5
8
9

6
3
3

6
6
2

7
0
2

7
3
30

200

400

600

800

1,000

1,200

1,400

Clock cycle number

fk k

fk
k
p ∑

k=1
∞
∑
k=1

∞
1

s + 1-s
p

Sep-28-09 ECSE 420
Parallel Computing

Assignment
  Specify mechanism to divide work up among processes

  E.g. which process computes forces on which stars, or which rays
  Balance workload, reduce communication and management cost

  Structured approaches usually work well
  Code inspection (parallel loops) or understanding of application
  Well-known heuristics
  Static versus dynamic assignment

  Programmers worry about partitioning first
  Usually independent of architecture or prog. model
  But cost and complexity of using primitives may affect decisions

Sep-28-09 ECSE 420
Parallel Computing

Orchestration
  Naming data
  Structuring communication
  Synchronization
  Organizing data structures and scheduling tasks temporally

  Goals
  Reduce cost of communication and synch.
  Preserve locality of data reference
  Schedule tasks to satisfy dependences early
  Reduce overhead of parallelism management

  Function of Prog. Model, comm. abstraction, primitives
  Architects should provide appropriate primitives efficiently

Sep-28-09 ECSE 420
Parallel Computing

Mapping
  Two aspects:

  Which process runs on which particular processor?
  mapping to a network topology

  Will multiple processes run on same processor?

  Space-sharing
  Machine divided into subsets, only one app at a time in a

subset
  Processes can be pinned to processors, or left to OS

  System allocation
  Real world

  User specifies desires in some aspects, system handles some

  Usually adopt the view: process <-> processor

Sep-28-09 ECSE 420
Parallel Computing

Parallelizing Computation vs. Data
  Computation partitioned (decomposed & assigned)

  Partitioning Data is often a natural view too
  Computation follows data: owner computes
  Grid example; data mining;

  Distinction between comp. and data stronger in
many apps
  Barnes-Hut
  Raytrace

Sep-28-09 ECSE 420
Parallel Computing

Architect’s Perspective
  What can be addressed by hardware design?
  What is fundamentally a programming issue?

Sep-28-09 ECSE 420
Parallel Computing

High-level Goals

  High performance (speedup over sequential program)

  Low resource usage and development effort

  Implications for algorithm designers and architects?

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload
Reduce communication volume

Orchestration Yes Reduce noninherent communication via data
locality

Reduce communication and synchronization cost
as seen by the processor

Reduce serialization at shared resources
Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if
necessary

Exploit locality in network topology

What Parallel Programs Are Like?

Sep-28-09 ECSE 420
Parallel Computing

Example: Iterative Equation Solver
  Simplified version of a piece of Ocean simulation
  Illustrate program in low-level parallel language

  C-like pseudocode with simple extensions for parallelism
  Expose basic comm. and synch. primitives
  State of most real parallel programming today

A[i,j] = 0.2 × (A[i,j] + A[i,j – 1] + A[i – 1, j] +
A[i,j + 1] + A[i + 1, j])

Expression for updating each interior point:

Sep-28-09 ECSE 420
Parallel Computing

Grid Solver

  Gauss-Seidel (near-neighbor) sweeps to convergence
  Interior n-by-n points of (n+2)-by-(n+2) updated in each sweep
  Updates done in-place in grid
  Difference from previous value computed
  Accumulate partial diffs into global diff at end of every sweep
  Convergence check

  Within a tolerance parameter

A[i,j] = 0.2 × (A[i,j] + A[i,j – 1] + A[i – 1, j] +
A[i,j + 1] + A[i + 1, j])

Expression for updating each interior point:

Sep-28-09 ECSE 420
Parallel Computing

Sequential Version
1. int n; /*size of matrix: (n + 2-by-n + 2) elements*/
2. float **A, diff = 0;

3. main()
4. begin
5. read(n) ; /*read input parameter: matrix size*/
6. A ← malloc (a 2-d array of size n + 2 by n + 2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float diff = 0, temp;
15. while (!done) do /*outermost loop over sweeps*/
16. diff = 0; /*initialize maximum difference to 0*/
17. for i ← 1 to n do /*sweep over nonborder points of grid*/
18. for j ← 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. diff += abs(A[i,j] - temp);
23. end for
24. end for
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

