McGill University - Department of Electrical and Computer Engineering ECSE 334 - Introduction to Microelectronics Midterm

March 19, 2009, 5:35PM-7:25PM

- MOSFET Parameters: For a MOSFET in the saturation region and having $L=0.5 \mu \mathrm{~m}$,
- NMOS transistor: $V_{t 0}=0.6 V, \lambda=0.25 V^{-1}, \mu_{n} C_{o x}=200 \mu A / V^{2}$.
- PMOS transistor: $\left|V_{t 0}\right|=0.65 \mathrm{~V},|\lambda|=0.4 \mathrm{~V}^{-1}, \mu_{p} C_{o x}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$.

- NOTES:

- This is a closed-book midterm.
- A summary of the MOSFET characteristics is attached.
- This midterm includes 2 questions and consists of 5 pages, including this cover page.
- All questions have equal weight.
- Answer all questions in the exam books provided.

Underline your answers.

- State any assumptions you find necessary to complete your answers.
- Only the faculty-approved calculators are permitted.
- Write your name on top of this sheet and on top of each sheet of the question sheets that you want marked. Place the sheets that you want to be marked inside you exam booklet.
- Return the sheets that you do not want to be marked to the invigilator for shredding.
- Do not forget to write your name and student ID on the top of ALL pages following this sheet.

Name:

SOLUTION

Student ID: \qquad

Question	Mark
1	$/ 30$
2	$/ 30$
Total	$/ 60$

Question 1: [30 marks]

Consider the CMOS differential amplifier circuit shown in Fig. 1.
Assume all MOSFETs are biased in the saturation region and have a channel length $L=0.5 \mu \mathrm{~m}$. The MOSFET parameters are listed on the cover page. Ignore the body effect. In your dc calculations, also assume $\lambda=0$.
a) Specify the aspect ratios (W / L) of all transistors, such that:

- All transistors operate at $\left|V_{O V}\right|=0.25 \mathrm{~V}$, except input transistors Q_{1} and Q_{2} which operate at $V_{O V 1}=V_{O V 2}=0.1 \mathrm{~V}$.
- Input transistors Q_{1} and Q_{2} provide $\boldsymbol{g}_{\boldsymbol{m} 1}=\boldsymbol{g}_{\boldsymbol{m} 2}=2 \mathrm{~mA} / \mathrm{V}$.

Note: do not assume that transistors Q_{3} and Q_{4} have the same (W / L).

$$
g_{m 1,2}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1,2} V_{O V 1,2}=\left(200 \mu \mathrm{~A} / \mathrm{V}^{2}\right)\left(\frac{W}{L}\right)_{1,2}(0.1 \mathrm{~V})=2 \mathrm{~mA} / \mathrm{V} \Rightarrow\left(\frac{W}{L}\right)_{1,2}=100
$$

Now, $I_{D 1,2}=\frac{1}{2} g_{m 1,2} \times V_{O V 1,2}=0.1 \mathrm{~mA}$.
Hence, $I_{D 5,6}=I_{D 1,2}=0.1 \mathrm{~mA}$ and $I_{D 3}=I_{D 1}+I_{D 2}=0.2 \mathrm{~mA}$.
Therefore, $\quad(\boldsymbol{W} / \boldsymbol{L})_{5,6}=\frac{2 I_{D 5,6}}{\mu_{p} C_{o x} V_{O V 5,6}^{2}}=\frac{2(0.1 \mathrm{~mA})}{\left(50 \mu \mathrm{~A} / \mathrm{V}^{2}\right)(0.25 \mathrm{~V})^{2}}=64$

$$
\begin{aligned}
& (\boldsymbol{W} / \boldsymbol{L})_{3}=\frac{2 I_{D 3}}{\mu_{n} C_{o x} V_{O V 3}^{2}}=\frac{2(0.2 \mathrm{~mA})}{\left(200 \mu \mathrm{~A} / \mathrm{V}^{2}\right)(0.250 \mathrm{~V})^{2}}=32 \\
& (\boldsymbol{W} / \boldsymbol{L})_{4}=\frac{2 I_{\mathrm{REF}}}{\mu_{n} C_{o x} V_{O V 3}^{2}}=\frac{2(25 \mu \mathrm{~A})}{\left(200 \mu \mathrm{~A} / \mathrm{V}^{2}\right)(0.25 \mathrm{~V})^{2}}=4
\end{aligned}
$$

b) Write the expression for the output resistance $\boldsymbol{R}_{\boldsymbol{o}}$. Find its value.

