McGill University -

Faculty of Engineering

Department of Electrical and Computer Engineering

ECSE 334 - Introduction to Microelectronics Final Examination (April 11, 2006) 3 hours (2:00PM-5:00PM)

Examiner: Prof. Anas A. Hamoui

Co-Examiner: Prof. Mourad N. El-Gamal

□ Instructions/Notes:

- This is a closed-book examination. Only the faculty-approved calculators are permitted.
- The examination includes 3 questions and consists of $\underline{\mathbf{q}}$ pages, including this cover page.
- A summary of the BJT and MOSFET characteristics is attached (Upages).
- Make sure you have total of **1** pages, BEFORE you start solving this examination.
- · All questions have equal weight.
- State any assumptions you find *necessary* to complete your answers.
- For full credit, you must show the **steps** you followed to answer the questions and you must clearly indicate the **units** in your answers.
- Answer all questions in the exam books provided. <u>Underline your answers</u>.
- Write your name on this cover page and on top of each question which you want marked. Place the sheets which you want to be marked inside your exam booklet.
- Return ALL pages of this of this examination to the Invigilator. You are NOT allowed to leave this room with any examination paper.

Student Last Name:	
Student First Name:	
McGill Student ID:	

Question #	1	2	3	4	Total
Mark	/25	/25	25	/25	/100

DEVICE PARAMETERS

□ MOSFET Parameters:

For a MOSFET in the saturation region and having $L = 0.5 \mu m$:

	NMOS Transistor	PMOS Transistor
$ V_{t0} $	0.6 V	0.65 V
λ	$0.25 \ V^{-1}$	$0.40 \ V^{-1}$
μC_{ox}	$200 \mu A/\textit{V}^2$	50 μA/V ²
C_{ox}	$5 fF/\mu m^2$	$5 fF/\mu m^2$
$L_{ov}C_{ox}$	0.625 fF/μm	0.625 fF/μm

□ BJT Parameters:

	npn BJT	pnp BJT
$ V_{BEon} $	0.7 V	0.7 V
$ V_{BCon} $	0.4 V	0.4 V
$ V_{CEsat} $	0.3 V	0.3 V
$\beta = h_{fe}$	120	50
C_{μ}	5 fF	15 fF
r_x	400 Ω	200 Ω
$ V_A $	35 V	30 V
V_T	25 mV	25 mV

Note:
$$1 fF = 10^{-3} pF = 10^{-15} F$$

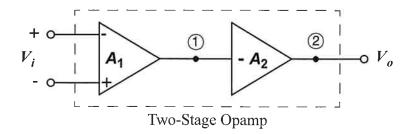


Figure 1

Question 1: Frequency Compensation [25 marks]

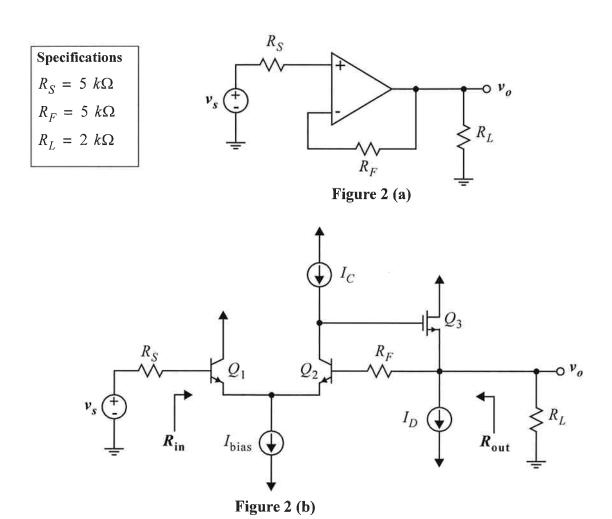
Consider the two-stage opamp shown in Figure 1.

Its open-loop transfer function $A(s) = V_o(s) / V_i(s)$ has:

- a dc gain of $A_0 = A_1 A_2 = 60 \, dB$;
- poles at $f_{p1} = 1 \text{ MHz}$, $f_{p2} = 10 \text{ MHz}$, and $f_{p3} = 100 \text{ MHz}$.

The 1st pole (at f_{p1}) is formed at node 1 and the 2nd pole (at f_{p2}) is formed at node 2.

