
Parallel Machine Design Issues

Zeljko Zilic
McConnell Engineering Building
Room 546

Sep-24-09 ECSE 420
Parallel Computing

Programming Models
  Programming Model: Concept of machine for program use

  How parts cooperate and coordinate their activities
  Specifies communication and synchronization operations

  Multiprogramming
  No communication or synch. at program level

  Shared memory (shared address space - SAS)
  Analogy: bulletin board

  Message passing
  Like letters or phone calls, explicit point to point

  Data parallel:
  More regimented, global actions on data
  Implemented with shared address space or message passing

Sep-24-09 ECSE 420
Parallel Computing

Layered Perspective of PCA
CAD

Multipr ogramming Shar ed
addr ess

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Pr ogramming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication har dwar e
Physical communication medium

Har dwar e/softwar e boundary

Sep-24-09 ECSE 420
Parallel Computing

Communication Architecture

User/System Interface + Organization

 User/System Interface:
 Comm. primitives (to user-level) by hw and system-level sw

 Implementation:
 Implement the primitives: HW or OS
 How optimized are they? How integrated into processing node?
 Structure of network

 Goals:
 Performance
 Broad applicability
 Programmability
 Scalability
 Low Cost

Sep-24-09 ECSE 420
Parallel Computing

Communication Abstraction
  User level communication primitives provided

  Realizes the programming model
  Mapping exists between language primitives of programming

model and these primitives

  Supported directly by hw, or via OS, or via user sw
  Debate about support in sw and gap between layers
  Today:

  Hw/sw interface tends to be flat, i.e. complexity roughly uniform
  Compilers and software play important roles as bridges
  Technology trends exert strong influence

  Result is convergence in organizational structure
  Relatively simple, general purpose communication primitives

Sep-24-09 ECSE 420
Parallel Computing

Understanding Parallel Architecture

  Traditional taxonomies not very useful
  Programming models not enough, nor hardware structures

  Same one can be supported by radically different architectures

=> Architectural distinctions that affect software
  Compilers, libraries, programs

  Design of user/system and hardware/software interface
  Constrained from above by progr. models and below by

technology

  Guiding principles provided by layers
  What primitives are provided at communication abstraction
  How programming models map to these
  How they are mapped to hardware

Sep-24-09 ECSE 420
Parallel Computing

Fundamental Design Issues

  At any layer, interface (contract) aspect and
performance aspects
  Naming: How are logically shared data and/or

processes referenced?
  Operations: What operations are provided on these

data
  Ordering: How are accesses to data ordered and

coordinated?
  Replication: How are data replicated to reduce

communication?
  Communication Cost: Latency, bandwidth, overhead,

occupancy

Sep-24-09 ECSE 420
Parallel Computing

Sequential Programming Model

  Contract
  Naming: Can name any variable (in virtual address space)

  Hardware (and compilers) does translation to physical addresses
  Operations: Loads, Stores, Arithmetic, Control
  Ordering: Sequential program order

  Always: read the last write to memory location

  Performance Optimizations
  Compilers and hardware violate program order with impunity

  Compiler: reordering and register allocation
  Hardware: out of order, pipeline bypassing, write buffers

  Retain dependence order on each “location”
  Transparent replication in caches

Sep-24-09 ECSE 420
Parallel Computing

Shared Memory Programming Model

  Naming: Any process can name any variable in shared
space

  Operations: loads and stores, plus those needed for
ordering

  Simplest Ordering Model:
  Within a process/thread: sequential program order
  Across threads: some interleaving (as in time-sharing)
  Additional ordering through explicit synchronization

  Can compilers/hardware weaken order without causing
trouble?
  Different, more subtle ordering models also possible

(discussed later)

Sep-24-09 ECSE 420
Parallel Computing

Synchronization

  Mutual exclusion (locks)
  Ensure certain operations on certain data can

be performed by only one process at a time
  Room that only one person can enter at a time

  No ordering guarantees

  Event synchronization
  Ordering of events to preserve dependences

  e.g. producer —> consumer of data
  3 main types:

  point-to-point
  global
  group

Sep-24-09 ECSE 420
Parallel Computing

Message Passing Programming Model

  Naming: Processes can name private data directly.

  No shared address space

  Operations: Explicit communication through send and receive

  Send transfers data from private address space to another process

  Receive copies data from process to private address space

  Must be able to name processes

  Ordering:

  Program order within a process

  Send and receive can provide pt to pt synch between processes

  Mutual exclusion inherent + conventional optimizations legal

  Can construct global address space:

  Process number + address within process address space

  But no direct operations on these names

Sep-24-09 ECSE 420
Parallel Computing

Design Issues Apply at All Layers

  Prog. model’s position provides constraints/goals for system
  In fact, each interface between layers supports or takes a

position on:
  Naming model
  Set of operations on names
  Ordering model
  Replication
  Communication performance

  Any set of positions can be mapped to any other by software
  Common issues across layers

  How lower layers can support contracts of programming models
  Performance issues

Sep-23-09 ECSE 420
Parallel Computing

Naming and Operations

  Naming and operations in programming model can be
directly supported by lower levels, or translated by
compiler, libraries or OS

  Example: Shared virtual address space in programming
model
  Hardware interface supports shared physical address space