$$
\begin{aligned}
& r_{o 2}=\frac{1}{\lambda_{n} I_{D 2}}=\frac{1}{\left(0.25 \mathrm{~V}^{-1}\right)(0.1 \mathrm{~mA})}=40 \mathrm{k} \Omega \\
& r_{o 6}=\frac{1}{\lambda_{p} I_{D 2}}=\frac{1}{\left(0.4 \mathrm{~V}^{-1}\right)(0.1 \mathrm{~mA})}=25 \mathrm{k} \Omega \\
& \therefore R_{o}=r_{o 2} \| r_{o 6}=15.4 \mathrm{k} \Omega
\end{aligned}
$$

c) Write the expression for the differential voltage gain $A_{d}=v_{o} / v_{i d}$. Find its value.

The small-signal current through Q1 and Q2 in Fig. 1 is:

$$
i_{d}=\frac{v_{i d}}{2\left(1 / g_{m 1,2}\right)}=g_{m 1,2} \frac{v_{i d}}{2}
$$

and, therefore,

$$
v_{o}=\left(2 i_{d}\right) R_{o}=\left(g_{m} v_{i d}\right) R_{o}
$$

where the factor 2 is due to the active load (Q5-Q6) which mirrors the current i_{d}, thereby doubling the total current at the output. Hence,

$$
A_{d}=\frac{v_{o}}{v_{i d}}=g_{m 1,2} R_{o}=(2 \mathrm{~mA} / \mathrm{V})(15.4 \mathrm{k} \Omega)=30.8 \mathrm{~V} / \mathrm{V}
$$

d) To improve the gain of the CMOS amplifier in Fig. 1, the simple MOS current mirror ($Q_{5}-Q_{6}$) can be replaced by a cascode MOS current mirror ($Q_{5}-Q_{8}$), as shown in Fig. 2. Assuming $R_{o 6}=\infty$, by what factor is the small-signal differential voltage gain $A_{\boldsymbol{d}}$ improved in Fig. 2, compared to Fig. 1? State why.

Assuming $R_{o 6}=\infty$, the output resistance of the CMOS amplifier in Fig. 2 is:

$$
R_{o}=r_{o 2} \| R_{o 6} \cong r_{o 2}=40 \mathrm{k} \Omega
$$

Therefore, compared to Fig. 1, the small-signal differential voltage gain A_{d} in Fig, 2 is improved by a factor of:

$$
\frac{A_{d} \text { in Fig. } 2}{A_{d} \text { in Fig. } 1}=\frac{R_{o} \text { in Fig. } 2}{R_{o} \text { in Fig. } 1} \cong \frac{r_{o 2}}{r_{o 2} \| r_{o 6}}=\frac{40 \mathrm{k} \Omega}{15.4 \mathrm{k} \Omega}=2.6
$$

e) Write expressions for the maximum output voltage $V_{o, \max }$ of the differential amplifiers in Figures 1 and 2. Here, $V_{o, \text { max }}$ denotes the largest value of output voltage V_{o} for proper operation of the current mirror ($Q_{5}-Q_{6}$ in Fig. 1 and $Q_{5}-Q_{8}$ in Fig. 2), such that all its transistors are in saturation. Find their values, assuming transistors $Q_{5}-Q_{8}$ operate at $\left|V_{O V}\right|=0.25 \mathrm{~V}$ and $V_{D D}=2.5 \mathrm{~V}$.

