
Parallel Machine Design Issues

Zeljko Zilic
McConnell Engineering Building
Room 546

Sep-24-09 ECSE 420
Parallel Computing

Programming Models
  Programming Model: Concept of machine for program use

  How parts cooperate and coordinate their activities
  Specifies communication and synchronization operations

  Multiprogramming
  No communication or synch. at program level

  Shared memory (shared address space - SAS)
  Analogy: bulletin board

  Message passing
  Like letters or phone calls, explicit point to point

  Data parallel:
  More regimented, global actions on data
  Implemented with shared address space or message passing

Sep-24-09 ECSE 420
Parallel Computing

Layered Perspective of PCA
CAD

Multipr ogramming Shar ed
addr ess

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Pr ogramming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication har dwar e
Physical communication medium

Har dwar e/softwar e boundary

Sep-24-09 ECSE 420
Parallel Computing

Communication Architecture

User/System Interface + Organization

 User/System Interface:
 Comm. primitives (to user-level) by hw and system-level sw

 Implementation:
 Implement the primitives: HW or OS
 How optimized are they? How integrated into processing node?
 Structure of network

 Goals:
 Performance
 Broad applicability
 Programmability
 Scalability
 Low Cost

Sep-24-09 ECSE 420
Parallel Computing

Communication Abstraction
  User level communication primitives provided

  Realizes the programming model
  Mapping exists between language primitives of programming

model and these primitives

  Supported directly by hw, or via OS, or via user sw
  Debate about support in sw and gap between layers
  Today:

  Hw/sw interface tends to be flat, i.e. complexity roughly uniform
  Compilers and software play important roles as bridges
  Technology trends exert strong influence

  Result is convergence in organizational structure
  Relatively simple, general purpose communication primitives

Sep-24-09 ECSE 420
Parallel Computing

Understanding Parallel Architecture

  Traditional taxonomies not very useful
  Programming models not enough, nor hardware structures

  Same one can be supported by radically different architectures

=> Architectural distinctions that affect software
  Compilers, libraries, programs

  Design of user/system and hardware/software interface
  Constrained from above by progr. models and below by

technology

  Guiding principles provided by layers
  What primitives are provided at communication abstraction
  How programming models map to these
  How they are mapped to hardware

Sep-24-09 ECSE 420
Parallel Computing

Fundamental Design Issues

  At any layer, interface (contract) aspect and
performance aspects
  Naming: How are logically shared data and/or

processes referenced?
  Operations: What operations are provided on these

data
  Ordering: How are accesses to data ordered and

coordinated?
  Replication: How are data replicated to reduce

communication?
  Communication Cost: Latency, bandwidth, overhead,

occupancy

Sep-24-09 ECSE 420
Parallel Computing

Sequential Programming Model

  Contract
  Naming: Can name any variable (in virtual address space)

  Hardware (and compilers) does translation to physical addresses
  Operations: Loads, Stores, Arithmetic, Control
  Ordering: Sequential program order

  Always: read the last write to memory location

  Performance Optimizations
  Compilers and hardware violate program order with impunity

  Compiler: reordering and register allocation
  Hardware: out of order, pipeline bypassing, write buffers

  Retain dependence order on each “location”
  Transparent replication in caches

Sep-24-09 ECSE 420
Parallel Computing

Shared Memory Programming Model

  Naming: Any process can name any variable in shared
space

  Operations: loads and stores, plus those needed for
ordering

  Simplest Ordering Model:
  Within a process/thread: sequential program order
  Across threads: some interleaving (as in time-sharing)
  Additional ordering through explicit synchronization

  Can compilers/hardware weaken order without causing
trouble?
  Different, more subtle ordering models also possible

(discussed later)

Sep-24-09 ECSE 420
Parallel Computing

Synchronization

  Mutual exclusion (locks)
  Ensure certain operations on certain data can

be performed by only one process at a time
  Room that only one person can enter at a time

  No ordering guarantees

  Event synchronization
  Ordering of events to preserve dependences

  e.g. producer —> consumer of data
  3 main types:

  point-to-point
  global
  group

Sep-24-09 ECSE 420
Parallel Computing

Message Passing Programming Model

  Naming: Processes can name private data directly.

  No shared address space

  Operations: Explicit communication through send and receive

  Send transfers data from private address space to another process

  Receive copies data from process to private address space

  Must be able to name processes

  Ordering:

  Program order within a process

  Send and receive can provide pt to pt synch between processes

  Mutual exclusion inherent + conventional optimizations legal

  Can construct global address space:

  Process number + address within process address space

  But no direct operations on these names

Sep-24-09 ECSE 420
Parallel Computing

Design Issues Apply at All Layers

  Prog. model’s position provides constraints/goals for system
  In fact, each interface between layers supports or takes a

position on:
  Naming model
  Set of operations on names
  Ordering model
  Replication
  Communication performance

  Any set of positions can be mapped to any other by software
  Common issues across layers

  How lower layers can support contracts of programming models
  Performance issues

Sep-23-09 ECSE 420
Parallel Computing

Naming and Operations

  Naming and operations in programming model can be
directly supported by lower levels, or translated by
compiler, libraries or OS

  Example: Shared virtual address space in programming
model
  Hardware interface supports shared physical address space