Sep-28-09 ECSE 420
Parallel Computing

Decomposition

  Concurrency O(n) along anti-diagonals, serialization O(n) along diag.
  Retain loop structure, use pt-to-pt synch; Problem: too many syncs
  Restructure loops, use global synch; imbalance and too much synch

• Simple way to identify concurrency: look at loop iterations
– dependence analysis; if not enough concurrency, look further

• Not much concurrency here at this level (all loops sequential)
• Study dependencies

Sep-28-09 ECSE 420
Parallel Computing

Exploit Domain Knowledge

  Different ordering of updates: may converge quicker or slower

  Red sweep and black sweep are each fully parallel:
  Global synch between them (conservative but convenient)

  Can use simpler, asynchronous one to illustrate
  No red-black, simply ignore dependences within sweep

  Program nondeterministic

Red point

Black point

• Reorder grid traversal: red-black ordering

Sep-28-09 ECSE 420
Parallel Computing

Decomposition

  Decomposition into elements: degree of concurrency n2

  Decompose into rows? Degree ?
  for_all assignment ??

15. while (!done) do /*a sequential loop*/
16. diff = 0;
17. for_all i ← 1 to n do /*a parallel loop nest*/
18. for_all j ← 1 to n do
19. temp = A[i,j];
20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. diff += abs(A[i,j] - temp);
23. end for_all
24. end for_all
25. if (diff/(n*n) < TOL) then done = 1;
26. end while

Sep-28-09 ECSE 420
Parallel Computing

Assignment

 Static assignment: decomposition into rows
– Block assignment of rows: Row i is assigned to process
– Cyclic assignment of rows: process i is assigned rows i, i+p, ...

– Dynamic assignment
 Get a row index, work on the row, get a new row, ...

 What is the mechanism?
 Concurrency? Volume of Communication?

i
p

P0

P1

P2

P4

Sep-28-09 ECSE 420
Parallel Computing

Data Parallel Solver
1. int n, nprocs; /*grid size (n + 2-by-n + 2) and number of processes*/
2. float **A, diff = 0;

3. main()
4. begin
5. read(n); read(nprocs); ; /*read input grid size and number of processes*/
6. A ← G_MALLOC (a 2-d array of size n+2 by n+2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve(A) /*solve the equation system*/
11. float **A; /*A is an (n + 2-by-n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float mydiff = 0, temp;
14a. DECOMP A[BLOCK,*, nprocs];
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = 0; /*initialize maximum difference to 0*/
17. for_all i ← 1 to n do /*sweep over non-border points of grid*/
18. for_all j ← 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. mydiff[i,j] = abs(A[i,j] - temp);
23. end for_all
24. end for_all
24a. REDUCE (mydiff, diff, ADD);
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

Sep-28-09 ECSE 420
Parallel Computing

Shared Memory Solver

  Assignment controlled by values of loop bound variables

Single Program Multiple Data (SPMD)

Sweep

Test Convergence

Processes

Solve Solve Solve Solve

Sep-28-09 ECSE 420
Parallel Computing

1. int n, nprocs; /*matrix dimension and number of processors to be used*/
2a. float **A, diff; /*A is global (shared) array representing the grid*/

/*diff is global (shared) maximum difference in current sweep*/
2b. LOCKDEC(diff_lock); /*declaration of lock to enforce mutual exclusion*/
2c. BARDEC (bar1); /*barrier declaration for global synchronization between sweeps*/

3. main()
4. begin
5. read(n); read(nprocs); /*read input matrix size and number of processes*/
6. A ← G_MALLOC (a two-dimensional array of size n+2 by n+2
doubles);
7. initialize(A); /*initialize A in an unspecified way*/
8a. CREATE (nprocs–1, Solve, A);
8. Solve(A); /*main process becomes a worker too*/
8b. WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/
9. end main

10. procedure Solve(A)
11. float **A; /*A is entire n+2-by-n+2 shared array,

as in the sequential program*/
12. begin
13. ----
27. end procedure

Generating Threads

Sep-28-09 ECSE 420
Parallel Computing

Assignment Mechanism
10. procedure Solve(A)
11. float **A; /*A is entire n+2-by-n+2 shared array,

 as in the sequential program*/
12. begin
13. int i,j, pid, done = 0;
14. float temp, mydiff = 0; /*private variables*/
14a. int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/
14b. int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/

