

Introduction to SPICE

ECSE 330 Introduction to Electronics

Department of Electrical and Computer Engineering McGill University

SPICE

- SPICE (Simulation Program with Integrated Circuits Emphasis!):
 - Circuit simulation program.
 - Provides detailed analysis of circuits containing lumped components (R, L, C) and active components (diodes, FETs, BJTs).
- PC Version:
 - Pspice A/D (part of Orcad 10.0)
 - Available on the machines on the 4th and 5th floor of the Trottier.
 - You can download PSPICE 9.1 (student edition) it from the following link at your own risk: http://electronics-lab.com/downloads/schematic/013/
- □ Resources:
 - "Spice for Microelectronics" by Roberts and Sedra, 2nd edition.
 - Interactive User Guide from http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE

PSpice A/D

- Models the behavior of a circuit containing any mix of analog and digital devices.
- Basic analyses:
 - DC analysis: DC sweep, bias point, DC sensitivity, smallsignal DC gain, and input and output resistances.
 - AC analysis: small-signal response over a range of frequencies and noise.
 - Transient analysis: time-domain response and Fourier analysis.

Spice Input File (Deck)

Suggested input format:

Title Statement ****Comment

Circuit Description
Power Supplies / Sources
Element Description
Model Statements

Analysis Requests

Output Requests

Title statement is always on the first line. Comment always begins with an asterisk (*).

Elements must be uniquely labeled (up to 8 characters, 1st character identifies the type of the element). Connections are represented by nodes, which are usually numbered. Node "0" means ground.

.END

The last line must end with an .END.

- Additional Notes:
 - Order is not important, except the first and last lines.
 - NOT case sensitive.
 - Words can be separated by an arbitrary number of spaces.

Input File Example

Title → Low pass filter ** Circuit Description The "+" sign Node 1 Node 2 * Power supply R_1 means that Vin 1 0 PWL(0s, 0V,1ms,0V, the previous + 1.0001ms, 1V) command is continued Vin on this line. Elements description 1Kohm R1 C1 1uF Ground = Node 0 **Positive Negative Terminal Terminal** (n-) (n+)*Analysis request .OP .Tran 0.1ms 5ms .END command .end

Basic Element Types in Spice

1st Letter	<u>Element</u>
Presentation	
В	GaAs field-effect transistor (MESFET)
С	Capacitor
D	Diode
Е	Voltage-controlled voltage source (VCVS)
F	Current-controlled current source (CCCS)
G	Voltage-controlled current source (VCCS)
Н	Current-controlled voltage source (CCVS)
	Independent current source
J	Junction field-effect transistor (JFET)
K	Coupled inductors
L	Inductor
M	MOS field-effect transistor (MOSFET)
Q	Bipolar transistor (BJT)
R	Resistor
V	Independent voltage source

Scale-factor Abbreviations in Spice

Power-of-Ten	Metric Prefix	<u>Multiplying</u>
Suffix Letter		Factor
Т	tera	10 ¹²
G	giga	109
Meg	mega	10 ⁶
K	kilo	10 ³
M	mili	10-3
U	micro	10 ⁻⁶
N	nano	10-9
Р	pico	10 ⁻¹²
F	femto	10 ⁻¹⁵

Element Dimensions

Spice Suffix Units

V Volts

A Amps

Hz Hertz

Ohm Ohm

H Henry

F Farad

Degree Degree

S Seconds

Circuit Elements - Two Terminal

Resistor

Rname n+ n- value

□ Capacitor

Cname n+ n- value [IC = initial_voltage_condition]

Inductor

Lname n+ n- value [IC = initial_current_condition]

Diode

Dname n+ n- dmodel
.model dmodel D (I_s=1nA n=1)

Independent Sources

Voltage source:

Vname

Current flowing into (n+) is positive

Spice Description

Type of Analysis

Vname n+ n- DC value

Vname n+ n- AC Magnitude Phase_deg

Vname n+ n- SIN (V_o V_a freq t_d damp)

Vname n+ n- PULSE (V_1 V_2 t_d t_r PW T)

Vname n+ n- PWL $(t_1, v_1, t_2, v_2, \dots, t_n, v_n)$

All types

AC Frequency Response

Transient

Transient

Transient

Current source:

Iname

The Spice description for an independent current source is the same as the voltage source, except replace "V" by "I".

Field-Effect Transistors (FETs)

■ NMOS

Spice description:

Mname drain gate source substrate MOS_model_name L=value W=value . **MODEL** MOS_model_name **NMOS** (parameter_name=value ...)

Example:

M1 2 0 3 3 nmos_enhancement_mosfet L=10u W=400u .model nmos_enhancement_mosfet nmos (kp=20u Vto=2V lamda=0)

PMOS

Spice description:

Mname drain gate source substrate MOS_model_name L=value W=value . **MODEL** MOS_model_name **PMOS** (parameter_name=value ...)

