304-323 - Digital Systems Design
VHDL Coding Guidelines
The following are a set of guidelines for writing VHDL descriptions that facilitate re-use of designs. These are abstracted from the document ``FPGA Reuse Field Guide'' by Qualis Design Corp (available from the Xilinx web page).
One of the primary challenges to effective use of coding guidelines is overcoming the habit of adhering to personal preferences. The value of coding guidelines is that fact that these guidelines are shared by the entire design group. If even one individual does not follow them, the entire group is adversely affected.

· Put a header comment block at the beginning of each VHDL file. This header should contain the following information:

· Copyright notice.

· Brief description of the circuit described in the file.

· Revision number.

· Original author name (and contact data).

· Current author name (and contact data).

· Put revision history in a comment block at the end of the file. Typically, in each revision a new line will be added to this trailer, listing revision number, date, and change information.

· Use comments throughout the file to describe the intent or functionality of the code.

· Preface each major section with a comment describing what it does, why it exists, and how it works (e.g. before a process block).

· Describe each input and output in individual comments (purpose, range, effects).

· Delete bad code in a revision. Do not just comment it out.

· Write only one statement per line.

· Use a tabular layout (e.g. indent to set tab locations) for lexical elements in consecutive declarations, with a single declaration per line.

· Use no more than 3 nesting levels in flow-control statements (e.g. if-then-else).

· Use lower-case for all user-defined identifiers. This reduces fatigue and stress while typing.

· Separate words using underscores rather than with mixed cases. e.g. use ``fsm_reset'' instead of fsmReset.

· Avoid acronyms for user-defined identifiers. Use a minimum of 5 characters.

· Name objects by function rather than by type. e.g. ``bit_counter'' rather than ``integer_count''.

· Use symbolic constants rather than hard-coded numbers.

· Use a single compilation unit (design entity) per file.

· Specify complete sensitivity lists. In combinational process blocks, all inputs must be in the list. In sequential process blocks, all clocks and asynchronous signals must be present.

· Group ports according to purpose or functionality, rather than by direction (in, out, buffer).

· Do not specify bit ranges when refering to complete vector. Bit ranges should be used only to indicate subsets of bit vectors. That is, use

· shift_reg_value <= shift_reg_value(14 downto 0) & shift_in;

instead of

 shift_reg_value(15 downto 0) <= shift_reg_value(14 downto 0) & shift_in;

· Name active low signals using a ``_n'' postfix. e.g. ``rst_n''.

· If your design uses multiple clocks, name clock signals using a ``clk_'' prefix. e.g. ``clk_register''.

· If your design uses multiple reset signals, name them using a ``rst_'' prefix. e.g. ``rst_register''.

· Do not put explicit numerical values in the names of signals, as these are likely to change in future revisions. e.g. do not use a name like ``clk_20MHz''.

· Do not use the component name as the instance name.

· Use symbolic constants or enumerated types to define states in FSM descriptions. Leave state assignment to the synthesis tools. Keep in mind that many synthesis tools will assign the first state name in the enumeration to the reset state (usually all zeros).

· Label all closing ``end'' keywords.

· Do not use ``buffer'' port modes. Use internal signals to feed back output signals. This simplifies synthesis in hierachical designs.

· Name internal feedback signals with a _i postfix.

· Use process blocks instead of instantiation of small components or collections of concurrent signal assignment statements.

· Use STD_LOGIC and STD_LOGIC_VECTOR types instead of BIT and BIT_VECTOR types.

· Do not use INTEGER or enumerated types for port signals. Use only STD_LOGIC, STD_LOGIC_VECTOR, UNSIGNED, or SIGNED signal types.

Some system design guidelines to aid in synthesis

· Use single active clock edges. Do not use dual edge clocking.

· Use a minimum of clock domains (circuit areas clocked by a single signal).

· Do not use clock gating or derived clocks.

· Do not use internally generated asynchronous resets, as these are difficult to test. Use external inputs for asynchronous reset.

· Provide reset signals for all FSMs.

· Separate FSMs into two processes - one for state update, and one for output.

· Use synchronous design techniques.

· Isolate and document any asynchronous logic.

· Do not use latches, as these are difficult to test. Use edge-triggered flipflops instead.

· To avoid implicit memory, and creation of unnecessary storage elements, set all outputs to default values at the beginning of process blocks.

· Register outputs of design units. This helps meet timing constraints.

· Minimize the amount of combinational decoding of inputs in design units. Ideally, inputs should be registered, again, to aid in meeting timing constraints.

· Avoid fully combinational paths through design units (e.g. avoid Mealy FSMs), to aid in meeting timing constraints.

· Have no combinational feedback (signals being fed back should always be registered), as such feedback results in difficulties in testing and static timing analysis.

· Do not use internal tri-state buffers. Use multiplexers instead.

· Use case statements to generate multiplexers and decoders, rather than if-then-else trees. These provide area and speed advantages when synthesizing designs targeted at typical CPLD architectures.

· Use register duplication to minimize fanout (which increase delays).

