
ECSE 420-Parallel Computing 
Assignment 1 

 

1-Describe briefly the following terms, expose their cause, and work-around the industry has 
undertaken to overcome their consequences: 
 

a. Memory wall 
 

CPU speeds double approximately every eighteen months, while main memory speeds double 
only about every ten years. The diverging rates implies that memory speeds are causing a 
bottleneck (von Neuman bottleneck) in attaining system performance increases. The limited 
throughput between CPU and memory compared to the amount of memory available means that 
in modern machines, the CPU is continuously forced to wait for data to be transferred to or from 
memory. 
 
Overcoming this issue means finding ways to overcome the “memory wall” i.e. to diminish the 
impact of slow memory on system performance. One solution is to introduce small amounts of 
very fast (and expensive!) “cache” memory between the CPU and main memory in order to 
reduce the cost of accessing frequently used data from main memory. Other methods such as 
instruction level parallelism, branch prediction algorithms, out-of-order execution, 
speculative execution etc…) try to reduce the time the CPU is waiting for data to be fetched 
from memory by performing (potentially) useful work before the CPU needs it. 
 
b. Frequency wall 
 
Since present day microprocessors are built using CMOS technology, how fast a 
processor can be clocked depends on how small of a switching time each transistor can 
have. The switching time of a MOSFET goes down with its size (inversely proportional 
to its size). Because of the physical limits of the technology being use to manufacture 
these transistors, we have reached a point at which is it is no longer possible to 
increase the frequency at which the CPU operates. 
 These limits come from the technology, the targeted chip size, the targeted cooling 
technology, and the targeted power consumption.  Clock rates have plateaud at about 
3.8 GHz. In order to overcome these limitations, instruction level parallelism methods 
as previously mentioned have been introduced in order to raise the number of 
instructions per clock cycle that are executed. However, increasing the frequency 
typically requires deeper pipelines and more power. Increasing the length of the 
pipeline increases the chances of resource conflicts in the instruction stream which will 
stall the pipeline. The current solution is to move to parallel computing processors 
(thread level parallelism) by designing multi-core processor systems which typically 
operate at a lower frequency but can increase the throughput/performance of the 
system by significant amounts. 
 

 



SISD-Single Instruction Single Data 

SIMD-Single Instruction Multiple Data 

MIMD: Multiple Instruction Single Data 

MISD: Multiple Instruction Single Data 

[1] MISD (Multiple Instruction, Single Data) is a type of parallel computing architecture where 
many functional units perform different operations on the same data. Pipeline architectures 
belong to this type, though a purist might say that the data is different after processing by each 
stage in the pipeline. Fault-tolerant computers executing the same instructions redundantly in 
order to detect and mask errors, in a manner known as task replication, may be considered to 
belong to this type. Not many instances of this architecture exist, as MIMD and SIMD are often 
more appropriate for common data parallel techniques. Specifically, they allow better scaling and 
use of computational resources than MISD does. 

Some argue that a systolic array is an example of a MISD structure 

 
 
 
 
2- You should extend Amdahl’s and Gustafson-Barsis bound and make it slightly more realistic. 
Assuming the fixed overhead o in the communication and the setup of parallel processes, derive 
the expressions for both bounds that take the overhead into account. 
 
 
Realistically speaking, the overhead in the communication and the setup of parallel processes 
should usually depend on the number of parallel processes that are being used. However, we will 
assume that the overhead incurred is a fixed value that we can simply incorporate it into 
Amdahl’s law as a constant to give us a good estimate of the running time. 
 
Amdahl’s Law 
S: is the fraction of a program that has to be executed sequentially. 
N: Number of processors 
T(1): Is the running for a given program running on a single processor. 
T(N): Is the running time for the same program running on multiple processors. 
O: Fixed overhead in the communication and the setup of parallel processes. 
 
If the program’s running time on 1 processor is T(1) then the running time on N processor would 
be: 
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Therefore, as we increase N the upper bound on the Speedup is: 
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We must therefore keep O and S as low as possible in order to achieve maximal 
speedup as N increases. 
 
 
 
 
 
 
 
Gustafson-Barsis 
 
S: is the fraction of a program that has to be executed sequentially. 
N: Number of processors 
T(1): Is the running for a given program running on a single processor. 
T(N): Is the running time for the same program running on multiple processors. 
O: Fixed overhead in the communication and the setup of parallel processes. 
 
If the program’s running time on N processor is T(N) then the running time on one processor for 
that same problem size would be 
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Therefore, as we increase N the upper bound on the Speedup is: 
∞∞> = (Speedup)LimN-  

 
 
 
 



 
4-Gaussian elimination is a well-known technique for solving simultaneous linear systems of 
equations. Variable are eliminated one by one until there is only one left, and then the discovered 
values of variable are back-substituted to obtain the value of other variables. In practice the 
coefficients of the unknowns in the equation system are represented as a matrix A, and the 
matrix is first converted to an upper-triangular matrix ( a matrix in which all elements below the 
main diagonal are 0). Then back-substitution is used. Let us focus on the conversion to an upper 
triangular matrix by successive variable elimination. Pseudocode for sequential Gaussian 
elimination is shown in the Fig 1. The diagonal element for a particular iteration of the k loop is 
called the pivot element, and its row is called the pivot row. 

a) Draw a simple figure illustrating the dependences among matrix elements. 
b) Assuming decomposition into rows and an assignment into blocks of contiguous 

rows, write a shared address space parallel version using the primitives used for 
the equation solver.  

