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Overview 
  Motivating Problems (application case 

studies) 

  Process of creating a parallel program 

  What a simple parallel program looks like 
  Three major programming models 
  What primitives must a system support? 

  Later: Performance issues and architectural 
interactions   
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Simulating Ocean Currents 

  Model as two-dimensional grids 
  Discretize in space and time 
  finer spatial and temporal resolution => greater accuracy 

  Many different computations per time step 
  set up and solve equations 

  Concurrency across and within grid computations 
  Static and regular 

(a) Cross sections (b) Spatial discretization of a cross section 
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Simulating Galaxy Evolution 
 Simulate the interactions of many stars evolving over time 
 Computing forces is expensive 

 O(n2) brute force approach 

 Barnes-Hut: Hierarchical Method for gravtation:  G 
m1m2 

r2 

• Many time-steps, plenty of concurrency across stars within one 

Star on which for ces
are being computed

Star too close to
approximate

Small group far enough away to
approximate to center of mass

Large gr oup far
enough away to
approximate 
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Rendering Scenes by Ray Tracing 
  Shoot rays into scene through pixels in image plane 
  Follow their paths 

  they bounce around as they strike objects 
  they generate new rays: ray tree per input ray 

  Result is color and opacity for that pixel 
  Parallelism across rays 

  How much concurrency in these examples? 
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Creating a Parallel Program 

 Pieces of the job: 
 Identify work that can be done in parallel 

 work includes computation, data access and I/O 

 Partition work and perhaps data among processes 
 Manage data access, communication and 
synchronization 
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Definitions 
  Task:  

  Arbitrary piece of work (fine- or coarse-grain) 

  Executed sequentially; concurrency is only across tasks 

  E.g. a particle/cell in Barnes-Hut, a ray or ray group in Raytrace 

  Process (thread):  

  Abstract entity that performs the tasks assigned to processes 

  Processes communicate and synchronize to perform their tasks 

  Processor:   
  Physical engine on which process executes 
  Processes virtualize machine to programmer 

  Write program in terms of processes, then map to processors 
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Steps in Making Parallel Programs 

  Decomposition of computation in tasks 
  Assignment of tasks to processes 
  Orchestration of data access, comm, synch. 
  Mapping processes to processors 

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning
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Decomposition 
  Identify concurrency and decide level at which 

to exploit it  
  Break up computation into tasks to be divided 

among processes 
  Tasks may become available dynamically 
  No. of available tasks may vary with time 

  Goal:  Enough tasks to keep processes busy, but 
not too many 
  Number of tasks available at a time is upper bound on 

achievable speedup 
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Working Around Amdahl’s Law 
 If fraction s of seq execution is inherently serial,   

  speedup <= 1/s 
 Example: 2-phase calculation 

  sweep over n-by-n grid and do some independent computation 
  sweep again and add each value to global sum 

 Time for first phase = n2/p 
 Second phase serialized at global variable, so time = n2 

 Speedup <=                    or at most 2 

 Trick: divide second phase into two 
 Accumulate into private sum during sweep 
 Add per-process private sum into global sum 

 Parallel time is n2/p + n2/p + p, and  speedup  at best  

2n2 
n2 
p + n2 

p*2n2 

2n2 + p2 
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Visualizing Amdahl’s Law 
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Concurrency Profiles 

 Area under curve is total work done (with 1 processor) 
 Horizontal extent is lower bound on time (infinite processors) 

 Speedup is the ratio:                     , base case:   
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Assignment 
  Specify mechanism to divide work up among  processes 

  E.g. which process computes forces on which stars, or which rays 
  Balance workload, reduce communication and management cost 

  Structured approaches usually work well 
  Code inspection (parallel loops) or understanding of application 
  Well-known heuristics 
  Static versus dynamic assignment 

  Programmers worry about partitioning first 
  Usually independent of architecture or prog. model 
  But cost and complexity of using primitives may affect decisions 
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Orchestration 
  Naming data 
  Structuring communication 
  Synchronization  
  Organizing data structures and scheduling tasks temporally 

  Goals 
  Reduce cost of communication and synch.  
  Preserve locality of data reference 
  Schedule tasks to satisfy dependences early 
  Reduce overhead of parallelism management 

  Function of Prog. Model, comm. abstraction, primitives  
  Architects should provide appropriate primitives efficiently 
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Mapping 
  Two aspects: 

  Which process runs on which particular processor? 
  mapping to a network topology 

  Will multiple processes run on same processor? 

