McGill University

Faculty of Engineering
Department of Electrical and Computer Engineering

Final Examination: Electronic Circuits I - ECSE-330B

April 11th 2006, 2:00 PM - 5:00 PM

Examiner: Dr. Ramesh Abhari;

Associate Examiner: Dr. Gordon Roberts;

Instructions:

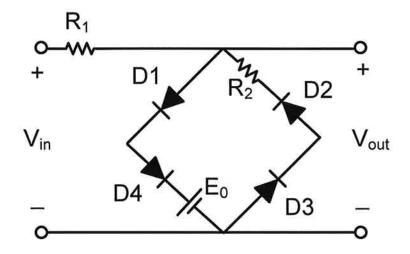
- 1) This is a closed-book examination, no notes permitted. There are 2 pages of equations provided at the end of the questions.
- 2) The examination consists of 7 problems with the total possible points of 50. Partial point distribution is indicated in brackets.
- 3) The examination consists of 10 pages, including this page and the equation pages; please ensure you have a COMPLETE exam book.
- 4) Only the Faculty Standard Calculator is permitted.
- 5) Write your answers in the provided Answer Booklets.
- 6) Show your work: Answers without justification will not receive marks. State any assumption you find necessary to complete your answer.

Last Name	
First Name	
Student Number	

Question	1	2	3	4	5	6	7
Mark	/3	/6	/5	/7	/11	/8	/10
TOTAL	/:	50			N.		

Stu	dent	Nu	mh	er
$\mathbf{v}_{\mathbf{t}}$	uciii			

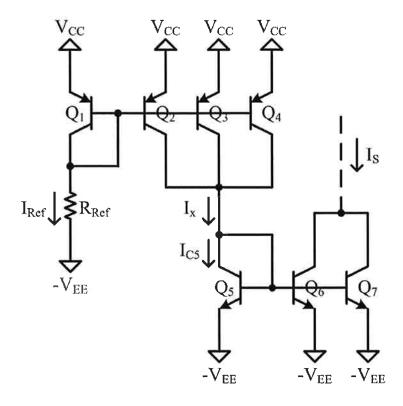
- Name:


Question #1 (3 pts)

Two amplifier stages are connected in cascade to operate between a voltage source (v_s) with $1M\Omega$ source resistance and a $1k\Omega$ load. The <u>first amplifier stage</u>, which is a <u>voltage amplifier</u>, has an input resistance of $500k\Omega$, an open circuit voltage gain of 200V/V, and an output resistance of $80k\Omega$. The <u>second stage</u>, which is a <u>transconductance amplifier</u>, has an input resistance of $100k\Omega$, an output resistance of $20k\Omega$, and a short circuit transconductance of 5mA/V.

- a) Draw the entire circuit model from the voltage source to the $1k\Omega$ load. (1 pt)
- b) What is the overall voltage gain, v_{out}/v_s . v_{out} is the voltage measured across the load.(1 pt)
- c) Consider the output current is i_0 . What is the overall transconductance gain, i_0/v_s , if we replace the $1k\Omega$ load resistor with a short circuit? (1 pt)

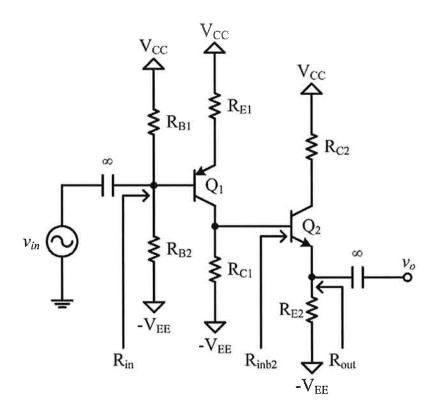
Question #2 (6 pts)


In the following circuit, R_1 = 150 Ω , R_2 = 100 Ω , E_0 =1.6V. All the diodes are the same with $V_D(on)$ = 0.7V. The small signal resistance of each diode in forward bias is 25 Ω .

- a) If the input voltage is $V_{in} = 5 + 0.001 \times \cos(2\pi t)$ V, find the DC and AC output voltages, i.e. $V_{out} = V_{out}(DC) + V_{out}(AC)$. (3 pts)
- b) If the DC level of the input voltage is changed to -5V as given in $V_{in} = -5 + 0.001 \times \cos(2\pi t)$ V, find the DC and AC output voltages, i.e. $V_{out} = V_{out}(DC) + V_{out}(AC)$. (3 pts)

Question #3 (5 pts)

Consider the following BJT current steering circuit. All npn transistors are identical with $\underline{\beta_P} = 100$, and all pnp transistors are identical with $\underline{\beta_P} = 80$. The operating mode for all transistors are assumed to be the active mode, and $|V_{BE}| = 0.7$.