The total capacitance at node 1 is $C_1 = 7 \,\mathrm{pF}$.


The dc gains of the individual stages are $A_1 = 50 \text{ V/V}$ and $A_2 = 20 \text{ V/V}$.

The opamp is to be connected in a negative-feedback loop via a feedback network whose feedback factor B is frequency independent.

It is required to compensate the opamp, so that it is stable with a phase margin of $PM = 45^{\circ}$ for a feedback factor B = 1.

Consider the following 3 compensation schemes:

- a) Compensation Scheme 1: the opamp is compensated by introducing a new dominant pole.
 - ullet Find the frequency f_D at which the new pole must be placed.
- b) Compensation Scheme 2: the opamp is compensated by placing an additional capacitance C_C at node 1 to reduce the frequency of the 1st pole.
 - Find the frequency f_{p1} ' to which the 1st pole must be shifted. Assume that the frequencies of the other poles remain unchanged.
 - Find the required size for capacitor C_C .
- c) Compensation Scheme 3: the opamp is to be compensated by connecting a compensating capacitor C_C between nodes 1 and 2.
 - Find the frequency f_{p1} ' to which the 1st pole must be shifted. Assume that such frequency compensation will also shift the 2nd pole (at f_{p2}) to a frequency f_{p2} ' >> f_{p3} .
 - Find the required size for capacitor C_C .

Question 2: Feedback Amplifiers [25 marks]

The series-shunt feedback amplifier in Figure 2(a) is implemented as shown in Figure 2(b). Assume that:

- the signal source v_s has a dc component of 0 V and the bias voltage level at the output is stabilized by feedback to about 0 V;
- the dc base currents of the BJTs are negligible;
- current source I_{bias} is ideal;
- the incremental output resistances of sources I_C and I_D are R_c and R_d , respectively.

For simplicity, write your expressions using the variables previously derived, together with the BJT small-signal parameters, the incremental output resistance of the current sources (R_c, R_d) , and the external resistors (R_S, R_F, R_L) .

Refer to the β of the BJT as h_{fe} . Use subscripts to associate each small-signal parameter with its corresponding transistor number.

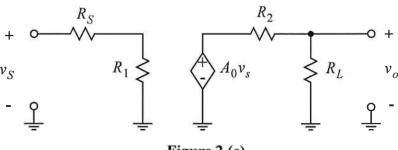


Figure 2 (c)

- a) Use feedback analysis to write the expression for:
 - i) the feedback factor B
 - ii) the open-loop gain A
 - iii) the closed-loop gain $A_f \equiv v_o / v_s$
 - iv) the input resistance R_{in}
 - v) the output resistance R_{out}

of the feedback amplifier in Figure 2(b).

- b) Write the expression for
 - R₁
 - *R*₂
 - *A*₀

in Figure 2(c), such that the voltage amplifier model in Figure 2(c) is equivalent to the feedback amplifier circuit in Figure 2(b).

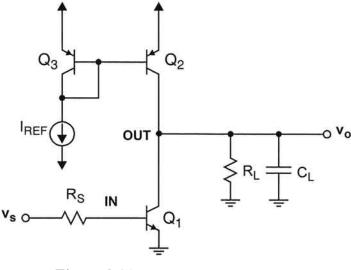
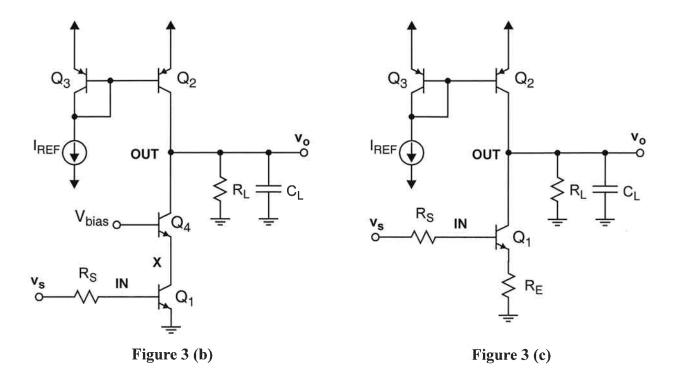


Figure 3 (a)

Question 3: High-Frequency Response [25 marks]

Consider the active-loaded common-emitter (CE) amplifier in Figure 3(a).