  Space-sharing 
  Machine divided into subsets, only one app at a time in a 

subset 
  Processes can be pinned to processors, or left to OS 

  System allocation 
  Real world 

  User specifies desires in some aspects, system handles some 

  Usually adopt the view: process <-> processor 
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Parallelizing Computation vs. Data 
  Computation partitioned (decomposed & assigned) 

  Partitioning Data is often a natural view too 
  Computation follows data: owner computes 
  Grid example; data mining;  

  Distinction between comp. and data stronger in 
many apps 
  Barnes-Hut 
  Raytrace 
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Architect’s Perspective 
  What can be addressed by hardware design? 
  What is fundamentally a programming issue? 
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High-level Goals 

  High performance (speedup over sequential program) 

  Low resource usage and development effort 

  Implications for algorithm designers and architects? 

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload
Reduce communication volume

Orchestration Yes Reduce noninherent communication via data 
locality

Reduce communication and synchronization cost 
as seen by the processor

Reduce serialization at shared resources
Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if 
necessary

Exploit locality in network topology



What Parallel Programs Are Like? 
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Example: Iterative Equation Solver 
  Simplified version of a piece of Ocean simulation 
  Illustrate program in low-level parallel language 

  C-like pseudocode with simple extensions for parallelism 
  Expose basic comm. and synch. primitives 
  State of most real parallel programming today 

A[i,j ] = 0.2 × (A[i,j ] + A[i,j – 1] + A[i – 1, j] +
A[i,j + 1] + A[i + 1, j ])

Expression for updating each interior point:
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Grid Solver 

  Gauss-Seidel (near-neighbor) sweeps to convergence 
  Interior n-by-n points of (n+2)-by-(n+2) updated in each sweep 
  Updates done in-place in grid 
  Difference from previous value computed 
  Accumulate partial diffs into global diff at end of every sweep 
  Convergence check   

  Within a tolerance parameter 

A[i,j ] = 0.2 × (A[i,j ] + A[i,j – 1] + A[i – 1, j] +
A[i,j + 1] + A[i + 1, j ])

Expression for updating each interior point:
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Sequential Version 
1. int n; /*size of matrix: (n + 2-by-n + 2) elements*/
2. float **A, diff = 0;

3. main()
4. begin
5. read(n) ; /*read input parameter: matrix size*/
6. A ← malloc (a 2-d array of size n + 2 by n + 2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float diff = 0, temp;
15. while (!done) do /*outermost loop over sweeps*/
16. diff = 0; /*initialize maximum difference to 0*/
17. for i ← 1 to n do /*sweep over nonborder points of grid*/
18. for j ← 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. diff += abs(A[i,j] - temp);
23. end for
24. end for
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure
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Decomposition 

  Concurrency O(n) along anti-diagonals, serialization O(n) along diag. 
  Retain loop structure, use pt-to-pt synch; Problem: too many syncs 
  Restructure loops, use global synch; imbalance and too much synch 

• Simple way to identify concurrency: look at loop iterations 
– dependence analysis; if not enough concurrency, look further 

• Not much concurrency here at this level (all loops sequential) 
• Study dependencies 
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Exploit Domain Knowledge 

  Different ordering of updates: may converge quicker or slower  

  Red sweep and black sweep are each fully parallel:  
  Global synch between them (conservative but convenient) 

  Can use simpler, asynchronous one to illustrate 
  No red-black, simply ignore dependences within sweep 

  Program nondeterministic 

Red point

Black point

• Reorder grid traversal: red-black ordering 
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Decomposition 

  Decomposition into elements: degree of concurrency n2 

  Decompose into rows?   Degree ? 
  for_all  assignment ?? 