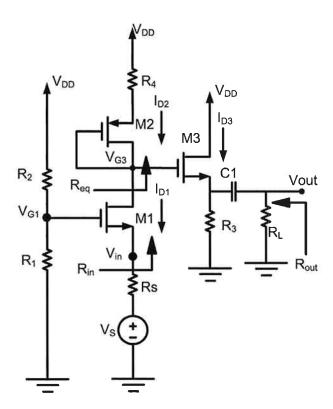
Considering $I_S = 8mA$, $V_{CC} = 5V$ and $V_{EE} = 5V$,

- a) Calculate I_{C5} and I_x . (2 pts)
- b) Calculate I_{Ref} and R_{Ref} . (3 pts)

Question 4 (7 pts)

Consider the following two-stage BJT amplifier. You can assume that all transistors are in active mode and that they have the same β . The early effect for both transistors can be ignored.

- a) Draw the small signal model of the above circuit. (2 pts)
- b) Find an expression for R_{in}. (1 pt)
- c) Find an expression for R_{inb2}. (1 pt)
- d) Find an expression for R_{out}. (1 pt)
- e) Derive an expression for v_o/v_{in} . (2 pts)

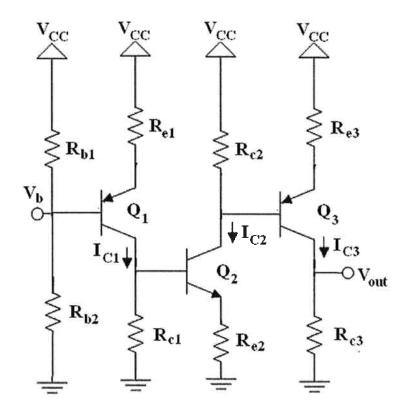

Question #5 (11 pts)

In the following circuit, all NMOS and PMOS transistors are operating in the saturation region. Assume $R_1 = 200k\Omega$, $R_2 = 400k\Omega$, $R_3 = 2k\Omega$, $R_4 = 1k\Omega$, $R_L = 3k\Omega$, $R_S = 1k\Omega$.

The transistor parameters are $\mu_n C_{OX} = 100 \mu A/V^2$, $\mu_p C_{OX} = 50 \mu A/V^2$, $V_{tn} = -V_{tp} = 0.5V$, $(W/L)_1 = (W/L)_3 = 10$, and $(W/L)_2 = 20$.

The supply voltage is $V_{DD} = 6$ V. The DC voltage at the source of M1 is zero, i.e. $Vin(DC) = V_{S1}(M1) = 0$.

Note that the body effect and channel length modulation can be ignored in DC and small signal analysis.

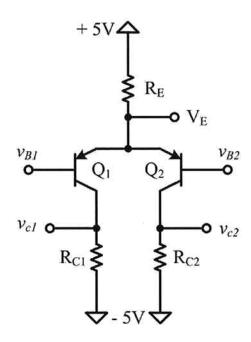


- a) Calculate V_{G1} , I_{D1} , I_{D2} , V_{G3} , and I_{D3} and verify that all transistors are operating in the saturation mode.(5 pts)
- b) Derive an expression for R_{eq} and draw the small signal model of the entire circuit. No need to calculate the numerical values. (2 pts)
- c) Derive expressions for R_{out}, R_{in} and V_{out}/V_S. No need to calculate the numerical values. (4 pts)

Question 6 [8 pts]:

In the following circuit:

 $R_{b1}=3k\Omega$, $R_{b2}=7k\Omega$, $R_{e1}=2.25k\Omega$, $R_{c1}=5k\Omega$, $R_{e2}=2.25k\Omega$, $R_{c2}=2k\Omega$, $R_{e3}=3.3k\Omega$, $R_{c3}=2k\Omega$, $V_{CC}=10V$, and $\beta=50$ for all transistors. The Early effect can be ignored for all transistors.



