- Biasing: Creating the circuit to establish the desired DC voltages and currents for the operation of the amplifier
- Four common ways:
 - 1. Biasing by fixing V_{GS}
 - 2. Biasing by fixing V_G and connecting a resistance in the Source
 - 3. Biasing using a Drain-to-Gate Feedback Resistor
 - 4. Biasing Using a Constant-Current Source

• Biasing by fixing V_{GS}

$$I_D = \frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2$$
$$k'_n = \mu_n \frac{\varepsilon_{ox}}{t_{ox}} = \mu_n C_{ox}$$

in A

When the MOSFET device is changed (even using the same supplier), this method can result in a large variability in the value of I_D . Devices 1 and 2 represent extremes among units of the same type. MOSFETs 2

• Biasing by fixing V_G and connecting a resistance in the Source

• Biasing using a Drain-to-Gate Feedback Resistor

• Biasing Using a Constant-Current Source

Figure 4.33 (a) Biasing the MOSFET using a constant-current source *I*. (b) Implementation of the constant-current source *I* using a current mirror.

Current Mirror DC Analysis

- The width and length (the W/L aspect ratio) and the parameters of the two transistors *can be different*
- We can choose W/L freely
- In this circuit, consider W/L of both MOSFETs are the same and transistors are identical. The Gate-Source voltages are also the same, then

$$I_{REF} = \frac{1}{2} k'_n \frac{W_1}{L_1} (V_{GS} - V_t)^2$$
$$I = \frac{1}{2} k'_n \frac{W_1}{L_1} (V_{GS} - V_t)^2$$

$$\boxed{\frac{I}{I_{REF}} = \frac{W_1}{L_1} \cdot \frac{L_1}{W_1} = 1}$$
$$I = I_{REF}$$

Current Mirror DC Analysis

• It is often needed to find the value of R in order to achieve a desired I_{REF}

- 1- Intro to MOS Field Effect Transistor (MOSFET)
- 2- NMOS FET
- 3- PMOS FET
- 4- DC Analysis of MOSFET Circuits
- 5- MOSFET Amplifier
- 6- MOSFET Small Signal Model
- <u>7- MOSFET Integrated Circuits</u>
- 8- CSA, CGA, CDA
- 9- CMOS Inverter & MOS Digital Logic

MOSFET Design Space

- Modern integrated circuits use MOSFETs extensively
 - Very high densities of transistors up to 10⁹ transistors/cm² in some ULSI memory arrays.
 - Off-chip discrete resistors and capacitors are *NOT* commonly used
 - On-chip resistors and capacitors generally *small*
 - Multistage amplifiers are usually *DC-coupled*
- Transistors used wherever possible to implement current sources, resistors, capacitors,

Using MOSFETs to implement R's and C's

- Resistors:
 - Active Loads (large R's)
 - Diode-connected loads (small R's)
 - MOSFET Triode-Region (moderate R's)
- Capacitors
 - Most obvious is the gate-body capacitor
 - Can be used to have variable-capacitors as well
- Current Mirrors

MOSFET Active Loads

- MOSFETs used as an active load for high resistances:
 - MOSFET is held in saturation with the source and gate held at a constant DC voltage
 - Drain connected to circuit
 - r_o is inversely proportional to I_D

Diode-Connected MOSFETs

- A Diode connected MOSFET can be used to achieve small resistances:
 - The Drain is directly connected to Gate, and therefore it can only be operated in saturation (or cutoff)

MOSFET Current Mirrors

- Used extensively in MOSFET IC applications
- Often r_o, is neglected. Since there is no gate current, the drain currents of M1 and M2 are identical
- In practice, $I_{\text{REF}} \neq I$ due to finite r_0 . (Not included in EC1) $I_{\text{REF}} = \frac{1}{2} k'_n \frac{W_1}{L_t} (V_X - V_t)^2 (1 + \lambda V_X)$

 $V_X = V_{GS1} = V_{DS1}$ The current I will also depend on V_{DS2} MOSFETs 13

Current Mirror DC Analysis

• The width and length (the W/L aspect ratio) of MOSFETs can be designed almost freely

McGill Department of Electrical and Computer Engineering

• Since the W/L of M_1 and M_2 need not be the same, the size ratios can affect current ratios

$$I_{REF} = \frac{1}{2} k'_{n} \frac{W_{1}}{L_{1}} (V_{GS} - V_{t})^{2}$$

$$I = \frac{1}{2} k'_{n} \frac{W_{2}}{L_{2}} (V_{GS} - V_{t})^{2}$$

$$\frac{I}{I_{REF}} = \frac{W_2}{L_2} \cdot \frac{L_1}{W_1}$$

Ratio of aspect ratios can be selected to achieve nearly any scale factor I/I_{REF}

Current Mirroring – Pushing and Pulling

Small Signal

Transistor M1 is diode connected and acts like a resistor to s.-s. ground.

