
ECSE 420
Programming Models

Zeljko Zilic
McConnell Engineering Building
Room 546

Sep-14-09 ECSE 420/520
Parallel Computing

Reminder: Grading Scheme

  40% homeworks (4)
  30% exam
  30% project (teams of 1-2)

Sep-14-09 ECSE 420/520
Parallel Computing

Programming Models
  Conceptualization of the machine that programmer uses in

coding applications
  How parts cooperate and coordinate their activities
  Specifies communication and synchronization operations

  Multiprogramming
  no communication or synch. at program level

  Shared address space
  like bulletin board

  Message passing
  like letters or phone calls, explicit point to point

  Data parallel:
  more regimented, global actions on data
  Implemented with shared address space or message passing

Sep-14-09 ECSE 420/520
Parallel Computing

Shared Memory (Shared Address
Space)

  Bottom-up engineering factors
  Programming concepts
  Why its attactive

Sep-14-09 ECSE 420/520
Parallel Computing

Adding Processing Capacity

  Memory capacity increased by adding modules
  I/O by controllers and devices
  Add processors for processing!

  For higher-throughput multiprogramming, or
parallel programs

I/O ctrlMem Mem Mem

Interconnect

Mem I/O ctrl

Processor Processor

Interconnect

I/O
devices

Sep-14-09 ECSE 420/520
Parallel Computing

Historical Development

P

P

C

C

I/O

I/O

M MM M

PP

C

I/O

M MC

I/O

$ $

  “Mainframe” approach
  Motivated by multiprogramming
  Extends crossbar used for Mem and I/O
  Processor cost-limited => crossbar
  Bandwidth scales with p
  High incremental cost

  use multistage instead

  “Minicomputer” approach
  Almost all microprocessors have bus
  Motivated by multiprogramming, TP
  Used heavily for parallel computing
  Called symmetric multiprocessor (SMP)
  Latency larger than for uniprocessor
  Bus is bandwidth bottleneck

  caching is key: coherence problem
  Low incremental cost

Sep-14-09 ECSE 420/520
Parallel Computing

Shared Physical Memory
  Any processor can directly reference any memory

location
  Any I/O controller - any memory

  Operating system can run on any processor, or all.
  OS uses shared memory to coordinate

  Communication occurs implicitly as result of loads
and stores

  What about application processes?

Sep-14-09 ECSE 420/520
Parallel Computing

Shared Virtual Address Space
  Process = address space plus thread of control
  Virtual-to-physical mapping can be established so

that processes shared portions of address space.
  User-kernel or multiple processes

  Multiple threads of control on one address space.
  Popular approach to structuring OS’s
  Now standard application capability (ex: POSIX

threads)
  Writes to shared address visible to other threads

  Natural extension of uniprocessors model
  conventional memory operations for communication
  special atomic operations for synchronization

  also load/stores

Sep-14-09 ECSE 420/520
Parallel Computing

Structured Shared Address
Space

  Add hoc parallelism used in system code
  Most parallel applications have structured SAS
  Same program on each processor

  shared variable X means the same thing to each thread

S t o r e
P 1 P 2

P n

P 0

L o a d

P 0 p r i v a t e
P 1 p r i v a t e

P 2 p r i v a t e

P n p r i v a t e
Virtual address spaces for a
collection of processes communicating
via shared addresses

Machine physical address space

Shared portion
of address space

Private portion
of address space

Common physical
addresses

Sep-14-09 ECSE 420/520
Parallel Computing

Engineering: Intel Pentium Pro Quad

  All coherence and
multiprocessing glue in
processor module

  Highly integrated,
targeted at high volume

  Low latency and
bandwidth

P-Pro bus (64-bit data, 36-bit addr ess, 66 MHz)

CPU

Bus interface

MIU

P-Pro
module

P-Pro
module

P-Pro
module256-KB

L2 $
Interrupt
controller

PCI
bridge

PCI
bridge

Memory
controller

1-, 2-, or 4-way
interleaved

DRAM

P
C
I

b
u
s

P
C
I

b
u
s

PCI
I/O

cards

Sep-14-09 ECSE 420/520
Parallel Computing

Engineering: SUN Enterprise

  Proc + mem card - I/O card
  16 cards of either type
  All memory accessed over bus, so symmetric
  Higher bandwidth, higher latency bus

Gigaplane bus (256 data, 41 addr ess, 83 MHz)

S
B
U
S

S
B
U
S

S
B
U
S

2

F
i
b
e
r
C
h
a
n
n
e
l

1
0
0
b
T

,

S
C
S
I

Bus interface

CPU/mem
cardsP

$2

$
P

$2

$

Mem ctrl

Bus interface/switch

I/O cards

Sep-14-09 ECSE 420/520
Parallel Computing

Scaling Up

  Problem is interconnect: cost (crossbar) or bandwidth (bus)
  Dance-hall: bandwidth still scalable, but lower cost than crossbar

  latencies to memory uniform, but uniformly large
  Distributed memory or non-uniform memory access (NUMA)

  Construct shared address space out of simple message
transactions across a general-purpose network (e.g. read-request,
read-response)

  Caching shared (particularly nonlocal) data?

M M M

The image cannot be displayed. Your computer may not have
enough memory to open the image, or the image may have
been corrupted. Restart your computer, and then open the
file again. If the red x still appears, you may have to delete
the image and then insert it again.

° ° °

° ° ° M

The image cannot be displayed. Your computer may not have enough memory to open the
image, or the image may have been corrupted. Restart your computer, and then open the
file again. If the red x still appears, you may have to delete the image and then insert it
again.

