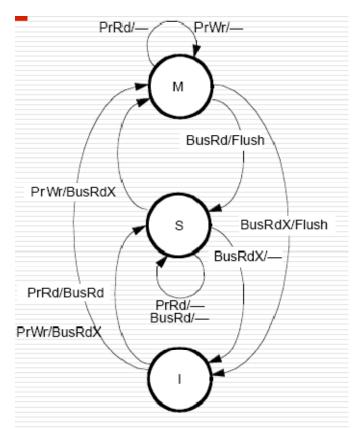
ECSE 420, Fall 2008

Midterm Examination

1- (Performance bounds- 20 points) We are going to find the average of elements in grid of (n*n). Each element of this grid may be a mathematical expression. Therefore, every element of this grid requires computation. Based on the Amdhal's law compute the speed up of using K processors in these two following situations:

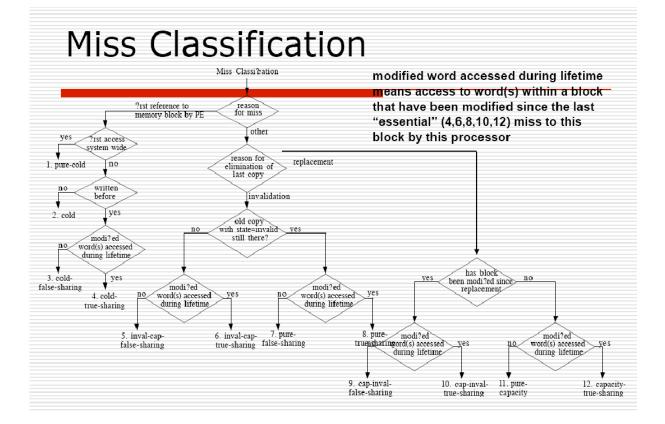
- a. Each processor has its own private value for holding the sum.
- b. The processors have to use n_sv shared values to keep tracking of the sum. That is, every processor should sum its result to the shared variable of sum (assume that shared variables are assigned equally; for example, if we have 8 processors and 4 shared variables each shared variable is assigned to two processors.


Note: Use T(K) and T(1) respectively with respect to the running time under K processors and 1 processor:

2-(Communication cost – 15 points) For a machine with the message start-up time of T_0 ns and the asymptotic peak bandwidth of 2 GB/s, if message lengths for reaching the 1/3rd of the peak bandwidth is 540 bytes what is the amount of T_0 and the message length (bytes) for reaching to 2/3rd of the peak bandwidth?

3- (Domain Decomposition– 15 points) You are given a simple 3D Array of integers which consists of n^3 elements. There are p processors in a system. Using the Domain Decomposition technique, you can be able to varyingly parallelize operations of P processors on this 3D array. What are two different ways of decomposition and the concerning computation and computation overhead of each way.

4- (Bus communication requirements – 20 points) Consider a bus-based machine with 4 processors, each running at a 0.5 GIPS and running a workload that consists of: 50% ALU operations, 20% loads, 10% stores and 20% branches. Suppose that the cache miss rate at each processor is1% for instruction cache and 3% for data cache, and that the cache sharing among 2 processors is 40% and zero otherwise. The system bus bandwidth is 7.5GB/s. Assuming that the cache line is 32 bytes large, and a snooping protocol, determine the bandwidth used. How many processors could the bus accommodate?


5- (Cache coherency -10 points) Using the MSI protocol, show the state transitions and bus transaction for the following scenario; for your convenience, we put the 3 states MSI protocol here:

Processor Action	State in P1	State in P2	State in P3	Bus Action	Data Supplied by
P1 reads u					
P3 reads u					
P3 writes u					
P1 reads u					
P2 reads u					

6-(Cache coherency – 20 points) classify the misses in the following reference from three processors into categories shown in the attached page. Assume that each processor's cache consists of only a single four-word cache block and that all the cache is initially empty. Moreover, assume that each processor's cache consist of only a single four-word cache block. That is, w0 through w3 fall on the same cache block, as do words w4 through w7.

	P1	P2	P3	Miss classification
1	Ld w0		Ld w2	
2			st w2	
3		Ld w1		
4		Ld w2	Ld w7	
5	Ld w5			
6		Ld w6		
7		st w6		
8	Ld w5			
9	Ld w6			
10	Ld w2	Ld w1		
11	St w5			
12			St w2	
13			Ld w7	
14			Ld w2	
15	Ld w0			

