Chapter 4

Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)

Sedra/Smith, Sections 4.1- 4.10, {also 10.3, 6.3}

Outline of Chapter 4

- 1- Intro to MOS Field Effect Transistor (MOSFET)
- 2- NMOS FET
- 3- PMOS FET
- 4- DC Analysis of MOSFET Circuits
- 5- MOSFET Amplifier
- 6- MOSFET Small Signal Model
- 7- MOSFET Integrated Circuits
- 8- CSA, CGA, CDA
- 9- CMOS Inverter & MOS Digital Logic

Transistors

- A *three* terminal device is required to implement current switches and amplifiers.
 - need voltage control terminal
 - used to control current flow through other two terminals
- All four ideal amplifier configurations (Chapter 1) employ dependent sources.
- A small control voltage can allow a large change in current.

Transistors-Two PN Junctions

Metal Oxide Semiconductor Field-Effect Transistors (MOSFET)

Bipolar Junction Transistor (BJT)

Transistors-Two PN Junctions

Metal Oxide Semiconductor Field-Effect Transistors (MOSFET)

• Bipolar Junction Transistor (BJT)

Basic Characteristics of the MOSFET

- The current flows parallel to the surface.
- The MOSFET is usually smaller than the BJT.
 - It consumes less power.
 - It has a much smaller transconductance, g_m, because of its small cross-sectional area.
- Massive integration techniques for digital applications.

- BJTs generally have better performance (predictable small signal parameters).
- Modern digital verylarge-scale-integrated (VLSI) circuits employ MOSFETs almost exclusively.
- Analog applications use BJTs only when *top* performance is absolutely essential.

nMOS Circuit Symbol

- A MOSFET is a four-terminal device
- Body terminal is always biased at most negative potential

- Simplified symbol with implicit Body terminal connection
- Arrow indicates direction of current

pMOS Circuit Symbol

- A MOSFET is a four terminal device
- Body terminal is always biased at most positive potential

- Simplified symbol with implicit Body terminal connection
- Arrow indicates direction of current flow

The n-channel MOSFET (nMOS)

- nMOS created in p-type well, this is the Body
- Heavily doped n+ Drain and Source regions. Usually Body and Source This defines the *n-channel* connected.
- Gate electrode over thin SiO₂ dielectric forms parallel plate capacitor with Body

The p-channel MOSFET (pMOS)

- pMOS created in n-type well, this is the Body
- Heavily doped p+ Drain and Source regions.
 Usually Body and Source connected.
- Gate electrode over thin SiO₂ dielectric forms parallel plate capacitor with Body

This defines the *p-channel*

Complementary MOS Technology (CMOS)

- CMOS technologies provide nMOS and pMOS devices
- The example shown called dual-well technology.
- p-well *only* and n-well *only* technologies also exist

Outline of Chapter 4

- 1- Intro to MOS Field Effect Transistor (MOSFET)
- 2- NMOS FET
- 3- PMOS FET
- 4- DC Analysis of MOSFET Circuits
- 5- MOSFET Amplifier
- 6- MOSFET Small Signal Model
- 7- MOSFET Integrated Circuits
- 8- CSA, CGA, CDA
- 9- CMOS Inverter & MOS Digital Logic

The n-Channel Enhancement MOSFET

- B-S & B-D pn junctions kept reverse-biased with the body terminal the most negative (or attached to the source).
- Aspect ratio of nMOS (W/L) chosen freely, affects g_m.

- **Parameters**
 - Channel Length (L)
 - Channel Width (W)
 - Oxide Thickness (t_{OX})
 - Oxide permittivity (ε_{OX})
 - Electron Mobility (μ_n)

nMOS Channel Cut-off

- Normally, source & body terminals kept at same potential. $(V_{SB} = 0)$
- When $V_{GS} < V_t = 1V$ (enhancement nMOS) there is NO conducting channel. Therefore there can be no movement of charge from drain to source; the current from drain to source, $I_D = 0$.

nMOS Channel Conduction

- In order to establish a conducting channel, V_{GS} (V_{GB}) must be made larger than *threshold voltage* V_t . When $V_{GS} > V_t$ (enhancement nMOS) an inversion layer is produced below the gate terminal.
- Channel conductivity proportional to V_{GS} V_t (excess gate voltage)
 MOSFETs 15

nMOS Channel Inversion Process

Assume $V_t=1.1V$

- $V_{GS} = 0$, no channel.
- $V_{GS} = 0.5$, + charges flow onto the gate, repelling holes from surface.

 $V_{GS} = 1.1$ free electrons attracted to surface.