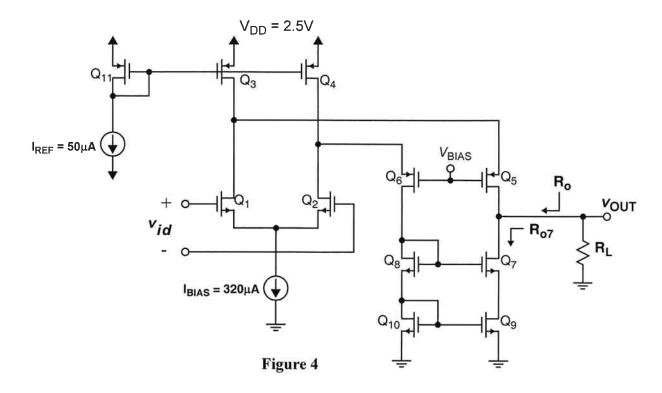

In the following, assume that:

- all BJTs are biased in the active region;
- the signal voltage at the base of transistors Q2 and Q3 is zero.

Do NOT neglect r_x in the BJT small-signal models.

For simplicity, write your expressions using the variables previously derived, together with the BJT small-signal parameters. Use subscripts to associate each small-signal parameter with its corresponding transistor number.

- a) For the CE amplifier in Figure 3(a), write the expression for:
 - its midband gain $A_{Ma} = v_o / v_s$;
 - its 3-dB frequency ω_{Ha} , assuming a dominant pole is formed at node IN.


b) To increase the 3-dB frequency of the CE amplifier in Figure 3(a), a common-base transistor Q4 is placed at the collector of Q1, as shown in Figure 3(b).

For the cascode amplifier in Figure 3(b), write the expression for:

- its midband gain $A_{Mb} = v_o / v_s$;
- the high-frequency pole ω_{INb} associated with node IN;
- the high-frequency pole ω_{Xb} associated with node X
- the high-frequency pole ω_{OUTb} associated with node OUT.
- c) To increase the input resistance of the CE amplifier in Figure 3(a), a resistor R_E is placed in the emitter of Q1, as shown in Figure 3(c).

For the CE amplifier in Figure 3(c), write the expression for:

- its midband gain $A_{Mc} = v_o / v_s$;
- its 3-dB frequency ω_{Hc} , assuming a dominant pole is formed at node IN.

Question 4: Differential and Cascode Amplifiers [25 marks]

Figure 4 shows a folded-cascode differential CMOS opamp.

The MOSFET parameters are listed on page 2. Ignore the body effect.

Assume that:

- $\gamma = 0$ and $\lambda = 0$ in your dc calculations;
- all MOSFETs are biased in the saturation region and operate at $|V_{OV}| = 0.25 \text{ V}$;

For simplicity, write your expressions using the variables previously derived, together with the MOSFET small-signal parameters. Use subscripts to associate each small-signal parameter with its corresponding transistor number.

- a) Specify the aspect ratio (W/L) of transistors Q_3 and Q_4 , such that the ratio of the bias input currents to the cascode currents is: $I_{D1,\,2}/I_{D5,\,6}=4$.
- b) Write the expression for the output resistance R_o .

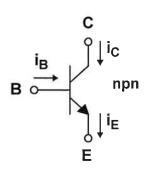
 Note: The output resistance of the cascode current mirror $(Q_7 Q_{10})$ is $R_{O7} \cong (g_{m7}r_{o7}) r_{o9}$.
- c) Write the expression for the short-circuit transconductance $G_m = |i_{\text{out}}/v_{id}|_{R_L=0}$ and draw the equivalent transconductance circuit model of the opamp.
- **d)** Write the expression for the open-circuit differential voltage gain $A_d = (v_{\text{out}}/v_{id})|_{R_t = \infty}$.

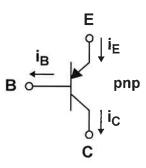
- e) Let $V_{\text{out, min}}$ denote the smallest value of output voltage V_{out} for proper operation of the CMOS opamp, with all its transistors in saturation.
 - Write the expression for $V_{\text{out, min}}$. Find its value.
- f) Let $V_{\text{out, max}}$ denote the largest value of output voltage V_{out} for proper operation of the CMOS opamp, with all its transistors in saturation.
 - Write the expression for $V_{\rm BIAS}$, which maximizes $V_{\rm out,\ max}$. Find its value.
 - Write the expression for the resulting $V_{\mathrm{out,\,max}}$. Find its value.

