Parallel Machine Design Issues

Zeljko Zilic
McConnell Engineering Building
Room 546

= McGill

Programming Models

O

Programming Model: Concept of machine for program use
m How parts cooperate and coordinate their activities

m Specifies communication and synchronization operations
Multiprogramming

= No communication or synch. at program level

Shared memory (shared address space - SAS)

= Analogy: bulletin board

Message passing

m Like letters or phone calls, explicit point to point

Data parallel:

m More regimented, global actions on data

= Implemented with shared address space or message passing

” o
5ep-24-09 e o McGill
Parallel Computing "

Layered Perspective of PCA

CAD Database Scientific modeling Parallel applications
Multiprogramming Shared Message Data Programming models
address passing parallel

Compilation

or library Communication abstraction

User/system boundary

Operating systems support

— Hardware/software boundary
Communication hadware

Physical communication medium

” o
5ep-24-09 i McGill
Parallel Computing "

Communication Architecture

User/System Interface + Organization

oUser/System Interface:
m Comm. primitives (to user-level) by hw and system-level sw

oImplementation:
m Implement the primitives: HW or OS
m How optimized are they? How integrated into processing node?
m Structure of network

oGoals:
m Performance
m Broad applicability
m Programmability
m Scalability
m Low Cost

” o
sep-24-09 o o McGill
Parallel Computing "

@,

Communication Abstraction

User level communication primitives provided
m Realizes the programming model

m Mapping exists between language primitives of programming
model and these primitives

Supported directly by hw, or via OS, or via user sw

Debate about support in sw and gap between layers

Today:

= Hw/sw interface tends to be flat, i.e. complexity roughly uniform
m Compilers and software play important roles as bridges

m Technology trends exert strong influence

Result is convergence in organizational structure
m Relatively simple, general purpose communication primitives

' o
5ep-24-09 i McGill
Parallel Computing *

Understanding Parallel Architecture

o Traditional taxonomies not very useful
o Programming models not enough, nor hardware structures
m Same one can be supported by radically different architectures
=> Architectural distinctions that affect software
m Compilers, libraries, programs
o Design of user/system and hardware/software interface

m Constrained from above by progr. models and below by
technology

o Guiding principles provided by layers
m What primitives are provided at communication abstraction
= How programming models map to these
= How they are mapped to hardware

” o
5ep-24-09 e o McGill
Parallel Computing "

Fundamental Design Issues

o At any layer, interface (contract) aspect and
performance aspects

m Naming: How are logically shared data and/or
processes referenced?

m Operations: What operations are provided on these
data

m Ordering: How are accesses to data ordered and
coordinated?

m Replication: How are data replicated to reduce
communication?

m Communication Cost: Latency, bandwidth, overhead,
occupancy

” o
5ep-24-09 i McGill
Parallel Computing L

Sequential Programming Model
|
o Contract
= Naming: Can name any variable (in virtual address space)
o Hardware (and compilers) does translation to physical addresses
m Operations: Loads, Stores, Arithmetic, Control
m Ordering: Sequential program order
o Always: read the last write to memory location

o Performance Optimizations
m Compilers and hardware violate program order with impunity
o Compiler: reordering and register allocation
o Hardware: out of order, pipeline bypassing, write buffers
m Retain dependence order on each “location”
m Transparent replication in caches

” o
e o McGill
Parallel Computing "

Shared Memory Programming Model

o Naming: Any process can name any variable in shared
space

o Operations: loads and stores, plus those needed for
ordering

o Simplest Ordering Model:
m Within a process/thread: sequential program order

m Across threads: some interleaving (as in time-sharing)
m Additional ordering through explicit synchronization

m Can compilers/hardware weaken order without causing
trouble?

o Different, more subtle ordering models also possible
(discussed later)

” o
sep-24-09 o o McGill
Parallel Computing *

Synchronization

|
o Mutual exclusion (locks)

m Ensure certain operations on certain data can
be performed by only one process at a time

o Room that only one person can enter at a time
= No ordering guarantees

o Event synchronization
m Ordering of events to preserve dependences
O e.g. producer —> consumer of data
= 3 main types:
O point-to-point
o global
O group

” o
5ep-24-09 e o McGill
Parallel Computing "

Message Passing Programming Model

Naming: Processes can name private data directly.

m No shared address space

Operations: Explicit communication through send and receive
m Send transfers data from private address space to another process
m Receive copies data from process to private address space

m Must be able to name processes

Ordering:

m Program order within a process

m Send and receive can provide pt to pt synch between processes
m Mutual exclusion inherent + conventional optimizations legal
Can construct global address space:

m Process number + address within process address space

o But no direct operations on these names

” o
5ep-24-09 i McGill
Parallel Computing *

Design Issues Apply at All Layers

o Prog. model’s position provides constraints/goals for system

o In fact, each interface between layers supports or takes a
position on:

Naming model

Set of operations on names

Ordering model

Replication

Communication performance

Any set of positions can be mapped to any other by software

o Common issues across layers
m How lower layers can support contracts of programming models
m Performance issues

@)

” o
5ep-24-09 e o McGill
Parallel Computing "

Naming and Operations

Q

Naming and operations in programming model can be
directly supported by lower levels, or translated by
compiler, libraries or OS

