

Introduction to Microelctronics

ECSE334

Wednesday, April 25, 2007, 2:00pm

Examiner: prof. R. Khazaka Signature: R. KHAZAKA	Associate Examiner: prof. G. Roberts Signature:
STUDENT NAME:	McGill I.D. Number:

INSTRUCTIONS

- The total number of points in this examination is 50
- This is a *closed book* examination.
- You are permitted regular and translation dictionaries.
- Faculty standard calculator permitted only.
- Answer all questions, and write your answers on the examination paper.
- This examination paper must be returned.
- A formula sheet is inluded at the end of the exam paper.

Question#	1	2	3	4
Weight	8	20	15	7
Score				

	Total Score	
ì		

QUESTION 1:(8 MARKS)

Figure Q1.1

Consider the circuit in Figure Q1.1. Find the current in all 5 resistors. Assume $|V_{BE}|=0.7V$ and $\beta=\infty$.

QUESTION 2: (20 MARKS)

Figure Q2.1

The circuit shown in Figure Q2.1, is a multistage amplifier with a differential input stage. It uses a folded cascode involving transistor Q_3 . Note that transistor Q_5 operates in class B mode and is off at the quiescent point, while Q_4 is ON at the quiescent point with Q_D sinking its bias current. All transistors have $|V_{BE}| = 0.7V$, $V_A = 200V$, and $\beta = 100$.

- a) Perform a dc bias calucation at the quiescent point ($v_+ = v_- = 0V$, and v_o is stabilized by external feedback to 0V) and determine R so that the reference current I_{REF} is $100 \mu A$. For this DC bias calculation you may assume $|V_{BE}| = 0.7V$, infinite β , and $V_A = \infty$. What are the dc voltages at all the labled nodes (A, B, C, D, E, F, G).
- b) Provide in tabular form the bias current for all transistors. Provide g_m and r_o for the signal transistors (Q₁, Q₂, Q₃, Q₄, and Q₅), and r_o for Q_C, Q_D and Q_G.
- c) Using $\beta=100$, find the voltage gain $v_o/(v_+-v_-)$ at the quiescent point, and in the process verify the polarity of the inputs.
- d) Find the input and output resistances at the quiescent point ($v_+ = v_- = 0V$, and v_o is stabilized by external feedback to 0V).
- e) Find the input common mode range for linear operation.
- f) Under what conditions does transistor Q_5 turn on?

Page 5 of 16

QUESTION 3:(15 MARKS)

Figure Q3.1: OpAmp Circuit

Consider the circuit in series-shunt feedback configuration shown in Figure Q3.1. Assume that the opamp has infinite input resistance, zero output resistance and a baseband gain of $A = 10^5$.

- a) Find an expression for the feedback factor β .
- b) Find the ratio R_2/R_1 to obtain a closed loop volage gain of $A_f = \frac{V_o}{V_s} = 10$.
- c) If A decreases by 20%, what is the corresponding decrease in A_f .
- d) If the opamp has poles at $f_{p1}=10^4Hz$, $f_{p2}=10^7Hz$ and $f_{p3}=10^8Hz$, find the ratio R_2/R_1 that results in at least a 45 degree phase margin.

Page 10 of 16

QUESTION 4: (7MARKS)

Figure Q4.1

Draw the general topology of a complex CMOS gate that realizes the following logic function: $Y = \overline{A \cdot B + C \cdot (D + E)}$.

Table 4.2 SUMMARY OF THE BJT CURRENT-VOLTAGE RELATIONSHIPS IN THE ACTIVE MODE

$$i_C = I_S e^{\nu \rho g/V_T}$$

$$i_B = \frac{i_C}{\beta} = \left(\frac{I_S}{\beta}\right) e^{\nu \mu g/V_T}$$

$$i_C = \left(\frac{I_S}{\beta}\right) e^{\nu \mu g/V_T}$$

 $i_E = \frac{i_C}{\alpha} = \left(\frac{I_S}{\alpha}\right) e^{v_{\rm BE}/V_T}$ Note: For the *pnp* transistor, replace $v_{\rm BE}$ with $v_{\rm EB}$.

$$i_C = \alpha i_E \qquad i_B = (1 - \alpha)i_E = \frac{i_E}{\beta + 1}$$

$$i_C = \beta i_B \qquad i_E = (\beta + 1)i_B$$

$$\beta = \frac{\alpha}{1 - \alpha} \qquad \alpha = \frac{\beta}{\beta + 1}$$

$$kT$$

$$\beta = \frac{\alpha}{1 - \alpha} \qquad \alpha = \frac{\beta}{\beta + 1}$$

 $V_T = \text{thermal voltage} = \frac{kT}{q} \simeq 25 \text{ mV}$ at room temperature

