
1. A uniprocessor application is parallelized for 4 processors, yielding a 3.8x speedup. Given the time
breakdown of the various function seen in the graph, what is the minimum total time that the
uniprocessor application spent while Busy and in performing Data Access?

Answer2:

 Speed Up(p)<=
ProcessorAny on Max Work

WorkSequential

Looking at each column of the graph and adding the time concerning synchronization, busy
useful time, data local time, data remote and busy overhead, you can fund the required execution
time of each parallel processor. Afterward, you have to put the longest execution time to the
following formula:

3.8x<
ProcessorAny on Max Work

WorkSequential => 3.8x<=
 160) 145, 160, (145,Max

WorkSequential

Therefore SequentailWork>= 3.8x * 160

3- Consider a bus-based shared memory multiprocessor system. It is constructed using
processors with speed of 106 instructions, and a bus with a peak bandwidth of 105 fetches. The
caches are designed to support a hit rate of 90%.
(a) What is the maximum number of processors that can be supported by this system?
(b) What hit rate is needed to support a 20-processor system?

In this question, (1-hit rate)* processor speed actually determines the rate of bus request form
each processor. Hence, the bus will be saturated when total bus requests from the N processors
exceed the bus peak bandwidth the following inequality illustrates that

N(1-Hit Rate) * Processor Speed<= Bus Band Width
N(1-0.9)* 106 ≤ 105

Therefore N must be 1 for the first part of this question. For the second part of this question we
are going to have 20 processors; therefore, we simply place 20 instead of N and find the required
hit rate

20(1-h)* 106 ≤ 105
(1-h) ≤ 1/200
1-1/200 ≤ hit rate

You are given a simple 3D Array of integer which consist of n3 elements and p processors as a
system specification. Using the Domain Decomposition technique, you can be able to varyingly
parallelize operations of P processors on this 3D array. What are two different ways of
decomposition and the concerning computation and computation overhead of each way.

Answer 7:

 One way of domain decompositions is using blocking,

Communication/computation= LATERAL Area/Volume of each block

Communication/computation= 3

3

2

3
6

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

p
n

p
n

=
n

p
n
p 33

1

66 ×
=

×

Another way of domain decomposition is using of strip box

Communication/computation= LATERAL Area/Volume of each block

Communication/computation=

p
n

n
3

2 2× =
n

p×2

5-Consider a bus-based machine with 4 processors, each running at a 0.5 GIPS and running a
workload that consists of: 60% ALU operations, 10% loads, 10% stores and 20% branches.
Suppose that the cache miss rate at each processor is 1% for instruction cache and 2% for data
cache, and the cache sharing among 2 processors is 40% and zero otherwise. The system bus
bandwidth is 8GB/s. Assuming that the cache line is 32 bytes large, and a snooping protocol,
determine the bandwidth used. How many processors could the bus accommodate?

We assume the simple write-through invalidate snooping protocol where every store operation
places the address of the block on the bus and cache controllers snoop on the bus and invalidate
their block if it was originally in their cache.
 In the write-through invalidate snooping snooping protocol, stores generate a bus transaction
in which multiple caches might request to invalidate their blocks. The problem statement
states that this happens 40% of the time and only 1 other processor cache will need to get
invalidated.

Instruction hitInstruction Miss

0.01 0.99

Data Miss Data Hit
Data Miss Data Hit

0.02 0.98
0.02 0.98

0.1

3* 32 bytes

0.4 0.6

shared Not
shared

0.4 0.6

shared Not
shared

0.4 0.6

shared Not
shared

0.4 0.6

shared Not
shared

2* 32 3* 32 2* 32 2* 32 1* 32 2* 32 1* 32

: 0.1*(0.01(0.02*(0.40*3*32bytes+0.60*2*32bytes)+0.98*(0.40*3*32bytes+0.60*2*32bytes))+
 0.99(0.02*(0.40*2*32bytes+0.60*1*32bytes)+0.98*(0.40*2*32bytes+0.60*1*32bytes)) =
4.512

Loads might generate a cache misses 2% of the time.

LOAD :
 0.1*(0.01(0.02*(2*32bytes)+0.98*(32bytes)) +0.99(0.02*(32bytes)+0.98*(0bytes)))

ALU and Braches do not generate any data misses (all operands that they are working with are
inside registers) but can still generate instruction misses like all instructions (1% of the time).

0.8*(0.01*32bytes+0.99*0byte)

To calculate the total bandwidth used, we need to calculate the number of bytes per instruction
transferred on every instruction:

LOAD:
 0.1*(0.01(0.02*(2*32bytes)+0.98*(32bytes)) +0.99(0.02*(32bytes)+0.98*(0bytes)))

SOTRE:

: 0.1*(0.01(0.02*(0.40*3*32bytes+0.60*2*32bytes)+0.98*(0.40*3*32bytes+0.60*2*32bytes))+
 0.99(0.02*(0.40*2*32bytes+0.60*1*32bytes)+0.98*(0.40*2*32bytes+0.60*1*32bytes))

ALU, BRANCH:
0.8*(0.01*32bytes+0.99*0byte)

number of bytes per instruction transferred=0.1*(0.96) +0.1*(45.2)+0.8*(0.32) = 4.872 bytes

Processor bandwidth = 0.5 s
ctionGigaInstru

*4.872 nInstructio
Bytes

 = 2.436
s

GB

The Bus could accommodate 3284.3
2.436

8
≅=

s
GB

s
GB

Consider transposing a matrix in parallel from a source matrix to a destination matrix.

a- How might you partition the two matrices among processes? Discuss some possibilities and
the trade-off. Does it matter whether you are programming a shared address space or
message-passing machine?

b- Why is interposes communication in a matrix transpose called all-to-all personalized
communication?

c- Write simple pseudo code for the parallel matrix transposition in a shared address space and in
message passing (just the loops that implement the transpose).

Row and Column based Decomposition

Memory over head: Transpose can not take place

P
1:

P
4:

No communication will be needed between processes.

Data Independence

Because of data independency there are no differences in shared memory and message passing
approach.

It can be done in N step.

Memory overheard

Diagonal Based Decomposition

No communication will be needed between processes.

Data Independence

Because of data independency there are no differences in shared memory and message passing
approach.

It can be done in 2 N step.

Memory overheard

Hypercube method

P0,p2 P0,p1

communication between processes. All to All communication as you can see column 0 gets value by
communicating with 4,2 and 1 instead of communication with 7 other column.

It can be done in N step.

No Memory overheard (In place transpose)

Shared address space code

For k= 0 … log(n) ‐1

Begin