V_{GS} = 1.3, excess free-electrons connect drain and source.

nMOS - Triode

Once the channel is set-up
 (V_{GS} > V_t), a small voltage
 between the drain and
 source, V_{DS}, is applied and
 current, I_D, begins to flow
 between drain and source.

• For a *small* V_{DS} :, current is proportional to the amount of inversion $(V_{GS}-V_t)$.

nMOS Triode & Pinch-Off

V_{DS} increased, channel shape changes

- The channel to source voltage along channel *increases* from V_S at S to $V_S + V_{DS}$ at D.
- The gate to channel voltage *decreases* from V_{GS} at S to V_{GS} V_{DS} at D.
- Channel shallower at D than S, it has a tapered shape.

 I_D continues to increase up until $V_{GD}=V_t$ at a slower rate

nMOS Triode & Pinch-Off

- $V_{DG} = -V_t$ at pinch-off, it is equivalently re-written as: $V_{DS} = V_{GS} - V_t$ at pinch-off.
- Triode/saturation boundary:

$$V_{DS} = V_{GS} - V_{t}$$

• Complete triode model includes this decreasing rate of change for I_D.

$$I_D = k'_n \frac{W}{L} [(V_{GS} - V_t)V_{DS} - \frac{1}{2}V_{DS}^2]$$

nMOS Triode-Summary

$$k_n' = \mu_n \frac{\mathcal{E}_{ox}}{t_{ox}}$$

$$V_{DS} < V_{GS} - V_{t}$$

$$V_{GS} > V_t$$

Triode Example: $V_{GS} > V_t$, and $V_{GD} > V_t$

If
$$V_t=1.1V$$

 $V_{GS}=3.2V$
 $V_{GD}=2.2V$
And $V_{DS}=1.0V_{MOSFETs\ 20}$

nMOS - Saturation

- Once channel pinchoff reached (V_{DS} = V_{DS-SAT}), nMOS enters saturation.
- As V_{DS} is further increased, the edge near the drain completely looses inversion and the inversion/pinch-off point starts to move towards the source.

$$I_D = \frac{1}{2} k_n' \frac{W}{L} (V_{GS} - V_t)^2$$

- To first-order, I_D doesn't change:
 - The voltage from the source up to the pinch-off point is V_{DS-SAT}
 - And the excess voltage $(V_{DS} V_{DS} V_{DS})$ is across the rest of the channel.

nMOS Saturation – Summary

- λ is Channel Length Modulation parameter
- Typically 0.005-0.05 V⁻¹

$$k_n' = \mu_n \frac{\mathcal{E}_{ox}}{t_{ox}}$$

$$V_{DS} \ge V_{GS} - V_{t}$$

$$V_{GS} > V_t$$

 $I_D = \frac{1}{2} k_n' \frac{W}{I} (V_{GS} - V_t)^2 (1 + \lambda V_{DS})$

nMOS Saturation $-I_D$ vs V_{GS} Curve

For constant V_{DS},
 I_D vs V_{GS} is quadratic

$$I_D = \frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2 (1 + \lambda V_{DS})$$

- We will see that this is analogous to I_C vs V_{BE} curve for a BJT
- MOSFET is less non-linear compared to a BJT

nMOS – The Body Effect

- It is not always possible to keep source and body at same potential:
 - $V_{SB} \neq 0$ accounted for in V_t
 - γ : Body effect parameter, typically 0.5V^{1/2}
- $V_{t} = V_{t0} + \gamma \left(\sqrt{2\phi_{f} + V_{SB}} \sqrt{2\phi_{f}} \right)$
 - $-2\phi_f$: Surface potential, equal to ~0.6V
 - V_{t0} : threshold when $V_{SB} = 0$

The Body Effect

Summary of Enhancement nMOS FET **I-V** Characteristics

Cutoff:

$$V_{GS} < V_{t}$$

$$I_D = 0$$

Triode:

$$V_{GS} > V_t$$
 $V_{DS} < V_{GS} - V_t$

$$V_{GS} > V_{t}$$

$$V_{DS} < V_{GS} - V_{t}$$

$$I_{D} = k'_{n} \frac{W}{L} [(V_{GS} - V_{t})V_{DS} - \frac{1}{2}V_{DS}^{2}]$$

$$V_{GS} > V_t$$

$$V_{DS} > V_{GS} - V_t$$

Saturation:
$$\frac{V_{GS} > V_t}{V_{DS} > V_{GS} - V_t}$$
 $I_D = \frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2 (1 + \lambda V_{DS})$