Find the values for V_b , I_{C1} , I_{C2} , I_{C3} , and V_{out} and verify your assumption about the mode of operation of all transistors. (8 pts)

Question 7 [10 pts]:

Consider the following differential amplifier circuit. Assume that all BJTs are identical and have $|V_{BE}| = 0.7$ V. The Early effect can be ignored for all transistors. The input terminals are v_{BI} and v_{B2} , the differential input is $v_d = v_{BI} - v_{B2}$ and the output terminals are v_{CI} and v_{C2} .

$$R_{C1} = R_{C2} = 2k\Omega$$

 $R_E = 5k\Omega$
 $\beta = 99$ for all BJTs

- a) If V_{B1} = -0.8V and V_{B2} = 0.2V, find V_E , V_{C1} and V_{C2} . (2 pts)
- b) If V_{B1} = 0.5V and V_{B2} = 0.5V, find V_E , V_{C1} and V_{C2} . (2 pts)
- c) Draw the small signal model for this circuit. (2 pts)
- d) <u>Derive expressions</u> for the differential voltage gain, differential input resistance, differential output resistance and the Common mode gain. Considering the base voltages indicated in part (b), <u>calculate</u> the numerical values for these four parameters. (3 pts)
- e) If the output is connected to a resistive load R_L = 20 k Ω , i.e. R_L is connected between v_{c1} and v_{c2} terminals, calculate the new differential voltage gain. (1 pt)

Diodes:
$$i=I_S(exp(v/nV_T)-1)$$

FETs:

NMOS:

$$V_{GS} < V_t$$
 $I_D = 0$

$$I_D = 0$$

$$V_{GS} > V_{t}$$

$$V_{GS} > V_{t}$$
 $I_{D} = k_{n}^{t} \frac{W}{L} [(V_{GS} - V_{t})V_{DS} - \frac{1}{2}V_{DS}^{2}]$
 $V_{DS} < V_{GS} - V_{t}$

$$V_{GS} > V_{t}$$
 $V_{DS} > V_{CS} - V_{t}$

$$V_{t} = V_{t0} + \gamma \left(\sqrt{2\phi_{f} + V_{SB}} - \sqrt{2\phi_{f}} \right)$$

PMOS:

$$V_{GS} > V_t$$

$$I_D = 0$$

$$V_{GS} < V_t$$

$$I_D = k_p^t \frac{W}{L} [(V_{GS} - V_t)V_{DS} - \frac{1}{2}V_{DS}^2]$$

$$V_{DS} > V_{GS} - V_t$$

Saturation:
$$V_{GS} < V_{\iota}$$

$$V_{DS} < V_{GS} - V_t$$

$$I_D = \frac{1}{2} k_p' \frac{W}{L} (V_{OS} - V_i)^2 (1 + \lambda V_{DS})$$

$$\left|V_{i}\right| = \left|V_{i0}\right| + \gamma \left(\sqrt{2\phi_{f} + \left|V_{SB}\right|} - \sqrt{2\phi_{f}}\right)$$

SMALL SIGNAL

$$g_m = \frac{2 \cdot I_D}{V_{GS} - V_L}$$

$$g_m = k_n^t \frac{W}{L} (V_{GS} - V_t) (1 + \lambda \cdot V_{DS})$$

$$g_{m} = \sqrt{2k_{n}'}\sqrt{\frac{W}{L}}\sqrt{1 + \lambda \cdot V_{DS}}\sqrt{I_{D}}$$

$$r_o = \frac{1}{\lambda \cdot I_D}$$

$$g_{mb} = \chi \cdot g_{m}$$

$$\chi = \frac{\gamma}{2} \cdot \frac{1}{\sqrt{2\phi_{c} + V_{cp}}}$$

Two-Page Formula Sheet

BJTs:

$$i_C = I_S \exp(v_{BE}/V_T)$$

. He to compa

$$i_B = \frac{i_C}{\beta}$$

$$i_E = \frac{i_C}{\alpha}$$

$$i_B = (1 - \alpha)i_E = \frac{i_E}{\beta + 1}$$

$$i_E = (\beta + 1)i_B$$

$$g_m = \frac{I_C}{V_T}$$
 $r_e = \frac{V_T}{I_E} = \alpha \frac{V_T}{I_C} = \frac{\alpha}{g_m}$

$$r_{\pi} = \frac{V_T}{I_B} = \frac{\beta}{g_m} \quad r_o = \frac{V_A}{I_C}$$

$$r_{\pi} = (\beta + 1)r_{e}$$

$$\beta = \frac{\alpha}{1-\alpha} \alpha = \frac{\beta}{\beta+1} \beta+1 = \frac{1}{1-\alpha}$$