15. while (!done) do /*outer loop sweeps*/
16. mydiff = diff = 0; /*set global diff to 0 (okay for all to do it)*/
16a. BARRIER(bar1, nprocs); /*ensure all reach here before anyone modifies diff*/
17. for i ← mymin to mymax do /*for each of my rows*/
18. for j ← 1 to n do /*for all nonborder elements in that row*/
19. temp = A[i,j];
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. mydiff += abs(A[i,j] - temp);
23. endfor
24. endfor
25a. LOCK(diff_lock); /*update global diff if necessary*/
25b. diff += mydiff;
25c. UNLOCK(diff_lock);
25d. BARRIER(bar1, nprocs); /*ensure all reach here before checking if done*/
25e. if (diff/(n*n) < TOL) then done = 1; /*check convergence; all get

same answer*/
25f. BARRIER(bar1, nprocs);
26. endwhile
27. end procedure

Sep-28-09 ECSE 420
Parallel Computing

SM Program
  SPMD: not lockstep. Not necessarily same instructions
  Assignment controlled by values of variables used as loop

bounds
  Unique pid per process, used to control assignment

  done condition evaluated redundantly by all
  Code that does the update identical to sequential program

  Each process has private mydiff variable

  Most interesting special operations are for synchronization
  Accumulations into shared diff have to be mutually exclusive
  Why the need for all the barriers?

  Good global reduction?
  Utility of this parallel accumulate???

Sep-28-09 ECSE 420
Parallel Computing

Mutual Exclusion
  Why is it needed?

  Provided by LOCK-UNLOCK around critical section
  Set of operations we want to execute atomically
  Implementation of LOCK/UNLOCK must guarantee mutual

excl.

  Serialization?

  Contention?
  Non-local accesses in critical section?
  Use private mydiff for partial accumulation!

Sep-28-09 ECSE 420
Parallel Computing

Global Event Synchronization
 BARRIER(nprocs): wait here till nprocs processes get here

  Built using lower level primitives
  Global sum example: wait for all to accumulate before using sum
  Often used to separate phases of computation

  Process P_1 Process P_2 Process P_nprocs
  set up eqn system set up eqn system set up eqn system

 Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)

  solve eqn system solve eqn system solve eqn system

 Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)

  apply results apply results apply results

 Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)

  Conservative form of preserving dependences, but easy to use

 WAIT_FOR_END (nprocs-1)

Sep-28-09 ECSE 420
Parallel Computing

Pt-to-pt Event Synch (Not Used Here)
  One process notifies another of an event so it can

proceed
  Common example: producer-consumer (bounded buffer)
  Concurrent programming on uniprocessor: semaphores
  Shared address space parallel programs: semaphores, or

use ordinary variables as flags

• Busy-waiting or spinning

P 1 P 2
A = 1;

a: while (flag is 0) do nothing; b: flag = 1;

print A;

Sep-28-09 ECSE 420
Parallel Computing

Group Event Synchronization
  Subset of processes involved

  Can use flags or barriers (involving only the subset)
  Concept of producers and consumers

  Major types:
  Single-producer, multiple-consumer
  Multiple-producer, single-consumer
  Multiple-producer, multiple-consumer

Sep-28-09 ECSE 420
Parallel Computing

Message Passing Grid Solver
  Cannot declare A to be global shared array

  compose it logically from per-process private arrays
  usually allocated in accordance with the assignment of

work
  process assigned a set of rows allocates them locally

  Transfers of entire rows between traversals
  Structurally similar to SPMD SAS
  Orchestration different

  data structures and data access/naming
  communication
  synchronization

  Ghost rows

Sep-28-09 ECSE 420
Parallel Computing

Data Layout and Orchestration
P 0

P 1

P 2

P 4

P 0

P 2

P 4

P 1

Data partition allocated per processor

Add ghost rows to hold boundary data

Send edges to neighbors

Receive into ghost rows

Compute as in sequential program

Sep-28-09 ECSE 420
Parallel Computing

10. procedure Solve()
11. begin
13. int i,j, pid, n’ = n/nprocs, done = 0;
14. float temp, tempdiff, mydiff = 0; /*private variables*/
6. myA ← malloc(a 2-d array of size [n/nprocs + 2] by n+2);