Since all PMOS transistors have the same overdrive voltage, let

$$
V_{G S} \equiv V_{G S 5}=V_{G S 6}=V_{G S 7}=V_{G S 8}=V_{O V}+\left|V_{t p}\right|=0.25 \mathrm{~V}+0.65 \mathrm{~V}=0.9 \mathrm{~V}
$$

In Figure 1, for Q_{6} to remain in saturation:

$$
V_{S D 8}=V_{D D}-V_{o} \geq V_{O V} \Rightarrow V_{o, \max }=V_{D D}-V_{O V}=2.5 \mathrm{~V}-0.25 \mathrm{~V}=2.25 \mathrm{~V}
$$

In Figure 2 (see circuit schematic):

$$
V_{D 8}=V_{D D}-V_{G S}=V_{D D}-\left(V_{O V}+\left|V_{t p}\right|\right)
$$

Therefore, for Q_{6} to remain in saturation:

$$
V_{S D 8}=V_{D 8}-V_{o} \geq V_{O V} \Rightarrow V_{o, \max }=V_{D D}-\left(2 V_{O V}+\left|V_{t p}\right|\right)=1.35 \mathrm{~V}
$$

Question 2: [30 marks]
Consider the folded-cascode amplifier in Fig. 3. Assume that:

- All MOSFETs are biased in the saturation region with $\left|V_{O V}\right|=0.1 \mathrm{~V}$.
- All NMOS and PMOS devices have their substrate (body) connected to ground and $V_{D D}$, respectively.
- $\gamma=0$ and $\lambda=0$, in your dc calculations.
- $\boldsymbol{g}_{\boldsymbol{m b}}=0$, in your small-signal analysis.
- Current sources $I_{\text {BIAS1 }}$ and $I_{\text {BIAS2 }}$ have incremental output resistances of $R_{L 1}$ and $R_{L 2}$, respectively.
- Capacitances $C_{L 1}$ and $C_{L 2}$ model the parasitic capacitances at nodes X and $O U T$, respectively, except for the parasitic (internal) capacitances of the MOSFETs.
- Do not neglect $C_{d b}$ in the MOSFET small-signal models.
a) Find the value of transconductances $\boldsymbol{g}_{\boldsymbol{m} 1}$ and $\boldsymbol{g}_{\boldsymbol{m} 2}$ of transistors Q_{1} and Q_{2}, respectively.

$$
\begin{aligned}
& I_{D 1}=I_{B I A S 1}-I_{B I A S 2}=0.375 \mathrm{~mA} \Rightarrow g_{m 1}=\left(2 I_{D 1}\right) / V_{O V}=(2 \times 0.375 \mathrm{~mA}) /(0.1 \mathrm{~V})=7.5 \mathrm{~mA} / \mathrm{V} \\
& I_{D 2}=I_{B I A S 2}=1 \mathrm{~mA} \Rightarrow g_{m 2}=\left(2 I_{D 2}\right) / V_{O V}=(2 \times 0.75 \mathrm{~mA}) /(0.1 \mathrm{~V})=15 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

b) Write an expression for resistances R_{1} and R_{2} at midband frequencies.

$$
\begin{aligned}
& R_{1} \cong \frac{1}{g_{m 2}}\left(1+\frac{R_{L 2}}{r_{o 2}}\right) \\
& R_{2} \cong\left(R_{L 1} \| r_{o 1}\right)+r_{o 2}\left[1+g_{m 2}\left(R_{L 1} \| r_{o 1}\right)\right]
\end{aligned}
$$

c) Write an expression of the midband voltage gains $A_{M 1} \equiv v_{x} / v_{i n}$ and $A_{M} \equiv v_{o} / v_{s}$.

$$
\begin{aligned}
& v_{\text {in }}=v_{s} \\
& i_{d}=g_{m 1} v_{\text {in }} \text { (see circuit diagram in Fig. 3a) } \\
& v_{x}=i_{d}\left(r_{o 1}\left\|R_{L 1}\right\| R_{1}\right) \Rightarrow A_{M 1}=v_{x} / v_{i n}=-g_{m 1}\left(r_{o 1}\left\|R_{L 1}\right\| R_{1}\right) \\
& v_{o}=i_{d}\left(R_{L 2} \| R_{2}\right) \Rightarrow A_{M}=v_{o} / v_{s}=-g_{m 1}\left(R_{L 2} \| R_{2}\right)
\end{aligned}
$$

d) Write an expression for the high-frequency poles associated with nodes IN, X, and OUT.

