
1

McGill University ECSE-323 Digital System Design / Prof. J. Clark

ECSE-323
Digital System Design

Lab #4 – VHDL for Sequential Circuit Design Fall 2008

2

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Introduction .

In this lab you will learn how to use VHDL to describe
sequential logic circuits using process blocks.

3

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Learning Outcomes .

After completing this lab you should know how to:

• Use process blocks in VHDL descriptions.
• Write VHDL descriptions of sequential circuits.

4

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Table of Contents .

This lab consists of the following stages:

1. VHDL design of the binary to base-100 converter
2. Simulation and testing of the converter on the Altera board.
3. Design of a circuit to implement an Nth root operation.
4. Simulation and testing of the Nth root circuit on the Altera board.
5. Writeup of the lab report

5

McGill University ECSE-323 Digital System Design / Prof. J. Clark

For your project, you will need to display various binary values. But your alien bosses do not
understand binary! So you will need to display your values in base-100 digits.

The following serial algorithm can be used to convert a binary number into a set of base-100 digits.
It is called the “Add-14'' algorithm:

1. Wait for START input to go low. When it does go low, go to step 2.
2. Wait for START input to go high. When it does go high, go to step 3.
3. Initialize all four base-100 digit registers to zero. Reset the cycle counter to zero (or

to 25, if you want to count down). Set DONE output to low.
4. Load the input binary number into a (26-bit) shift register.
5. If any of the four base-100 digits has a value greater than 49, add 14 to that digit

(ignoring any carry out), and load it back into the digit register.
6. Shift the shift register left by one place. The bit shifted out from the 26-bit register is

shifted into the first base-100 digit register, the bit shifted out from the first base-100
digit register is shifted into the second base-100 digit register, etc.

7. Go to step 6 when all data has been shifted out of the 26-bit shift register (i.e. after 26
shift cycles). Otherwise loop back to step 4.

8. Set DONE output to high. Go to step 1.

1. Design of a 26-bit Binary to Base-100 Converter .

6

McGill University ECSE-323 Digital System Design / Prof. J. Clark

1. Design of a 26-bit Binary to Base-100 Converter .

26-bit shift register

7-bit shift reg 7-bit shift reg 7-bit shift reg 7-bit shift reg

Add-14 Add-14 Add-14 Add-14

Shift out

Shift in

Parallel load data

(control lines not shown)

Binary input

digit4 digit3 digit2 digit1

7

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Use VHDL to describe the conversion circuit, using multiple process blocks as needed.
The use of an FSM is recommended for controlling the operation of the circuit. The
entity declaration for the circuit should be:

1. Design of a 26-bit Binary to Base-100 converter .

entity gNN_binary_to_base100 is
port (binary : in std_logic_vector(25 downto 0);

clk, reset : in std_logic;
START : in std_logic;
DONE : out std_logic;
DIGIT1 : out std_logic_vector(6 downto 0);
DIGIT2 : out std_logic_vector(6 downto 0);
DIGIT3 : out std_logic_vector(6 downto 0);
DIGIT4 : out std_logic_vector(6 downto 0));

end gNN_binary_to_base100;

Show the TA your VHDL description of the circuit, explaining how it works.

[You might want to think a little bit about why the add-14 algorithm works. A hint is
that conversion to an arbitrary even base N requires adding (2^M-N)/2 (where M is
the smallest integer such that 2^M>N) whenever the digit value is greater than or
equal to N/2. This can be seen in the general Matlab

code on the next page.]

http://www.theteachersguide.com/clipart/pencheck.gif

8

McGill University ECSE-323 Digital System Design / Prof. J. Clark

function bc=binary_convert(bin,BS)
%
% conversion from base-2 to base-BS representation
% BS must be an even number
% (c) James Clark, October 2008
%
NI = 32; % number of bits for input word (assume 32 bits)
NB = ceil(log2(BS)); % number of bits to represent the base
ND = ceil(NI/log2(BS)); % number of base-BS digits needed
%
bc = zeros(ND,1); % bc is an ND element array, initially cleared
for i = 1:NI, % shift bits out of bin 1 bit at a time

for j = 1:ND,
if bc(j) > BS/2-1

bc(j) = bc(j)+(2^NB-BS)/2;
end

end
bctmp = bc;
bc=bitshift(bc,1,NB);
for j=2:ND,

bc(j)=bitset(bc(j),1,bitget(bctmp(j-1),NB));
end
bc(1)=bitset(bc(1),1,bitget(bin,NI));
bin=bitshift(bin,1,NI);

end

Matlab program for conversion of binary to an arbitrary even base
[Note: This is given for information only –

you don’t have to implement it!]

9

McGill University ECSE-323 Digital System Design / Prof. J. Clark

2. Simulation of the binary to base-100 converter .

Perform a timing simulation of the converter. Use a clock period of 500nsec for the initial
simulation. Show the TA the results of your simulation. You should test at least 4 different
input values, including all ones and all zeros.