Table 4.3 RELATIONSHIPS BETWEEN THE **SMALL-SIGNAL MODEL** PARAMETERS OF THE BUT

Model Parameters in Terms of DC Blas Currents:

$$g_{m} = \frac{I_{C}}{V_{T}} \qquad r_{e} = \frac{V_{T}}{I_{E}} = \alpha \left(\frac{V_{T}}{I_{C}}\right)$$
$$r_{\varphi} = \frac{V_{T}}{I_{B}} = \beta \left(\frac{V_{T}}{I_{C}}\right) \qquad r_{o} = \frac{V_{A}}{I_{C}}$$

In terms of g_m :

$$r_e = \frac{\alpha}{R_m}$$
 $r_w = \frac{\beta}{R_m}$

in terms of re-

$$g_m = \frac{\alpha}{r_e}$$
 $r_w = (\beta + 1)r_e$ $g_m + \frac{1}{r_m} = \frac{1}{r_e}$

Relationships between α and β :

$$\beta = \frac{\alpha}{1-\alpha} \quad \alpha = \frac{\beta}{\beta+1} \quad \beta+1 = \frac{1}{1-\alpha}$$

Table 5.4 SUMMARY OF IMPORTANT MOSFET EQUATIONS

Current-Voltage Relationships

For NMOS Devices:

Triode region (v_{GS} ≥ V_i, v_{DS} ≤ v_{GS} − V_i)

$$\begin{split} t_D &= k_R' \left(\frac{W}{L}\right) \left[(v_{GS} - V_l) v_{DS} - \frac{1}{2} \ v_{DS}^2 \right] \\ \text{For small } v_{DS} : r_{DS} &= \frac{v_{DS}}{i_D} = \left[k_R' \left(\frac{W}{L} \right) (v_{GS} - V_l) \right]^{-1} \end{split}$$

Saturation region (v_{GS} ≥ V_t, v_{DS} ≥ v_{GS} − V_t)

$$\bar{I}_D = \frac{1}{2} k_B^r \left(\frac{W}{L} \right) (v_{GS} - V_i)^2 (1 + \lambda v_{DS})$$

• $k'_n = \mu_n C_{\sigma \kappa}$ (see Table 5.1)

$$V_t = V_{t0} + \gamma \left[\sqrt{2\phi_f + |V_{SB}|} - \sqrt{2\phi_f} \right]$$

 $\gamma = \sqrt{2qN_0\epsilon_a}/C_{co}$, $q = 1.6 \times 10^{-19}$ coulomb, $\epsilon_x = 1.04 \times 10^{-12}$ F/cm

$$\lambda = 1/V_A$$
, $V_A = \alpha L$

■ For PMOS Devices: V_{4.75} A and V_A are negative

- For triode region, $v_{GS} \leq V_t$ and $v_{DS} \geq v_{GS} V_t$
- For saturation region, $v_{GS} \leq V_i$ and $v_{DS} \leq v_{GS} = V_i$

For Depletion Devices (refer to Fig. 5.23):

- n channel: V, is negative
- · p channel: V_i is positive

$$\bullet \ I_{DSS} = \frac{1}{2} k' \left(\frac{W}{L} \right) V_i^2$$

Small-Signal Model (Fig. 5.67)

$$g_m = \sqrt{2k'(W/L)} \sqrt{I_D}$$
 $r_o = \frac{|V_A|}{I_D}$

$$g_m = k'(W/L)(V_{GS} - V_i)$$

$$g_m = \frac{2I_D}{V_{GS} - V_t} \qquad V_{GS} - V_t = V_{eff}$$

$$g_{mb} = \chi g_{m}, \qquad \chi = \gamma / [2\sqrt{2\phi_f} + |V_{SB}|]$$

$$C_{gs} = \frac{2}{3} WLC_{os} + WL_{ov}C_{os} \qquad C_{gd} = WL_{ov}C_{os}$$

$$C_{sb} = \frac{C_{sb0}}{\sqrt{1 + \frac{|V_{Sb}|}{V_0}}}$$
 $C_{db} = \frac{C_{db0}}{\sqrt{1 + \frac{|V_{DB}|}{V_0}}}$

$$f_T = \frac{g_m}{2\pi(C_{g_1} + C_{g_d})}$$