Example: Shared virtual address space in programming
model
m Hardware interface supports shared physical address space

o Direct support by hardware through virtual-to-phy
mapping, no software layers
m Hardware supports independent physical address spaces
o Can provide SM through OS, so in system/user interface
= v-to-p mappings only for data that are local

m remote data accesses incur page faults; brought in via page
fault handlers

o Compilers or runtime, so above sys/user interface

' o
5602309 o McGill
Parallel Computing *

Naming and Operations: Msg Passing

o Direct support at hardware interface

But match and buffering benefit from more flexibility

o Support at sys/user interface or above in software

Hardware interface provides basic data transport (well suited)
Send/receive built in sw for flexibility (protection, buffering)
Choices at user/system interface:

o OS each time: expensive

o OS sets up once/infrequently, little sw involvement each time

Or lower interfaces provide SAS, and send/receive built on
top with buffers and loads/stores

O Need to examine the issues and tradeoffs at every layer

Frequencies and types of operations, costs

' o
5ep-23:09 i McGill
Parallel Computing *

Ordering

O Message passing: no assumptions on orders across
processes except those imposed by send/receive pairs

o SM: How processes see the order of other processes’
references defines semantics of SM
m Ordering very important and subtle
m Uniprocessors violate ordering to gain parallelism or locality
o These goals are more important in multiprocessors

m Need to understand which old tricks are valid, and learn
new ones

m How programs behave, what they rely on, and hardware
implications

” o
5602309 o McGill
Parallel Computing *

Replication

o Reduces data transfer/communication
= depends on naming model
o Uniprocessor: caches do it automatically
m Reduce communication with memory
o Message Passing naming model at an interface
m Receive replicates, giving a new name
m Replication is explicit in software above that interface
o SM naming model at an interface
m A load brings in data, and can replicate transparently in cache
m OS can do it at page level in shared virtual address space
m No explicit renaming, many copies for same name: coherence

problem
o In uniprocessors, “coherence” of copies is natural in memory
hierarchy

& o
Sep-23-09 ECSE 420 MCGlll
Parallel Computing "

Communication Performance

Performance characteristics determine usage of operations at a
layer

m Programmer, compilers etc make choices based on this
Fundamentally, three characteristics:

m [atency: time taken for an operation

m Bandwidth: rate of performing operations

m (Cost: impact on execution time of program

If processor does one thing at a time: bandwidth « 1/latency

m But actually more complex in modern systems

Characteristics apply to overall operations, as well as individual
components of a system

” o
sep-23:09 o o McGill
Parallel Computing *

© 0O

Simple Example

Component performs an operation in 100ns
Simple bandwidth: 10 Mops

Internally pipeline depth 10 => bandwidth 100 Mops
m Rate determined by slowest stage of pipeline, not overall latency

Delivered bandwidth on application depends on initiation
frequency

Suppose application performs 100 M operations. What is cost?
m Op count * op latency gives 10 sec (upper bound)
m Op count / peak op rate gives 1 sec (lower bound)

o assumes full overlap of latency with useful work, so just issue cost

m If application can do 50 ns of useful work before depending on
result of op, cost to application is the other 50ns of latency

' o
5602309 o McGill
Parallel Computing *

Linear Model of Data Transfer Latency

o Transfer time (n) =T, + n/B

m True for message passing, memory access, vector ops ...

o As n increases, bandwidth approaches asymptotic rate B
m Convergence speed depends on T,
o Size needed for half bandwidth (half-power point):

Q n1/2=T0/B

o But linear model not enough

m When can next transfer be initiated? Can cost be
overlapped?

m Need to know how transfer is performed

& o
Sep-23-09 ECSE 420 MCGlll
Parallel Computing "

Communication Cost Model

o Comm Time per message= Overhead + Assist Occupancy +
Network Delay + Size/Bandwidth + Contention

o =o,+o0o.+/+n/B+T,

o Overhead and assist occupancy (service time) may be f(n)
or not

o Each component along the way has occupancy and delay
m Overall delay is sum of delays
m Overall occupancy (1/bandwidth) is biggest of occupancies

o Comm Cost = frequency * (Comm time - overlap)

o General model for data transfer: applies to cache misses too

3] o
Sep-23-09 ECSE 420 MCGlll
Parallel Computing "

o Shift to general links
m DMA, enabling non-blocking ops

o Buffered by system at destination until
recv

m Store&forward routing
o Diminishing role of topology
m Any-to-any pipelined routing
m Node-network interface dominates
communication time

H x (T, + n/B)

VS
TO + HA +n/B
m Simplifies programming
m Allows richer design space
O grids vs hypercubes
Sep-23-09 ECSE 420

Parallel Computing

McGill

Toward Architectural Convergence

Evolution and role of software have blurred boundary
m Send/recv supported on SAS machines via buffers
m Can construct global address space on MP (GA -> P | LA)
m Page-based (or finer-grained) shared virtual memory
Hardware organization converging too
m Tighter NI integration even for MP (low-latency, high-bandwidth)
m Hardware SAS passes messages
Even clusters of workstations/SMPs are parallel systems
m Emergence of fast system area networks (SAN)
Programming models distinct, but organizations converging
m Nodes connected by general network and communication assists
m Implementations also converging, at least in high-end machines

' o
== e McGill
Parallel Computing *

Summary of Design Issues

o Functional and performance issues apply at all layers
o Functional: Naming, operations and ordering
o Performance: Organization
m latency, bandwidth, overhead, occupancy
o Replication and communication are deeply related

= Management depends on naming model

o Goal of architects: design against frequency and type of
operations that occur at communication abstraction,
constrained by tradeoffs from above or below

m Hardware/software tradeoffs

” o
5602309 o McGill
Parallel Computing *