15. while (!done) do /*a sequential loop*/
16. diff = 0; 
17. for_all i ← 1 to n do /*a parallel loop nest*/
18. for_all j ← 1 to n do
19. temp = A[i,j];
20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. diff += abs(A[i,j] - temp);
23. end for_all
24. end for_all
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
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Assignment 

 Static assignment: decomposition into rows 
– Block assignment of rows: Row  i is assigned to process  
– Cyclic assignment of rows: process i is assigned rows i, i+p, ... 

– Dynamic assignment 
 Get a row index, work on the row,  get a new row,  ... 

 What is the mechanism? 
 Concurrency?  Volume of Communication? 

i 
p 

P0

P1

P2

P4
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Data Parallel Solver 
1. int n, nprocs; /*grid size (n + 2-by-n + 2) and number of processes*/
2. float **A, diff = 0;

3. main()
4. begin
5. read(n); read(nprocs); ; /*read input grid size and number of processes*/
6.  A ← G_MALLOC (a 2-d array of size n+2 by n+2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve(A) /*solve the equation system*/
11. float **A; /*A is an (n + 2-by-n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float mydiff = 0, temp;
14a. DECOMP A[BLOCK,*, nprocs];
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = 0; /*initialize maximum difference to 0*/
17. for_all i ← 1 to n do /*sweep over non-border points of grid*/
18. for_all j ← 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. mydiff[i,j] = abs(A[i,j] - temp);
23. end for_all
24. end for_all
24a. REDUCE (mydiff, diff, ADD);
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure
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Shared Memory Solver 

  Assignment controlled by values of loop bound variables  

Single Program Multiple Data (SPMD) 

Sweep

Test Convergence

Processes

Solve Solve Solve Solve
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1. int n, nprocs; /*matrix dimension and number of processors to be used*/
2a. float **A, diff; /*A is global (shared) array representing the grid*/

/*diff is global (shared) maximum difference in current  sweep*/
2b. LOCKDEC(diff_lock); /*declaration of lock to enforce mutual exclusion*/
2c. BARDEC (bar1); /*barrier declaration for global synchronization between sweeps*/

3. main()
4. begin
5. read(n); read(nprocs); /*read input matrix size and number of processes*/
6. A ← G_MALLOC (a two-dimensional array of size n+2 by n+2
doubles);
7. initialize(A);  /*initialize A in an unspecified way*/
8a. CREATE (nprocs–1, Solve, A);
8. Solve(A); /*main process becomes a worker too*/
8b. WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/
9. end main

10. procedure Solve(A)
11. float **A; /*A is entire n+2-by-n+2 shared array,

as in the sequential program*/
12. begin
13. ----
27. end procedure

Generating Threads 
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Assignment Mechanism 
10. procedure Solve(A)
11. float **A; /*A is entire n+2-by-n+2 shared array,

    as in the sequential program*/
12. begin
13. int i,j, pid, done = 0;
14. float temp, mydiff = 0; /*private variables*/
14a. int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/
14b. int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/