SUMMARY OF BJT CHARACTERISTICS

□ BJT Current-Voltage Relationships in the Active Mode

For the **npn** BJT:


$$i_C = I_S e^{v_{BE}/V_T} \left(1 + \frac{v_{CE}}{V_A} \right)$$


$$i_B = \frac{i_C}{\beta} = (1 - \alpha) i_E = \frac{i_E}{\beta + 1}$$

$$i_E = \frac{i_C}{\alpha} = (\beta + 1) i_B$$

$$i_C = \alpha i_E = \beta i_B$$

$$i_E = i_B + i_C$$
where $V_T = \frac{kT}{a} \cong 25 \, mV$ at room temperature

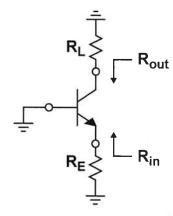
- For the **pnp** BJT: reverse the polarity of all terminal voltages
- Relationships between α and β :

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

$$\alpha = \frac{\beta}{\beta + 1}$$
 $\beta = \frac{\alpha}{1 - \alpha}$
 $\beta + 1 = \frac{1}{1 - \alpha}$

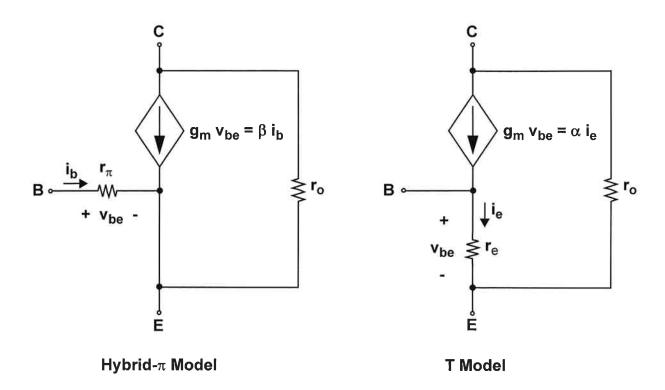
Small-Signal Equivalent Circuit Models for the BJT

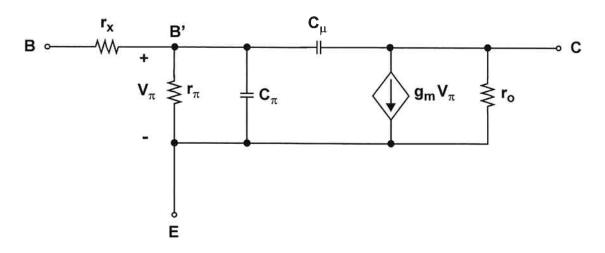

Small-Signal Model Parameters in terms of DC Bias Currents:

$$g_m = \frac{I_C}{V_T}$$
 $r_\pi = \frac{V_T}{I_B}$ $r_e = \frac{V_T}{I_E}$ $r_o = \frac{V_A}{I_C}$

Relationships between the Small-Signal Model Parameters of the BJT: $R_{\text{in}} \cong r_e \left[\frac{r_o + R_L}{r_o + R_L/(\beta + 1)} \right]$

$$g_m = \frac{\alpha}{r_e} = \frac{\beta}{r_\pi}$$
 $r_\pi = (\beta + 1) r_e$ $\frac{1}{r_e} = g_m + \frac{1}{r_\pi}$ $R_{\text{out}} \cong r_o [1 + g_m(R_E || r_\pi)]$


Common-Base Configuration:


$$R_{\rm in} \cong r_e \left[\frac{r_o + R_L}{r_o + R_L/(\beta + 1)} \right]$$

$$R_{\text{out}} \cong r_o [1 + g_m(R_E || r_{\pi})]$$

• Simplified Low-Frequency Equivalent-Circuit Models for the Small-Signal Operation of the BJT:

• High-Frequency Small-Signal Model of the BJT:

SUMMARY OF MOSFET CHARACTERISTICS

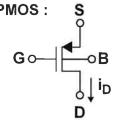
Current-Voltage Relationships (Square-Law MOSFET Model)