° ° ° M M

Network Network

P

$

P

$

P

$

P

$

P

$

P

$

“Dance hall”
 Distributed memory

Sep-14-09 ECSE 420/520
Parallel Computing

Engineering: Cray T3E

  Scale up to 1024 processors, 480MB/s links
  Memory controller generates request message for non-local

references
  No hardware mechanism for coherence

  SGI Origin etc. provide this

Switch

P
$

XY

Z

Exter nal I/O

Mem
ctrl

and NI

Mem

Sep-14-09 ECSE 420/520
Parallel Computing

U. Toronto NUMAchine
  Working state-of-

the art cache
coherent shared-
memory
multiprocessor

  Developed on a
“shoebox”
budget

  64 processors
(MIPS 4400)

Sep-14-09 ECSE 420/520
Parallel Computing

NUMAchine Processor Board
  Most complexity

of the overall
system

  Logic
implemented
completely with
programmable
logic

Sep-14-09 ECSE 420/520
Parallel Computing

Message Passing Approach

SIMD

Message Passing
Shared Memory Dataflow

Systolic
Arrays Generic

Architecture

M

The image cannot be displayed. Your computer may not have enough memory to open the
image, or the image may have been corrupted. Restart your computer, and then open the
file again. If the red x still appears, you may have to delete the image and then insert it
again.

° ° ° M M

Network

P

$

P

$

P

$

Sep-14-09 ECSE 420/520
Parallel Computing

Message Passing Architectures
  Complete computer as building block, including I/O

  Communication via explicit I/O operations
  Programming model

  direct access only to private address space (local
memory),

  communication via explicit messages (send/receive)
  High-level block diagram

  Communication integration?
  Mem, I/O, LAN, Cluster

  Easier to build and scale than SAS
  Programming model more removed from basic

hardware operations
  Library or OS intervention

M

The image cannot be displayed. Your computer may not have enough memory to open the
image, or the image may have been corrupted. Restart your computer, and then open the
file again. If the red x still appears, you may have to delete the image and then insert it
again.

° ° ° M M

Network

P

$

P

$

P

$

Sep-14-09 ECSE 420/520
Parallel Computing

Message-Passing Abstraction

  Send specifies buffer to be transmitted and receiving process
  Recv specifies sending process and application storage to receive to
  Memory to memory copy, but need to name processes
  Optional tag on send and matching rule on receive
  User process names local data and entities in process/tag space too
  In simplest form, send/recv match achieves pairwise synch event

  Other variants too
  Many overheads: copying, buffer management, protection

Pr ocess P Pr ocess Q

Addr ess Y

Addr ess X
Send X, Q, t

Receive Y , P , t Match

Local pr ocess
addr ess space Local pr ocess

addr ess space

Sep-14-09 ECSE 420/520
Parallel Computing

000001

010011

100

110

101

111

Evolution of Message-Passing
Machines

  Early machines: FIFO on each link
  HW close to prog. Model;
  synchronous ops
  topology central (hypercube algorithms)

CalTech Cosmic Cube (Seitz, CACM Jan 95)

Sep-14-09 ECSE 420/520
Parallel Computing

Diminishing Role of Topology

  Shift to general links
  DMA, enabling non-blocking ops

  Buffered by system at destination until
recv

  Store&forward routing
  Diminishing role of topology

  Any-to-any pipelined routing
  Node-network interface dominates

communication time

  Simplifies programming
  Allows richer design space

  grids vs hypercubes

H x (T0 + n/B)

vs

T0 + HΔ + n/B

Intel iPSC/1 -> iPSC/2 -> iPSC/860

Sep-14-09 ECSE 420/520
Parallel Computing

Example Intel Paragon

Memory bus (64-bit, 50 MHz)

i860

L1 $

NI

DMA

i860

L1 $

Driver

Mem
ctrl

4-way
interleaved

DRAM

Intel
Paragon
node

8 bits,
175 MHz,
bidirectional2D grid network

with processing node
attached to every switch

Sandia’ s Intel Paragon XP/S-based Supercomputer

Sep-14-09 ECSE 420/520
Parallel Computing

Memory bus

MicroChannel bus

I/O

i860 NI

DMA

D
R
A
M

IBM SP-2 node

L2 $

Power 2
CPU

Memory
controller

4-way
interleaved

DRAM

General inter connection
network formed fr om
8-port switches

NIC

Building on the mainstream:
IBM SP-2
  Made out of

essentially
complete
RS6000
workstations

  Network
interface
integrated in
I/O bus (bw
limited by I/O
bus)

Sep-14-09 ECSE 420/520
Parallel Computing

Berkeley NOW
  100 Sun Ultra2

workstations
  Inteligent

network
interface
  proc + mem

  Myrinet
Network
  160 MB/s per

link
  300 ns per

hop

Sep-14-09 ECSE 420/520
Parallel Computing

IBM Blue Gene /L
  Currently,

occupies
few top
spots in
top500

  Lots of
embedded
processors -
PowerPC

Sep-14-09 ECSE 420/520
Parallel Computing

Toward Architectural Convergence

  Evolution and role of software have blurred boundary
  Send/recv supported on SAS machines via buffers
  Can construct global address space on MP (GA -> P | LA)
  Page-based (or finer-grained) shared virtual memory

  Hardware organization converging too
  Tighter NI integration even for MP (low-latency, high-bandwidth)
  Hardware SAS passes messages

  Even clusters of workstations/SMPs are parallel systems
  Emergence of fast system area networks (SAN)

  Programming models distinct, but organizations converging
  Nodes connected by general network and communication assists
  Implementations also converging, at least in high-end machines

Sep-14-09 ECSE 420/520
Parallel Computing

Acknowledgments

  D. Koester, MITRE
  NUMAchine group
  Authors of recommended textbooks