15. while (!done) do /*outer loop sweeps*/
16. mydiff = diff = 0; /*set global diff to 0 (okay for all to do it)*/
16a. BARRIER(bar1, nprocs); /*ensure all reach here before anyone modifies diff*/
17.    for i ← mymin to mymax do /*for each of my rows*/
18. for j ← 1 to n do /*for all nonborder elements in that row*/
19. temp = A[i,j];
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. mydiff += abs(A[i,j] - temp);
23. endfor
24.    endfor
25a.    LOCK(diff_lock); /*update global diff if necessary*/
25b. diff += mydiff;
25c.    UNLOCK(diff_lock);
25d.    BARRIER(bar1, nprocs); /*ensure all reach here before checking if done*/
25e.    if (diff/(n*n) < TOL) then done = 1; /*check convergence; all get

same answer*/
25f.    BARRIER(bar1, nprocs);
26. endwhile
27. end procedure
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SM Program 
  SPMD: not lockstep. Not necessarily same instructions 
  Assignment controlled by values of variables used as loop 

bounds 
  Unique pid per process, used to control assignment 

  done condition evaluated redundantly by all 
  Code that does the update identical to sequential program 

  Each process has private mydiff variable 

  Most interesting special operations are for synchronization 
  Accumulations into shared diff have to be mutually exclusive 
  Why the need for all the barriers? 

  Good global reduction? 
  Utility of this parallel accumulate??? 
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Mutual Exclusion 
  Why is it needed? 

  Provided by LOCK-UNLOCK around critical section 
  Set of operations we want to execute atomically 
  Implementation of LOCK/UNLOCK must guarantee mutual 

excl. 

  Serialization? 

  Contention? 
  Non-local accesses in critical section? 
  Use private mydiff for partial accumulation! 
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Global Event Synchronization 
 BARRIER(nprocs): wait here till nprocs processes get here 

  Built using lower level primitives 
  Global sum example: wait for all to accumulate before using sum 
  Often used to separate phases of computation 

  Process P_1   Process P_2            Process P_nprocs 
  set up eqn system   set up eqn system           set up eqn system   

 Barrier (name, nprocs)  Barrier (name, nprocs)  Barrier (name, nprocs) 

  solve eqn system   solve eqn system           solve eqn system 

 Barrier (name, nprocs)  Barrier (name, nprocs)  Barrier (name, nprocs) 

  apply results   apply results    apply results 

 Barrier (name, nprocs)  Barrier (name, nprocs)  Barrier (name, nprocs) 

  Conservative form of preserving dependences, but easy to use 

 WAIT_FOR_END (nprocs-1) 
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Pt-to-pt Event Synch (Not Used Here) 
  One process notifies another of an event so it can 

proceed 
  Common example: producer-consumer (bounded buffer) 
  Concurrent programming on uniprocessor: semaphores 
  Shared address space parallel programs: semaphores, or 

use ordinary variables as flags 

• Busy-waiting or spinning 

P 1 P 2 
A = 1; 

a: while (flag is 0) do nothing; b: flag = 1;  

print A;  
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Group Event Synchronization 
  Subset of processes involved 

  Can use flags or barriers (involving only the subset) 
  Concept of producers and consumers 

  Major types: 
  Single-producer, multiple-consumer 
  Multiple-producer, single-consumer 
  Multiple-producer, multiple-consumer 
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Message Passing Grid Solver 
  Cannot declare A to be global shared array 

  compose it logically from per-process private arrays 
  usually allocated in accordance with the assignment of 

work 
  process assigned a set of rows allocates them locally 

  Transfers of entire rows between traversals  
  Structurally similar to SPMD  SAS  
  Orchestration different 

  data structures and data access/naming 
  communication 
  synchronization 

  Ghost rows 
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Data Layout and Orchestration 
P 0 

P 1 

P 2 

P 4 

P 0 

P 2 

P 4 

P 1 

Data partition allocated per processor 

Add ghost rows to hold boundary data 

Send edges to neighbors 

Receive into ghost rows 

Compute as in sequential program 
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10. procedure Solve()
11. begin
13. int i,j, pid, n’ = n/nprocs, done = 0;
14. float temp, tempdiff, mydiff = 0; /*private variables*/
6. myA ← malloc(a 2-d array of size [n/nprocs + 2] by n+2);