Body effect:
$$V_t = V_{t0} + \gamma \left(\sqrt{2\phi_f + V_{SB}} - \sqrt{2\phi_f} \right)$$

Outline of Chapter 4

- 1- Intro to MOS Field Effect Transistor (MOSFET)
- 2- NMOS FET
- <u>3- PMOS FET</u>
- 4- DC Analysis of MOSFET Circuits
- 5- MOSFET Amplifier
- 6- MOSFET Small Signal Model
- 7- MOSFET Integrated Circuits
- 8- CSA, CGA, CDA
- 9- CMOS Inverter & MOS Digital Logic

pMOS Circuit Symbol

- A MOSFET is a four terminal device
- Body terminal always biased at most positive potential

- Simplified symbol with implicit Body terminal connection
- Arrow indicates direction of current flow

pMOS Channel Cut-off

- Source & body terminals are kept at same potential. $(V_{SB} = 0)$
- When $V_{GS} > V_{tP} = -1V$ (enhancement pMOS) there is NO conducting channel. Therefore there can be no movement of charge from drain to source; the current from drain to source, $I_D = 0$.

pMOS Channel Conduction

- To establish a conducting channel, V_{GS} (V_{GB}) must be made smaller than *threshold voltage* V_{tP} . When $V_{GS} < V_{tP} = -1V$ (enhancement pMOS) an inversion layer is produced below the gate terminal.
- Channel conductivity proportional to V_{GS} V_{tP} (excess gate voltage)

pMOS Triode Region

Assume V_{tP} =-1.1V

• If $V_{DG} = -V_t$, at pinch-off, then re-written: $V_{DS} = V_{GS} - V_{tp}$ at pinch-off.

$$V_{DS} = V_{GS} - V_{tP}$$

pMOS Triode Region – Summary

$$k_p' = \mu_p \frac{\varepsilon_{ox}}{t_{ox}}$$

$$V_{GS} < V_t$$

$$k_p' = \mu_p \frac{\varepsilon_{ox}}{t_{ox}}$$
 $V_{GS} < V_t$ $V_{DS} > V_{GS} - V_t$

Triode Example: $V_{GS} < V_{t}$, and $V_{GD} < V_{t}$

If
$$V_t = -1.1V$$

$$V_{GS}=-3.2V$$

$$V_{GD} = -2.2V$$

And
$$V_{DS}=-1.0V$$

pMOS – Saturation

- Once channel pinch-off is reached ($V_{DS} = V_{DS}$), the pMOS enters saturation mode.
- As V_{DS} is further decreased, the edge near the drain completely looses inversion and the inversion/pinch-off point starts to move towards the source.

$$I_D = \frac{1}{2} k_p' \frac{W}{L} (V_{GS} - V_t)^2$$

- To first-order, I_D doesn't change:
 - The voltage from the source up to the pinch-off point is V_{DS-SAT}
 - The excess voltage $(V_{DS} V_{DS-SAT})$ is across the rest of the channel.

pMOS Saturation – Summary

- λ is CLM parameter
- λ is negative
 - typically -0.005 to -0.05 V⁻¹
 - Extrapolated curves intersect at common point.

$$I_{D} = \frac{1}{2} k_{p}^{'} \frac{W}{L} (V_{GS} - V_{t})^{2} (1 + \lambda V_{DS})$$

$$k_p' = \mu_p \frac{\varepsilon_{ox}}{t_{ox}}$$
 $V_{GS} < V_t$

$$V_{DS} \le V_{GS} - V_{t}$$

Summary of pMOS FET I-V Characteristics

Cutoff:

$$V_{GS} > V_t$$

$$I_D = 0$$

Triode:

$$V_{GS} < V_t$$
 $V_{DS} > V_{GS} - V_t$

$$V_{GS} < V_{t} V_{DS} > V_{GS} - V_{t}$$

$$I_{D} = k'_{p} \frac{W}{L} [(V_{GS} - V_{t})V_{DS} - \frac{1}{2}V_{DS}^{2}]$$

$$V_{GS} < V_t$$

$$V_{DS} < V_{GS} - V_t$$

Saturation:
$$V_{GS} < V_t$$
 $I_D = \frac{1}{2} k'_p \frac{W}{L} (V_{GS} - V_t)^2 (1 + \lambda V_{DS})$ G

Body effect:
$$|V_t| = |V_{t0}| + \gamma \left(\sqrt{2\phi_f + |V_{SB}|} - \sqrt{2\phi_f} \right)$$

Note: V_{GS} , V_{DS} , V_{SB} , V_t , λ , are all NEGATIVE