  Direct support by hardware through virtual-to-phy
mapping, no software layers

  Hardware supports independent physical address spaces
  Can provide SM through OS, so in system/user interface

  v-to-p mappings only for data that are local
  remote data accesses incur page faults; brought in via page

fault handlers

  Compilers or runtime, so above sys/user interface

Sep-23-09 ECSE 420
Parallel Computing

Naming and Operations: Msg Passing

  Direct support at hardware interface
  But match and buffering benefit from more flexibility

  Support at sys/user interface or above in software
  Hardware interface provides basic data transport (well suited)
  Send/receive built in sw for flexibility (protection, buffering)
  Choices at user/system interface:

  OS each time: expensive
  OS sets up once/infrequently, little sw involvement each time

  Or lower interfaces provide SAS, and send/receive built on
top with buffers and loads/stores

  Need to examine the issues and tradeoffs at every layer
  Frequencies and types of operations, costs

Sep-23-09 ECSE 420
Parallel Computing

Ordering

  Message passing: no assumptions on orders across
processes except those imposed by send/receive pairs

  SM: How processes see the order of other processes’
references defines semantics of SM
  Ordering very important and subtle
  Uniprocessors violate ordering to gain parallelism or locality

  These goals are more important in multiprocessors
  Need to understand which old tricks are valid, and learn

new ones
  How programs behave, what they rely on, and hardware

implications

Sep-23-09 ECSE 420
Parallel Computing

Replication

  Reduces data transfer/communication
  depends on naming model

  Uniprocessor: caches do it automatically
  Reduce communication with memory

  Message Passing naming model at an interface
  Receive replicates, giving a new name
  Replication is explicit in software above that interface

  SM naming model at an interface
  A load brings in data, and can replicate transparently in cache
  OS can do it at page level in shared virtual address space
  No explicit renaming, many copies for same name: coherence

problem
  In uniprocessors, “coherence” of copies is natural in memory

hierarchy

Sep-23-09 ECSE 420
Parallel Computing

Communication Performance

  Performance characteristics determine usage of operations at a
layer
  Programmer, compilers etc make choices based on this

  Fundamentally, three characteristics:
  Latency: time taken for an operation
  Bandwidth: rate of performing operations
  Cost: impact on execution time of program

  If processor does one thing at a time: bandwidth ∝ 1/latency
  But actually more complex in modern systems

  Characteristics apply to overall operations, as well as individual
components of a system

Sep-23-09 ECSE 420
Parallel Computing

Simple Example

  Component performs an operation in 100ns
  Simple bandwidth: 10 Mops
  Internally pipeline depth 10 => bandwidth 100 Mops

  Rate determined by slowest stage of pipeline, not overall latency

  Delivered bandwidth on application depends on initiation
frequency

  Suppose application performs 100 M operations. What is cost?
  op count * op latency gives 10 sec (upper bound)
  op count / peak op rate gives 1 sec (lower bound)

  assumes full overlap of latency with useful work, so just issue cost
  If application can do 50 ns of useful work before depending on

result of op, cost to application is the other 50ns of latency

Sep-23-09 ECSE 420
Parallel Computing

Linear Model of Data Transfer Latency

  Transfer time (n) = T0 + n/B

  True for message passing, memory access, vector ops …

  As n increases, bandwidth approaches asymptotic rate B
  Convergence speed depends on T0

  Size needed for half bandwidth (half-power point):
  n1/2 = T0 / B

  But linear model not enough
  When can next transfer be initiated? Can cost be

overlapped?
  Need to know how transfer is performed

Sep-23-09 ECSE 420
Parallel Computing

Communication Cost Model

  Comm Time per message= Overhead + Assist Occupancy +
 Network Delay + Size/Bandwidth + Contention

  = ov + oc + l + n/B + Tc

  Overhead and assist occupancy (service time) may be f(n)
or not

  Each component along the way has occupancy and delay
  Overall delay is sum of delays
  Overall occupancy (1/bandwidth) is biggest of occupancies

  Comm Cost = frequency * (Comm time - overlap)

  General model for data transfer: applies to cache misses too

Sep-23-09 ECSE 420
Parallel Computing

Diminishing Role of Topology

  Shift to general links
  DMA, enabling non-blocking ops

  Buffered by system at destination until
recv

  Store&forward routing
  Diminishing role of topology

  Any-to-any pipelined routing
  Node-network interface dominates

communication time

  Simplifies programming
  Allows richer design space

  grids vs hypercubes

H x (T0 + n/B)

vs

T0 + HΔ + n/B

Intel iPSC/1 -> iPSC/2 -> iPSC/860

Sep-23-09 ECSE 420
Parallel Computing

Toward Architectural Convergence

  Evolution and role of software have blurred boundary
  Send/recv supported on SAS machines via buffers
  Can construct global address space on MP (GA -> P | LA)
  Page-based (or finer-grained) shared virtual memory

  Hardware organization converging too
  Tighter NI integration even for MP (low-latency, high-bandwidth)
  Hardware SAS passes messages

  Even clusters of workstations/SMPs are parallel systems
  Emergence of fast system area networks (SAN)

  Programming models distinct, but organizations converging
  Nodes connected by general network and communication assists
  Implementations also converging, at least in high-end machines

Sep-23-09 ECSE 420
Parallel Computing

Summary of Design Issues

  Functional and performance issues apply at all layers

  Functional: Naming, operations and ordering

  Performance: Organization

  latency, bandwidth, overhead, occupancy

  Replication and communication are deeply related
  Management depends on naming model

  Goal of architects: design against frequency and type of
operations that occur at communication abstraction,
constrained by tradeoffs from above or below

  Hardware/software tradeoffs