□ NMOS Transistor

- Overdrive (Effective) Voltage: $v_{OV} = v_{GS} V_t$
- Triode Region: $[v_{GS} \ge V_t \iff v_{OV} \ge 0]$ and $[v_{GD} \ge V_t \iff v_{DS} \le v_{OV}]$

$$i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} [2(v_{GS} - V_t) v_{DS} - v_{DS}^2]$$

For
$$v_{DS} \ll 2v_{OV}$$
: $r_{DS} = \frac{v_{DS}}{i_D} = 1/\left[\mu_n C_{ox} \frac{W}{L} (v_{GS} - V_t)\right]$


• Saturation Region: $[v_{GS} \ge V_t \iff v_{OV} \ge 0]$ and $[v_{GD} \le V_t \iff v_{DS} \ge v_{OV}]$

$$i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_t)^2 (1 + \lambda v_{DS})$$

- Threshold Voltage: $V_t = V_{t0} + \gamma(\sqrt{2\phi_f} + |V_{SB}| \sqrt{2\phi_f})$
- NMOS: Dio
- Process Parameters: $C_{ox} = \varepsilon_{ox}/t_{ox}$ (F/ μ m²)

$$k'_n = \mu_n C_{ox} \qquad (A/V^2)$$

$$\lambda = \frac{1}{V_A} = \frac{1}{L \cdot V_A'} \qquad (V^{-1})$$

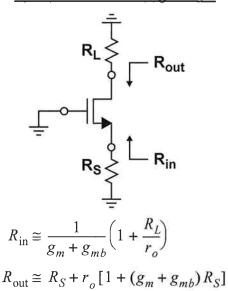
- \square **PMOS Transistor**: $(V_{t0}, \gamma, \text{ and } \lambda \text{ are negative})$
 - Reverse the polarity of all terminal voltages and
 - Exchange V_t , μ_n , λ , and k_n with $|V_t|$, $|\lambda|$, μ_p , and k_p , respectively.

Approximation of the MOSFET Gate Capacitances (for Long-Channel MOSFETs)

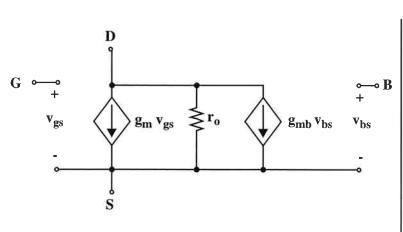
Mode of Operation	C_{gb}	C_{gs}	C_{gd}
Cutoff	WLC_{ox}	0	0
Triode	0	$\frac{1}{2}WLC_{ox} + WL_{ov}C_{ox}$	$\frac{1}{2}WLC_{ox} + WL_{ov}C_{ox}$
Saturation	0	$\frac{2}{3}WLC_{ox} + WL_{ov}C_{ox}$	$WL_{ov}C_{ox}$

Small-Signal Equivalent Circuit Models for the MOSFET:

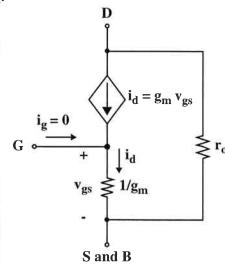
•
$$g_m = \mu_n C_{ox} \frac{W}{L} V_{OV} = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} = \frac{2I_D}{V_{OV}}$$


•
$$g_{mb} = \frac{\gamma}{2\sqrt{2\phi_F + |V_{SB}|}} g_m$$

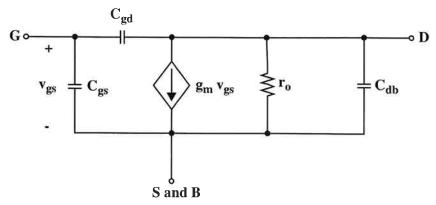
•
$$r_o = 1/|\lambda I_D|$$


•
$$C_{gs} = \frac{2}{3}WLC_{ox} + WL_{ov}C_{ox}$$
 and $C_{gd} = WL_{ov}C_{ox}$

$$\bullet \quad C_{db} = \frac{C_{db0}}{\left(1 + \frac{|V_{DB}|}{V_0}\right)^m}$$


Common-Gate Configuration:

• Low-Frequency Small-Signal Models for the MOSFET:



Hybrid-π Model

T model when $|V_{SB}| = 0$

• High-Frequency Small-Signal Model for the MOSFET with no body effect ($|V_{SB}|=0$):

