
ECSE 420
Programming Models

Zeljko Zilic
McConnell Engineering Building
Room 546

Sep-14-09 ECSE 420/520
Parallel Computing

Reminder: Grading Scheme

  40% homeworks (4)
  30% exam
  30% project (teams of 1-2)

Sep-14-09 ECSE 420/520
Parallel Computing

Programming Models
  Conceptualization of the machine that programmer uses in

coding applications
  How parts cooperate and coordinate their activities
  Specifies communication and synchronization operations

  Multiprogramming
  no communication or synch. at program level

  Shared address space
  like bulletin board

  Message passing
  like letters or phone calls, explicit point to point

  Data parallel:
  more regimented, global actions on data
  Implemented with shared address space or message passing

Sep-14-09 ECSE 420/520
Parallel Computing

Shared Memory (Shared Address
Space)

  Bottom-up engineering factors
  Programming concepts
  Why its attactive

Sep-14-09 ECSE 420/520
Parallel Computing

Adding Processing Capacity

  Memory capacity increased by adding modules
  I/O by controllers and devices
  Add processors for processing!

  For higher-throughput multiprogramming, or
parallel programs

I/O ctrlMem Mem Mem

Interconnect

Mem I/O ctrl

Processor Processor

Interconnect

I/O
devices

Sep-14-09 ECSE 420/520
Parallel Computing

Historical Development

P

P

C

C

I/O

I/O

M MM M

PP

C

I/O

M MC

I/O

$ $

  “Mainframe” approach
  Motivated by multiprogramming
  Extends crossbar used for Mem and I/O
  Processor cost-limited => crossbar
  Bandwidth scales with p
  High incremental cost

  use multistage instead

  “Minicomputer” approach
  Almost all microprocessors have bus
  Motivated by multiprogramming, TP
  Used heavily for parallel computing
  Called symmetric multiprocessor (SMP)
  Latency larger than for uniprocessor
  Bus is bandwidth bottleneck

  caching is key: coherence problem
  Low incremental cost

Sep-14-09 ECSE 420/520
Parallel Computing

Shared Physical Memory
  Any processor can directly reference any memory

location
  Any I/O controller - any memory

  Operating system can run on any processor, or all.
  OS uses shared memory to coordinate

  Communication occurs implicitly as result of loads
and stores

  What about application processes?

Sep-14-09 ECSE 420/520
Parallel Computing

Shared Virtual Address Space
  Process = address space plus thread of control
  Virtual-to-physical mapping can be established so

that processes shared portions of address space.
  User-kernel or multiple processes

  Multiple threads of control on one address space.
  Popular approach to structuring OS’s
  Now standard application capability (ex: POSIX

threads)
  Writes to shared address visible to other threads

  Natural extension of uniprocessors model
  conventional memory operations for communication
  special atomic operations for synchronization

  also load/stores

Sep-14-09 ECSE 420/520
Parallel Computing

Structured Shared Address
Space

  Add hoc parallelism used in system code
  Most parallel applications have structured SAS
  Same program on each processor

  shared variable X means the same thing to each thread

S t o r e
P 1 P 2

P n

P 0

L o a d

P 0 p r i v a t e
P 1 p r i v a t e

P 2 p r i v a t e

P n p r i v a t e
Virtual address spaces for a
collection of processes communicating
via shared addresses

Machine physical address space

Shared portion
of address space

Private portion
of address space

Common physical
addresses

Sep-14-09 ECSE 420/520
Parallel Computing

Engineering: Intel Pentium Pro Quad

  All coherence and
multiprocessing glue in
processor module

  Highly integrated,
targeted at high volume

  Low latency and
bandwidth

P-Pro bus (64-bit data, 36-bit addr ess, 66 MHz)

CPU

Bus interface

MIU

P-Pro
module

P-Pro
module

P-Pro
module256-KB

L2 $
Interrupt
controller

PCI
bridge

PCI
bridge

Memory
controller

1-, 2-, or 4-way
interleaved

DRAM

P
C
I

b
u
s

P
C
I

b
u
s

PCI
I/O

cards

Sep-14-09 ECSE 420/520
Parallel Computing

Engineering: SUN Enterprise

  Proc + mem card - I/O card
  16 cards of either type
  All memory accessed over bus, so symmetric
  Higher bandwidth, higher latency bus

Gigaplane bus (256 data, 41 addr ess, 83 MHz)

S
B
U
S

S
B
U
S

S
B
U
S

2

F
i
b
e
r
C
h
a
n
n
e
l

1
0
0
b
T

,

S
C
S
I

Bus interface

CPU/mem
cardsP

$2

$
P

$2

$

Mem ctrl

Bus interface/switch

I/O cards

Sep-14-09 ECSE 420/520
Parallel Computing

Scaling Up

  Problem is interconnect: cost (crossbar) or bandwidth (bus)
  Dance-hall: bandwidth still scalable, but lower cost than crossbar

  latencies to memory uniform, but uniformly large
  Distributed memory or non-uniform memory access (NUMA)

  Construct shared address space out of simple message
transactions across a general-purpose network (e.g. read-request,
read-response)

  Caching shared (particularly nonlocal) data?

M M M

The image cannot be displayed. Your computer may not have
enough memory to open the image, or the image may have
been corrupted. Restart your computer, and then open the
file again. If the red x still appears, you may have to delete
the image and then insert it again.

° ° °

° ° ° M

The image cannot be displayed. Your computer may not have enough memory to open the
image, or the image may have been corrupted. Restart your computer, and then open the
file again. If the red x still appears, you may have to delete the image and then insert it
again.