/*initialize my rows of A, in an unspecified way*/

15. while (!done) do
16. mydiff = 0; /*set local diff to 0*/

/* Exchange border rows of neighbors into myA[0,*] and myA[n’+1,*]*/
16a. if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW);
16b. if (pid = nprocs-1) then

SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW);
16c. if (pid != 0) then RECEIVE(&myA[0,0],n*sizeof(float),pid-1,ROW);
16d. if (pid != nprocs-1) then

RECEIVE(&myA[n’+1,0],n*sizeof(float), pid+1,ROW);
17.  for i ← 1 to n’ do /*for each of my (nonghost) rows*/
18. for j ← 1 to n do /*for all nonborder elements in that row*/
19. temp = myA[i,j];
20. myA[i,j] = 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] +
21. myA[i,j+1] + myA[i+1,j]);
22. mydiff += abs(myA[i,j] - temp);
23. endfor
24. endfor

/*communicate local diff values and determine if
done; can be replaced by reduction and broadcast*/

25a. if (pid != 0) then /*process 0 holds global total diff*/
25b. SEND(mydiff,sizeof(float),0,DIFF);
25c. RECEIVE(done,sizeof(int),0,DONE);
25d. else /*pid 0 does this*/
25e. for i ← 1 to nprocs-1 do /*for each other process*/
25f. RECEIVE(tempdiff,sizeof(float),*,DIFF);
25g.  mydiff += tempdiff; /*accumulate into total*/
25h.  endfor
25i if (mydiff/(n*n) < TOL) then  done = 1;
25j. for i ← 1 to nprocs-1 do /*for each other process*/
25k. SEND(done,sizeof(int),i,DONE);
25l. endfor
25m. endif
26. endwhile
27. end procedure
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Note on Message Passing Program 
  Use of ghost rows 
  Receive does not transfer data, send does 

  Unlike SAS which is usually receiver-initiated (load fetches data) 

  Communication done at beginning of iteration, so no asynchrony 

  Communication in whole rows, not element at a time 

  Core  similar, but indices/bounds in local rather than global space 

  Synchronization through sends and receives  
  Update of global diff and event synch for done condition 
  Could implement locks and barriers with messages  

  Can use REDUCE and BROADCAST library calls to simplify code 
/*communicate local diff values and determine if done, using reduction and broadcast*/

25b. REDUCE(0,mydiff,sizeof(float),ADD);
25c. if (pid == 0) then
25i. if (mydiff/(n*n) < TOL) then done = 1;
25k. endif
25m. BROADCAST(0,done,sizeof(int),DONE);
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Orchestration: Summary 
   Shared address space 

  Shared and private data explicitly separate 
  Communication implicit in access patterns 
  No correctness need for data distribution 
  Synchronization via atomic operations on shared data 
  Synchronization explicit and distinct from communication 

   Message passing 
  Data distribution among local address spaces needed 
  No explicit shared structures (implicit in comm. patterns) 
  Communication is explicit 
  Synchronization implicit in comm. (at least in synch. case) 

  mutual exclusion by  fiat 
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Send and Receive Alternatives 
  Extended functionality: stride, scatter-gather, groups 

  Sychronization semantics 
  Affect when data structures or buffers can be reused at either end 
  Affect event synch (mutual excl. by fiat: only 1 process uses data) 
  Affect ease of programming and performance 

  Synchronous messages provide built-in synch. through match 
  Separate event synchronization may be needed with asynch. 

messages 

  With synch. messages, our code may hang.  Fix? 
Send/Receive 

Synchronous Asynchronous 

Blocking asynch. Nonblocking asynch. 
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Correctness in Grid Solver 

  Decomposition and Assignment similar in SAS and 
message-passing 

  Orchestration is different 
  Data structures, data access/naming, communication, 

synchronization 
  Performance? 

SAS          Msg-Passing

Explicit global data structure? Yes      No

Assignment indept of data layout? Yes      No

Communication Implicit          Explicit

Synchronization Explicit      Implicit

Explicit replication of border rows? No      Yes