Hint: Apply Miller's theorem, then find the open-circuit time constants.
Note: For simplicity, write your expressions using the previously-derived variables, together with the MOSFET small-signal parameters.

The above circuit diagram (Fig. 3b) can be used to determine the high-frequency poles of the amplifier.
Node IN:
Using Miller theorem, $C_{g d 1}$ is replaced by $C_{g d 1}\left(1+\left|A_{M 1}\right|\right)$ between node IN and GND.
The total capacitance associated with node IN is then: $C_{I N}=C_{g s 1}+C_{g d 1}\left(1+\left|A_{M 1}\right|\right)$
The total resistance associated with $C_{I N}$ is: $R_{I N}=R_{S}$
The open-circuit time constant associated with $C_{I N}$ is: $\tau_{I N}=R_{I N} C_{I N}$
The pole associated with node IN is: $\omega_{I N}=1 / \tau_{I N}$

Node X:

Using Miller theorem, $C_{g d 1}$ is replaced by $C_{g d 1}\left(1+1 /\left|A_{M 1}\right|\right)$ between node X and GND.
The total capacitance associated with node X is then: $C_{X}=C_{g d 1}\left(1+1 /\left|A_{M 1}\right|\right)+C_{d b 1}+C_{L 1}+C_{g s 2}$
The total resistance associated with C_{X} is: $R_{X}=r_{o 1}\left\|R_{L 1}\right\| R_{1}$
The open-circuit time constant associated with C_{X} is: $\tau_{X}=R_{X} C_{X}$
The pole associated with node X is: $\omega_{X}=1 / \tau_{X}$

Node OUT:

The total capacitance associated with node X is then: $C_{O U T}=C_{g d 2}+C_{d b 2}+C_{L 2}$
The total resistance associated with $C_{O U T}$ is: $R_{O U T}=R_{L 2} \| R_{2}$
The open-circuit time constant associated with $C_{O U T}$ is: $\tau_{O U T}=R_{O U T} C_{O U T}$
The pole associated with node OUT is: $\omega_{\text {OUT }}=1 / \tau_{\text {OUT }}$
e) Assuming a dominant pole exists, estimate:
i) the 3-dB frequency, based on the open-circuit time-constant approximation

$$
\omega_{3 d B} \cong 1 /\left(\tau_{I N}+\tau_{X}+\tau_{O U T}\right)
$$

ii) the unity-gain frequency

Note: For simplicity, write your expressions using the previously-derived variables.

$$
\omega_{t} \cong A_{M} \omega_{3 d B}
$$

f) Current sources $I_{\text {BIAS1 }}$ and $I_{\text {BIAS2 }}$ in Fig. 3 can be realized using, respectively, current sources Q3-Q4 and Q5-Q6, as shown in Fig. 4.
Assume that the signal voltage at the gate of Q3 and Q5 in Fig. 4 is zero.
For the expressions found in parts (b)-(d) for the circuit in Fig. 3,
which variables must be replaced and by which variables in Fig. 4 must they be replaced, in order to obtain the corresponding expressions for the circuit in Fig. 4 ?

Fig. 4
Exchange:

- $R_{L 1}$ with $r_{o 3}$ (to account for the output resistance of current source $I_{\text {BIAS1 }}$)
- $R_{L 2}$ with $r_{o 5}$ (to account for the output resistance of current source $I_{\text {BIAS2 }}$)
- $C_{L 1}$ with $C_{g d 3}+C_{d b 3}$ (to account for the effect of the internal capacitance of Q 3 on the total capacitance at node X).
- $C_{L 2}$ with $C_{g d 5}+C_{d b 5}$ (to account for the effect of the internal capacitance of Q 5 on the total capacitance at node OUT).

