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Outline of Chapter 5
• 1- Introduction to The Bipolar Junction Transistor
• 2- Active Mode Operation of BJT
• 3- DC Analysis of Active Mode BJT Circuits
• 4- BJT as an Amplifier
• 5- BJT Small Signal Models
• 6- CEA, CEA with RE, CBA, & CCA 
• 7- Integrated Circuit Amplifiers
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Find voltages & currents

Process:
a) Assume active mode 

operation; VBE = 0.7V
b) Based on assumption, 

calculate branch voltages 
and currents

c) Verify active mode by 
checking VCB > 0V

DC Analysis – Requires Assumptions
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Perform Analysis
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DC Analysis

IB

IC

IE

Find voltages & currents

Process:
a) Assume ACTIVE mode 

operation; VBE = 0.7V
b) Based on assumption, 

calculate branch voltages 
and currents

c) Verify ACTIVE mode by 
checking VCB
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DC Analysis
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•From previous slide, found:

•In general, increasing RC will not 
change IC significantly 
•More significant consequence of 
increasing RC is a decrease of VC
•If RC is too large, decrease of VC will 
cause BJT to leave active mode and 
transition to saturation mode
•Recall, active/saturation boundary
occurs for VC > VB; VCB > 0V 

Edge of Active Mode
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-Use relationship for VC & IC:

-Use previous result for VB = -7.15V, 
and write expression for RC as a 
function of VC; solve for maximum 
RC in order to stay in active mode:

-For active mode operation:

Calculate Transition Point
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DC Analysis Comments

• Do not know a priori that BJT is in active mode

• Use approach similar to diode CVDM analysis
– Assume active mode operation (VBE = 0.7V)
– Solve circuit
– Verify active mode operation (check VCB)

• Generally never use exponential model for IC in 
basic DC analysis

• Generally neglect Early Voltage effect in DC 
analysis
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pnp Transistor Biasing

IB

IE

IC

Process:
a) Assume active mode 

operation; VEB = 0.7V
b) Based on assumption, 

calculate branch voltages 
and currents

c) Verify active mode by 
checking VBC ≥ 0V
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Example: Find VB That Keeps BJT Active 
• As VB decreases, IE & IC increase, VC

increases
• Minimum VB condition exists while 

maintaining VEB = 0.7V
• In active mode: VE-VB = 0.7V
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At active/saturation boundary, VC = VB:
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Transistor Sensitivity to IB
β is 107
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• Small changes in base current result in large current changes 
in the collector: IC = βIB. 

• Doubling the base current, causes the collector voltage to 
decrease more than 6.5 times.
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Transistor Sensitivity to β
Find β condition to keep BJT active
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Let VC=VB=0.7

• β can vary; want designs with DC 
conditions that are insensitive to β
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Avoiding β Sensitivity
Find β condition to keep BJT active
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Transistor Biasing
• Typical resistor arrangement for 

base-biasing of the BJT amplifier 
configurations.

• Start by simplifying base network 
RB1 & RB2
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Thevenin Circuit for Transistor Biasing

– VEQ: use superposition

– R: by inspection
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Example
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AC-Signal Coupling
• Couple an input signal via 

a coupling capacitor:
– C→∞ is open circuit at 

DC, short circuit for AC 
signals.

– If RB1 & RB2 not present, 
BJT would not be DC 
biased

– C prevents signal source 
from having to provide 
DC current

– Completely decouples DC 
biasing from signal source
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Two-Stage BJT DC Circuits Analysis
• Analysis approach: perform 

DC analysis on individual 
transistors. 

• In this example, decouple at 
VC1 - VB2 circuit connection

• Assume that IB2 = 0 and 
calculate VB2

• Analyze each BJT separately
• Compare results for IB2 and IC1

• Through iteration/simulation, 
can verify approximation

IB2

IC1

IE1 IE2

IC2
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Q1 Analysis
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2 assumptions: a) active mode, and b) no 
current flowing into Q2 via VC1 node: IB2=0



Department of Electrical and 
Computer Engineering ECSE-330B Electronic Circuits I

BJTs 20

Q2 Analysis – Same Assumptions
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2 assumptions: a) active mode, and b) no 
current flowing into Q2 via VC1 node: IB2=0
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Compute Q2 Base Current

VC1
=0.79

+
0.7

-

IC2

IE2

mAmAII EC 995.4045.5
1

 =
+

==
β
βα

From previous:

AmAII C
B μ

β
45.50

99
995.4 ===

IB~
50.45
μA



Department of Electrical and 
Computer Engineering ECSE-330B Electronic Circuits I

BJTs 22

Iterate to Get Exact Solution; Verify On Own
Add IB2 to IC1 current flowing in 2kΩ

mAIII BCR 6545.40505.0604.421 =+=+=

691.0)2)(6545.4(10
)2(101

=Ω−=
Ω−=

kmA
kIV RC

Re-DO the calculations for Q2:
VVE 01.07.0691.02 −=−=

mA
k

IE 995.4
2

1001.0
2 =

+−
=

mAmAII EC 945.4995.4
1

 22 =
+

==
β
βα

VkmA
kIV CC

945.4)1)(945.4(10
)1(10 22

=Ω−=
Ω−=

IR

AmAII C
B μ

β
95.49

99
945.4 2

2 ===



Department of Electrical and 
Computer Engineering ECSE-330B Electronic Circuits I

BJTs 23

DC Analysis of Active Mode 
BJT Circuits – Summary

• General approach to active mode DC analysis
• Collector resistance and its effect on active mode 

operation
• Sensitivity of BJT DC bias to variations in β, and how 

to avoid it
• Practical biasing arrangement for coupling AC signals
• Analysis approach to DC analysis of 

circuits involving multiple BJTs
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Outline of Chapter 5
• 1- Introduction to The Bipolar Junction Transistor
• 2- Active Mode Operation of BJT
• 3- DC Analysis of Active Mode BJT Circuits
• 4- BJT as an Amplifier
• 5- BJT Small Signal Models
• 6- CEA, CEA with RE, CBA, & CCA 
• 7- Integrated Circuit Amplifiers
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BJT Signal Analysis

• Input has DC 
and AC components

• Output has DC and 
AC components

• Because the two are 
linearly super-
imposed, can separate 
DC and AC analysis 
as did with diode
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DC Analysis – Operating Point, IC vs VBE
• Kill AC sources
• Operating point determined      

by VBE

DC Operating Point
iC

vBE

IC

VBE
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BJT Signal Analysis – iC vs vBE

Operating 
Point

– Slope of iC-vBE curve at 
operating defined as BJT 
transconductance, gm

IC

VBE

Consider superposition of 
an AC signal at the DC 
operating point
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gm Operating Point Dependence

• Since gm represents slope at a 
fixed operating point, can 
derive an expression for gm, at 
this operating point

• Take derivative and simplify
• Final expression for gm

indicates BJT operating point 
dependence based on IC, the 
DC collector current.
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Define transconductance
as slope of the iC-vBE curve 
at an operating point:

In the small signal limit, 
can write expression for 
gm as follow:

BJT Small Signal – iC vs vBE

Operating 
Point

IC

VBE

gm determines the BJT gain
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Common Emitter BJT Amplifier
• Apply small signal 

at base: vs(t)=vbe(t) 
• Results in signal 

current, ic(t), at 
collector

)()( tvgti bemc =

• Signal current 
through RC
produces output 
voltage at BJT 
collector terminalCbemc
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Common Emitter BJT Voltage Gain
• Define voltage gain:
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Common Emitter BJT Voltage Gain
• From SPICE:

Input

Output