/*initialize my rows of A, in an unspecified way*/

15. while (!done) do
16. mydiff = 0; /*set local diff to 0*/

/* Exchange border rows of neighbors into myA[0,*] and myA[n’+1,*]*/
16a. if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW);
16b. if (pid = nprocs-1) then

SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW);
16c. if (pid != 0) then RECEIVE(&myA[0,0],n*sizeof(float),pid-1,ROW);
16d. if (pid != nprocs-1) then

RECEIVE(&myA[n’+1,0],n*sizeof(float), pid+1,ROW);
17. for i ← 1 to n’ do /*for each of my (nonghost) rows*/
18. for j ← 1 to n do /*for all nonborder elements in that row*/
19. temp = myA[i,j];
20. myA[i,j] = 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] +
21. myA[i,j+1] + myA[i+1,j]);
22. mydiff += abs(myA[i,j] - temp);
23. endfor
24. endfor

/*communicate local diff values and determine if
done; can be replaced by reduction and broadcast*/

25a. if (pid != 0) then /*process 0 holds global total diff*/
25b. SEND(mydiff,sizeof(float),0,DIFF);
25c. RECEIVE(done,sizeof(int),0,DONE);
25d. else /*pid 0 does this*/
25e. for i ← 1 to nprocs-1 do /*for each other process*/
25f. RECEIVE(tempdiff,sizeof(float),*,DIFF);
25g. mydiff += tempdiff; /*accumulate into total*/
25h. endfor
25i if (mydiff/(n*n) < TOL) then done = 1;
25j. for i ← 1 to nprocs-1 do /*for each other process*/
25k. SEND(done,sizeof(int),i,DONE);
25l. endfor
25m. endif
26. endwhile
27. end procedure

Sep-28-09 ECSE 420
Parallel Computing

Note on Message Passing Program
  Use of ghost rows
  Receive does not transfer data, send does

  Unlike SAS which is usually receiver-initiated (load fetches data)

  Communication done at beginning of iteration, so no asynchrony

  Communication in whole rows, not element at a time

  Core similar, but indices/bounds in local rather than global space

  Synchronization through sends and receives
  Update of global diff and event synch for done condition
  Could implement locks and barriers with messages

  Can use REDUCE and BROADCAST library calls to simplify code
/*communicate local diff values and determine if done, using reduction and broadcast*/

25b. REDUCE(0,mydiff,sizeof(float),ADD);
25c. if (pid == 0) then
25i. if (mydiff/(n*n) < TOL) then done = 1;
25k. endif
25m. BROADCAST(0,done,sizeof(int),DONE);

Sep-28-09 ECSE 420
Parallel Computing

Orchestration: Summary
  Shared address space

  Shared and private data explicitly separate
  Communication implicit in access patterns
  No correctness need for data distribution
  Synchronization via atomic operations on shared data
  Synchronization explicit and distinct from communication

  Message passing
  Data distribution among local address spaces needed
  No explicit shared structures (implicit in comm. patterns)
  Communication is explicit
  Synchronization implicit in comm. (at least in synch. case)

  mutual exclusion by fiat

Sep-28-09 ECSE 420
Parallel Computing

Send and Receive Alternatives
  Extended functionality: stride, scatter-gather, groups

  Sychronization semantics
  Affect when data structures or buffers can be reused at either end
  Affect event synch (mutual excl. by fiat: only 1 process uses data)
  Affect ease of programming and performance

  Synchronous messages provide built-in synch. through match
  Separate event synchronization may be needed with asynch.

messages

  With synch. messages, our code may hang. Fix?
Send/Receive

Synchronous Asynchronous

Blocking asynch. Nonblocking asynch.

Sep-28-09 ECSE 420
Parallel Computing

Correctness in Grid Solver

  Decomposition and Assignment similar in SAS and
message-passing

  Orchestration is different
  Data structures, data access/naming, communication,

synchronization
  Performance?

SAS Msg-Passing

Explicit global data structure? Yes No

Assignment indept of data layout? Yes No

Communication Implicit Explicit

Synchronization Explicit Implicit

Explicit replication of border rows? No Yes