  Direct support by hardware through virtual-to-phy
mapping, no software layers

  Hardware supports independent physical address spaces
  Can provide SM through OS, so in system/user interface

  v-to-p mappings only for data that are local
  remote data accesses incur page faults; brought in via page

fault handlers

  Compilers or runtime, so above sys/user interface

Sep-23-09 ECSE 420
Parallel Computing

Naming and Operations: Msg Passing

  Direct support at hardware interface
  But match and buffering benefit from more flexibility

  Support at sys/user interface or above in software
  Hardware interface provides basic data transport (well suited)
  Send/receive built in sw for flexibility (protection, buffering)
  Choices at user/system interface:

  OS each time: expensive
  OS sets up once/infrequently, little sw involvement each time

  Or lower interfaces provide SAS, and send/receive built on
top with buffers and loads/stores

  Need to examine the issues and tradeoffs at every layer
  Frequencies and types of operations, costs

Sep-23-09 ECSE 420
Parallel Computing

Ordering

  Message passing: no assumptions on orders across
processes except those imposed by send/receive pairs

  SM: How processes see the order of other processes’
references defines semantics of SM
  Ordering very important and subtle
  Uniprocessors violate ordering to gain parallelism or locality

  These goals are more important in multiprocessors
  Need to understand which old tricks are valid, and learn

new ones
  How programs behave, what they rely on, and hardware

implications

Sep-23-09 ECSE 420
Parallel Computing

Replication

  Reduces data transfer/communication
  depends on naming model

  Uniprocessor: caches do it automatically
  Reduce communication with memory

  Message Passing naming model at an interface
  Receive replicates, giving a new name
  Replication is explicit in software above that interface

  SM naming model at an interface
  A load brings in data, and can replicate transparently in cache
  OS can do it at page level in shared virtual address space
  No explicit renaming, many copies for same name: coherence

problem
  In uniprocessors, “coherence” of copies is natural in memory

hierarchy

Sep-23-09 ECSE 420
Parallel Computing

Communication Performance

  Performance characteristics determine usage of operations at a
layer
  Programmer, compilers etc make choices based on this

  Fundamentally, three characteristics:
  Latency: time taken for an operation
  Bandwidth: rate of performing operations
  Cost: impact on execution time of program

  If processor does one thing at a time: bandwidth ∝ 1/latency
  But actually more complex in modern systems

  Characteristics apply to overall operations, as well as individual
components of a system

Sep-23-09 ECSE 420
Parallel Computing

Simple Example

  Component performs an operation in 100ns
  Simple bandwidth: 10 Mops
  Internally pipeline depth 10 => bandwidth 100 Mops

  Rate determined by slowest stage of pipeline, not overall latency

  Delivered bandwidth on application depends on initiation
frequency

  Suppose application performs 100 M operations. What is cost?
  op count * op latency gives 10 sec (upper bound)
  op count / peak op rate gives 1 sec (lower bound)

  assumes full overlap of latency with useful work, so just issue cost
  If application can do 50 ns of useful work before depending on

result of op, cost to application is the other 50ns of latency

Sep-23-09 ECSE 420
Parallel Computing

Linear Model of Data Transfer Latency

  Transfer time (n) = T0 + n/B

  True for message passing, memory access, vector ops …

  As n increases, bandwidth approaches asymptotic rate B
  Convergence speed depends on T0

  Size needed for half bandwidth (half-power point):
  n1/2 = T0 / B

  But linear model not enough
  When can next transfer be initiated? Can cost be

overlapped?
  Need to know how transfer is performed

Sep-23-09 ECSE 420
Parallel Computing

Communication Cost Model

  Comm Time per message= Overhead + Assist Occupancy +
 Network Delay + Size/Bandwidth + Contention

  = ov + oc + l + n/B + Tc

  Overhead and assist occupancy (service time) may be f(n)
or not

  Each component along the way has occupancy and delay
  Overall delay is sum of delays
  Overall occupancy (1/bandwidth) is biggest of occupancies

  Comm Cost = frequency * (Comm time - overlap)

  General model for data transfer: applies to cache misses too

Sep-23-09 ECSE 420
Parallel Computing

Diminishing Role of Topology

  Shift to general links
  DMA, enabling non-blocking ops

  Buffered by system at destination until
recv

  Store&forward routing
  Diminishing role of topology

  Any-to-any pipelined routing
  Node-network interface dominates

communication time

  Simplifies programming
  Allows richer design space

  grids vs hypercubes

H x (T0 + n/B)

vs

T0 + HΔ + n/B

Intel iPSC/1 -> iPSC/2 -> iPSC/860

Sep-23-09 ECSE 420
Parallel Computing

Toward Architectural Convergence

  Evolution and role of software have blurred boundary
  Send/recv supported on SAS machines via buffers
  Can construct global address space on MP (GA -> P | LA)
  Page-based (or finer-grained) shared virtual memory

  Hardware organization converging too
  Tighter NI integration even for MP (low-latency, high-bandwidth)
  Hardware SAS passes messages

  Even clusters of workstations/SMPs are parallel systems
  Emergence of fast system area networks (SAN)

  Programming models distinct, but organizations converging
  Nodes connected by general network and communication assists
  Implementations also converging, at least in high-end machines

Sep-23-09 ECSE 420
Parallel Computing

Summary of Design Issues

  Functional and performance issues apply at all layers

  Functional: Naming, operations and ordering

  Performance: Organization

  latency, bandwidth, overhead, occupancy

  Replication and communication are deeply related
  Management depends on naming model

  Goal of architects: design against frequency and type of
operations that occur at communication abstraction,
constrained by tradeoffs from above or below

  Hardware/software tradeoffs