 

 
Fig.1 Pseudocode Describing Sequential Gaussian Elimination 
 
 
 
 
Gaussian Elimination (GE) is one of the direct methods of solving linear systems (Ax = b). In this method, 
first the matrix A is converted to the upper or lower triangular matrix. Thereafter, using substitution 
technique the value of the vector x is computed.  

 
 
 
 
 



 
 
 
 
 

 
 
 
 

Ai,j = ai,j –ai,k*ak,j

 every element inside this rectangle is 
updated in parallel

(N-1) * (N-1)

 
 
 
 

Ai,k = 0

 every element inside this rectangle is 
updated to zero in parallel

(N-1) 

 
 



 
 
 
 
 

 
 
 

Ai,j = ai,j –ai,k*ak,j

 every element inside this rectangle is 
updated in parallel

(N-2) * (N-2)

 
 
 
 

Ai,k = 0

 every element inside this rectangle is 
updated to zero in parallel

(N-2) 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For k<‐0 to n‐1 
Begin 

(1) For_all j<‐k+1 to n‐1 do 
         Ak,j= ak,j /ak,k 
 

(2) Akk =1 
 

(3) For_all i<‐ k+1 to n – 1do 
For_all j<‐ k+1 to n‐1 do 

      Ai,j=ai,j‐ai,k*ak,j 
 

(4)For_all i<‐k+1 to n‐1 do 
Ai,k = 0 

End for 
 
Pseudocode Describing the Parallel Gaussian Elimination without assignment 
 
 
 
 
 
int n, nprocs; /*matrix dimension and number of processors to be used*/ 
float **A; /*A is global (shared) array representing the matrix/ 
BARDEC (bar1); /*barrier declaration for global synchronization between sweeps*/ 
 
main() 
begin 
  read(nprocs); /*read input matrix size and number of processes*/ 
  read (n); 
  A ←G_MALLOC (n * n); 



  initialize(A); 
  CREATE (nprocs–1, Eliminate, A); 
  Eliminate(A); /*main process becomes a worker too*/ 
  WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/ 
end main 
 
 
 
 
 
 
 
 
 
procedure Eliminate(A) 
 begin 
 int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/ 
 int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/ 
 
For (k =0 to n) 
Begin 
        BSRRIER(bar1,nprocs); 
 if (k>=mymin && k<=mymax) 
 begin 
  For  j<-k+1 to n-1 do 
       A[k][j]= a[k][j] /a[k][k]   
 end 
 a[k][k]=1; 
 
 barier(bar1,nprocs); 
 for i=max(mymin,k+1)to mymax 
  begin                           
      For_all j= k+1 to n‐1 do 

        A[i][j]=a[i][j]‐a[i][k]*a[k][j] 

    end; 

 
 barier(bar1,nprocs); 
 for i=max(mymin,k+1)to mymax 
                             a[i][k] =0 

   
End; 



 
Or 
For (k =0 to n) 
Begin 
        BSRRIER(bar1,nprocs); 
 if (k>=mymin && k<=mymax) 
 begin 
  For  j<-k+1 to n-1 do 
       A[k][j]= a[k][j] /a[k][k]   
 end 
 a[k][k]=1; 
 
 barier(bar1,nprocs); 
 for i=max(mymin,k+1)to mymax 
  begin                           
      For_all j= k+1 to n‐1 do 

        A[i][j]=a[i][j]‐a[i][k]*a[k][j] 

                             a[i][k] =0 

    end; 

   
End; 
 
 
 
4. Suppose we have a machine with the message start-up time of 20000 ns and the asymptotic 
peak bandwidth of 900 MB/s. The machine is sending the messages with n bytes. The start-up 
time includes all SW and HW overhead on the two processors, accessing the network interface 
and cross the network – it can be thought of as the time to send the zero-length message. At what 
message length is machine reaching the half of the peak bandwidth? 
 
 
Data Transfer Time can be obtained according to the following formula: 
 

B
nnnT += 0)(

 

 
In this equation, n is the amount of data (e.g., in bytes), B is the transfer rate (bandwidth) in bytes 
per second and n0 is the start-up cost. Actually, bandwidth depends on the transfer size. 
However, asymptotic bandwidth is the bandwidth of a system taking into account the infinite 
number of data communication. Therefore, when n goes to infinity we can easily neglect the 
effect of n0. Eventually, we obtain the following formula for B: 
 



 
 
Now, we are supposed to find the related message size for reaching half of the peak bandwidth. 
The easiest way to obtain the message size is using two previous formulas in the following way: 
 

 
By solving above equation, we can reach to this equation 
 
N1/2= Bn0 
In this question we have: 
T0 = 20000 
B= 900 MB/s 

BytesMBnsn 368.18874290010000,20/900000,20 209
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5- We are going to find the average of elements in grid of (n*n). Each element of this grid may 
be a mathematical expression. Therefore, every element of this grid requires computation. Based 
on the Amdhal’s law compute the speed up of using K processors in these two following 
situation:  
 

a. Each processor has its own private value for holding the sum. 
b. The processors have to use one shared value to keep tracking of the sum. That is, every 

processor should sum its result to the shared variable of sum. 
 
In this question you are supposed to figure out the effect of decomposition. Here, we have n2 

elements and K processors. So each processor could compute K
n2

additions. If processors do not 

have a private variable, they have to add sequentially to the global variable the result of their 
intermediate additions. Hence, the below equation goes with T(K): 
 

T(K) = 12
2

++ n
K
n

; therefore the maximum speedup is limited to : 
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However, when each processor has a private sum the following formula goes with the speed up 
of N parallel processors. In this case, processors do not have to use the global sum sequentially. 
They use our own private sum keeping the result of intermediate additions. 
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