° ° ° M M

Network Network

P

$

P

$

P

$

P

$

P

$

P

$

“Dance hall” Distributed memory

Sep-14-09 ECSE 420/520
Parallel Computing

Engineering: Cray T3E

  Scale up to 1024 processors, 480MB/s links
  Memory controller generates request message for non-local

references
  No hardware mechanism for coherence

  SGI Origin etc. provide this

Switch

P
$

XY

Z

Exter nal I/O

Mem
ctrl

and NI

Mem

Sep-14-09 ECSE 420/520
Parallel Computing

U. Toronto NUMAchine
  Working state-of-

the art cache
coherent shared-
memory
multiprocessor

  Developed on a
“shoebox”
budget

  64 processors
(MIPS 4400)

Sep-14-09 ECSE 420/520
Parallel Computing

NUMAchine Processor Board
  Most complexity

of the overall
system

  Logic
implemented
completely with
programmable
logic

Sep-14-09 ECSE 420/520
Parallel Computing

Message Passing Approach

SIMD

Message Passing
Shared Memory Dataflow

Systolic
Arrays Generic

Architecture

M

The image cannot be displayed. Your computer may not have enough memory to open the
image, or the image may have been corrupted. Restart your computer, and then open the
file again. If the red x still appears, you may have to delete the image and then insert it
again.

° ° ° M M

Network

P

$

P

$

P

$

Sep-14-09 ECSE 420/520
Parallel Computing

Message Passing Architectures
  Complete computer as building block, including I/O

  Communication via explicit I/O operations
  Programming model

  direct access only to private address space (local
memory),

  communication via explicit messages (send/receive)
  High-level block diagram

  Communication integration?
  Mem, I/O, LAN, Cluster

  Easier to build and scale than SAS
  Programming model more removed from basic

hardware operations
  Library or OS intervention

M

The image cannot be displayed. Your computer may not have enough memory to open the
image, or the image may have been corrupted. Restart your computer, and then open the
file again. If the red x still appears, you may have to delete the image and then insert it
again.

° ° ° M M

Network

P

$

P

$

P

$

Sep-14-09 ECSE 420/520
Parallel Computing

Message-Passing Abstraction

  Send specifies buffer to be transmitted and receiving process
  Recv specifies sending process and application storage to receive to
  Memory to memory copy, but need to name processes
  Optional tag on send and matching rule on receive
  User process names local data and entities in process/tag space too
  In simplest form, send/recv match achieves pairwise synch event

  Other variants too
  Many overheads: copying, buffer management, protection

Pr ocess P Pr ocess Q

Addr ess Y

Addr ess X
Send X, Q, t

Receive Y , P , t Match

Local pr ocess
addr ess space Local pr ocess

addr ess space

Sep-14-09 ECSE 420/520
Parallel Computing

000001

010011

100

110

101

111

Evolution of Message-Passing
Machines

  Early machines: FIFO on each link
  HW close to prog. Model;
  synchronous ops
  topology central (hypercube algorithms)

CalTech Cosmic Cube (Seitz, CACM Jan 95)

Sep-14-09 ECSE 420/520
Parallel Computing

Diminishing Role of Topology

  Shift to general links
  DMA, enabling non-blocking ops

  Buffered by system at destination until
recv

  Store&forward routing
  Diminishing role of topology

  Any-to-any pipelined routing
  Node-network interface dominates

communication time

  Simplifies programming
  Allows richer design space

  grids vs hypercubes

H x (T0 + n/B)

vs

T0 + HΔ + n/B

Intel iPSC/1 -> iPSC/2 -> iPSC/860

Sep-14-09 ECSE 420/520
Parallel Computing

Example Intel Paragon

Memory bus (64-bit, 50 MHz)

i860

L1 $

NI

DMA

i860

L1 $

Driver

Mem
ctrl

4-way
interleaved

DRAM

Intel
Paragon
node

8 bits,
175 MHz,
bidirectional2D grid network

with processing node
attached to every switch

Sandia’ s Intel Paragon XP/S-based Supercomputer

Sep-14-09 ECSE 420/520
Parallel Computing

Memory bus

MicroChannel bus

I/O

i860 NI

DMA

D
R
A
M

IBM SP-2 node

L2 $

Power 2
CPU

Memory
controller

4-way
interleaved

DRAM

General inter connection
network formed fr om
8-port switches

NIC

Building on the mainstream:
IBM SP-2
  Made out of

essentially
complete
RS6000
workstations

  Network
interface
integrated in
I/O bus (bw
limited by I/O
bus)

Sep-14-09 ECSE 420/520
Parallel Computing

Berkeley NOW
  100 Sun Ultra2

workstations
  Inteligent

network
interface
  proc + mem

  Myrinet
Network
  160 MB/s per

link
  300 ns per

hop

Sep-14-09 ECSE 420/520
Parallel Computing

IBM Blue Gene /L
  Currently,

occupies
few top
spots in
top500

  Lots of
embedded
processors -
PowerPC

Sep-14-09 ECSE 420/520
Parallel Computing

Toward Architectural Convergence

  Evolution and role of software have blurred boundary
  Send/recv supported on SAS machines via buffers
  Can construct global address space on MP (GA -> P | LA)
  Page-based (or finer-grained) shared virtual memory

  Hardware organization converging too
  Tighter NI integration even for MP (low-latency, high-bandwidth)
  Hardware SAS passes messages

  Even clusters of workstations/SMPs are parallel systems
  Emergence of fast system area networks (SAN)

  Programming models distinct, but organizations converging
  Nodes connected by general network and communication assists
  Implementations also converging, at least in high-end machines

Sep-14-09 ECSE 420/520
Parallel Computing

Acknowledgments

  D. Koester, MITRE
  NUMAchine group
  Authors of recommended textbooks