Bipolar Junction Transistors (BJTs)

NPN Transistor

Base Qname Emitter

Spice description:

Qname collector base emitter [substrate] BJT_model_name [#_in_parallel]

. MODEL BJT_model_name NPN (parameter_name=value ...)

Example:

Q1 2 0 3 npn_transistor .model npn_transistor npn (Is=1.8104e-15 Bf=100)

PNP Transistor

Spice description:

Qname collector base emitter [substrate] BJT model name [# in parallel]

. MODEL BJT_model_name PNP (parameter_name=value ...)

Subcircuit

- Some circuit elements are not always available in the Spice library, e.g., op-amps. To add an op-amp to the Spice deck, a "subcircuit" that represents this op-amp can be defined and incorporated into the main circuit.
- The definition in SPICE for a subcircuit is as follows:
 - .SUBCKT *subcircuit_name* list_of_nodes Circuit Description
 - .ENDS
- □ To incorporate the subcircuit into the main design, use the following statement, which starts with the letter "X": Xname node_connections subcircuit_name

Analysis Requests

Analysis Requests: specify the types of simulations to be performed.

Analysis Requests Spice Command

Operating point .OP

(Calculates DC node voltages and DC currents through voltage sources.)

Transfer Function .TF

(Calculates small-signal gain from input to output, input resistance, and output resistance.)

DC sweep .DC [type] variable start_value stop_value step_value

AC frequency response .AC DEC points_per_decade freq_start freq_stop

.AC OCT points per octave freq start freq stop

.AC LIN total_points freq_start freq_stop

Transient response .TRAN time_step_time_stop [(no_print_time_Max_step_size)]

DC Sweep

- ☐ **Syntax:** .DC [type] variable start_value stop_value step_value
- Variable can be a source name, a model parameter or temperature.
- DC operating point is calculated for each sweep.
- Sweep types:
 - LIN (linear sweep default)
 - OCT (octave sweep)
 - DEC (sweep by decade)
 - LIST (list of values)
- □ Examples:
 - .DC Vin -1.2 1.2 0.2
 - □ Linearly sweeps Vin from -1.2V to +1.2V in 0.2V steps.
 - .DC DEC Ibias 1u 5m 5
 - Sweeps Ibias from 1uA to 5mA using 5 points/decade.

Output Requests

Output Requests: specify the outputs to be displayed.

Analysis Requests	Spice Command
-------------------	---------------

Print data points .PRINT DC output_variables (tabulated data) .PRINT AC output_variables

.PRINT TRAN output_variables

Plot data points

.Plot DC output_variables [(lower_plot_limit upper_plot_limit])
(tabulated data)

.Plot DC output_variables [(lower_plot_limit upper_plot_limit])

.Plot TRAN output variables [(lower plot limit upper plot limit])

Output Processing .Probe

(saves simulated results for post-processing and plots)

Notes:

- 1) Spice *output_variables* can be a voltage at any node V(*node*), the voltage between two nodes V(*node1,node2*), or the current through a voltage source I(V*name*).
- 2) AC output_variables can also be

Vr, Ir: real part

Vi, Ii: imaginary part Vm, Im: magnitude

Vp, lp: phase Vdb, ldb: decibels

Spice Implementation

- ☐ Steps to Identify your circuit:
 - Identify circuit elements
 - Identify node names
 - Write the netlist
 - □ Use appropriate models.
 - Specify the simulation type you want.

Spice Example 1 (1)

□ Circuit Schematic

Spice Example 1 (2)

■ Identify Circuit Elements

Spice Example 1 (3)

□ Identify Node Names

Spice Example 1 (4)

□ Writing the Netlist

*Sources VCC 3 0 10V Vs1 1 0 SIN (5V 2.5V 50)

*Elements M1 2 1 0 0 nmos_330 L=20u W=100u Rd 3 2 10k

- *Model statements
- .MODEL nmos_330 nmos (kp=20u
- +Vto=+1V lambda=0.1)
- *In the case of continuation in the
- *new line use '+' at the first of new line.
- *Analysis requests
- .TRAN 1m 5 0 1m
- .PROBE
- .END

3

Spice Example 2 (1)

- Identify circuit elements.
- Identify node names.
 - A Node name can be alphabetically named, such as VCC and VSS.

Spice Example 2 (2)

Netlist

*Sources V1 VCC 0 10V Vs1 1 0 SIN (5V 2.5V 50) *Elements M1 OUT 1 0 0 nmos_330 L=20u W=100u M2 OUT 1 VCC VCC pmos_330 L=20u +W=400u

- *Model statements
- .MODEL nmos_330 nmos (kp=20u
- +Vto=+1V lambda=0.1
- .MODEL pmos_330 pmos (kp=20u
- +Vto=-1V lambda=0.1)
- *Analysis requests
- .TRAN 1m 5 0 1m
- .PROBE
- .END