Outline of Chapter 5

- 1- Intro to MOS Field Effect Transistor (MOSFET)
- 2- NMOS FET
- 3- PMOS FET
- 4- DC Analysis of MOSFET Circuits
- 5- MOSFET Amplifier
- 6- MOSFET Small Signal Model
- 7- MOSFET Integrated Circuits
- <u>8- CSA, CGA, CDA</u>
- 9- CMOS Inverter & MOS Digital Logic

DC and AC - Body-Effect / CLM

Three types of analysis:

Neglect DC Body-Effect & DC CLM

Use DC Body-Effect / Neglect DC CLM

Use DC Body-Effect / Use DC CLM

Three types of analysis:

Neglect AC Body-Effect & AC CLM

Use AC Body-Effect / Neglect AC CLM

Use AC Body-Effect / Use CLM

DC Analysis

Use whatever DC values for V and I in the small-signal analysis

AC Analysis (small-signal)

Common Source Amplifier (CSA)

- Current source I implemented with current mirror.
- Current mirror provides active load at drain
- Source terminal grounded no DC or AC Body effect

CSA with Current Mirror

CSA Small Signal Analysis

• From MOSFET Current-Mirror: only r_{o2} appears in analysis

$$v_{gs1} = v_i$$

$$v_{out} = -g_{m1} (r_{o1} || r_{o2}) v_{gs1}$$

$$A_{V} = \frac{v_{out}}{v_{i}} = -g_{m1}(r_{o1} || r_{o2})$$

CSA Input/Output Resistance

• Input Resistance

$$R_{IN} \Rightarrow \infty$$

- Output resistance
 - $v_{gs1} = 0$

$$g_{m1}v_{gs1}=0$$

$$R_{OUT} = r_{o1} \| r_{o2}$$

CSA Calculations

In practice, difficult to keep all V_{dd} V_{DD} transistors operating in saturation V_{OUT} is hard to control, and V_{g} M, Μ, sensitive to: W/L, V_G , and CLM REF $V_{0} \frac{\lambda_{1} = |\lambda_{2}| = 0.01V^{-1}}{V_{t1} = |V_{t2}| = 1V}$ Hand: SPICE: $V_{G} = 2.567V$ $V_{G} = 2.58V$ $\mathsf{R}_{\mathsf{REF}}$ **V**, o $k'_{p} = 50 \mu \frac{M}{V}$ I = 2.596 mAI = 2.57 mA $k'_n = 125 \mu \frac{M}{V}$ $V_{OUT} = 3.855V$ $V_{OUT} = 2.895V$ $\frac{W_2}{L_2} = 50, \frac{W_1}{L_1} = 40$ $g_{m1} = 5.192 m \frac{A}{V}$ $A_V = -102.4 \frac{V}{V}$ $r_o = 38.52k\Omega$ $V_{DD} = 5V, V_{SS} = -2V$ $A_V = -100 \frac{V}{V}$ ٧_{ss} V_{ss} $R_{REF} = 1k\Omega$

Common Gate Amplifier (CGA)

- A pMOS current mirror is used as I_{REF} including the output resistance.
- The gate terminal held at a DC voltage. (AC Ground)
- Since source terminal not at signal ground, the body effect is present.

Typically used as second stage of a multi-stage amplifier circuit

CGA – DC Analysis

- Current mirror is assumed to be ideal during the DC analysis, thus I_{REF}=I
- DC voltage at the source terminal (V_S) must be obtained from driving the current I_{REF} through the transistor.
- This assumes that the input voltage source V_I is set to zero
- R_I is part of the source voltage
- Solve for V_O , with V_S and V_G known, and including CLM

$$V = \frac{1}{2}k'_{n}\frac{W}{L}(V_{G} - V_{S} - V_{t})^{2}[1 + \lambda \cdot (V_{O} - V_{S})]$$

CGA – No Body Effect or CLM

CGA – R_{IN} & R_{OUT}, No Body Effect or CLM

 $R_{IN} = \frac{1}{g_{m1}}$

 $v_I = 0$

 $R_{OUT} = r_{o2}$

CGA – With Body Effect & no CLM

CGA – R_{IN} With Body Effect & no CLM

Neglect Input Voltage Source

 $R_{IN} = \frac{1}{1}$ $g_{m1} + g_{mb1}$

CGA - With Body Effect & CLM

CGA – R_{IN} With Body Effect & CLM