How fast could you clock the circuit without modification? (hint: the clock rate will
mainly be limited by the propagation delay of the add-14 operations).

For the overall system we will want to use the fastest clock available, which on the DE1
board runs at 50MHz. If this is too fast for your circuit you will have to modify the circuit
to handle the faster clock. If you are using an FSM the easiest way to do this is to add in
wait states (that do no operations, just take time) before the bit shifting states.

Re-run the simulations using the 50MHz clock on your modified circuit. Show the results
to the TA.

http://www.theteachersguide.com/clipart/pencheck.gif
http://www.theteachersguide.com/clipart/pencheck.gif

10

McGill University ECSE-323 Digital System Design / Prof. J. Clark

TIME CHECK

You should be this far at the
end of your first

2-hour lab

period!

11

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Interlude: Fixed Point Representations and Arithmetic .
The calculator system may need to deal with fractional values, and not just
integer numbers. Fractions can be represented in binary fashion in the same
way as integer numbers – as sums of powers of 2. In the case of fractions, the
powers will be negative.

2 2 1 0 1 2
2 2 1 0 1 2... 2 ... 2 2 2 2 2 ...N

NV v v v v v v− − −
− − −= + + + + + + + +

For example the fractional number 16543.5625 is represented as:
16544.5625 = 100000010100000.1001 since 0.5625 = 1/2+ 1/16 and
16544 = 2^14+2^7+2^5

Note that just because a fraction expressed in decimal (base-10) form has a
finite number of decimal digits, this does not mean that the binary form
always has a finite number of binary digits (bits) as well. For example, 0.1 in
binary is 0.000110011001…

12

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Interlude: Fixed Point Representations and Arithmetic .

You add and multiply fractional numbers just as you would with integers, but
you have to keep track of where the “binary point” is. The binary point is
located where the power of two in the base 2 expansion of the value goes from
0 to -1.

Adding two N-bit fractional numbers each with M fractional bits gives a result
with N+1

bits, still with the M fractional bits.

For addition we can treat the input operands as integers by multiplying the
fraction values by 2^M where M is the number of fractional bits and then
dividing the result by 2^M to shift it back to the proper value.

For example : 5.3125+3.8125 = 9.125
101.0101+ 011.1101 = (1010101+0111101)/2^4 = 1001.0010

13

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Interlude: Fixed Point Representations and Arithmetic .
Multiplying two N-bit fractional numbers each with M fractional bits gives a
result with 2N

bits, but now with 2M fractional bits.

As in addition we can treat the input operands as integers by multiplying each
of them by 2^M, where M is the number of fractional bits, and then dividing
the result by 2^(2M) to shift it back to the proper value.

For example : 5.3125*3.8125 = 20.25390625
101.0101* 011.1101 = (1010101*0111101)/2^8 = 010100.01000001

Now, you don’t actually have to do this shifting, you just need to keep track of
where to place the binary point after the computation (e.g. for display
purposes).

Often you will want to use “fixed-point” representation, where you always
keep a constant number of fractional bits. In the above multiplication example,
we would only keep 4 of the fractional bits, to give 010100.0100 = 20.25

14

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Converting Fractional Binary to Base-100 .
Conversion of fractional numbers (numbers strictly less than one) to Base-B is actually
easier than converting integer numbers. To extract the most-significant digit, one needs
to multiply the number by B (e.g. B=100 for base-100 numbers) and take the integral
part of the result. Then, to get the next most-significant base-B digit, take the fractional
part of the result and multiply by B again, taking the integral part of the result as the
next digit. Continue this until you have enough fractional base-B digits.

If you have a number with both an integer part and a fractional part you can combine
the above procedure with the integer conversion described earlier. But this will be rather
cumbersome to control, since you have two different operations going on.

A more convenient (but slower) approach to conversion of a general number is to
multiply the number by B^M, where M is the number of fraction digits you want to
obtain. After multiplication, discard all of the fractional bits of the result. This will leave
just an integer, which you can convert using the approach described earlier.

For example, to convert 10100.01000001 to base-10, keeping 3 decimal digits,
we would multiply by 10^3=1111101000 to give 100111100011101 = 20253

15

McGill University ECSE-323 Digital System Design / Prof. J. Clark

4. Testing of the binary to base-100 converter .
You will find, in general, that just because a system works in simulation it is
not guaranteed to work when downloaded to the Altera board. This is
especially true for sequential systems, as your design may have timing issues
that prevent it from working properly.

So, you should design a testbed for the binary to base-100 converter circuit.
This should use the 4 LEDs to display the 4 base-100 digits. Use the
dipswitches on the Altera board to provide the input to the converter circuit.
Use your ingenuity in figuring out how to use the 10 switches available on
the DE1 board to load in a 26-bit binary number!

Use VHDL to describe the testbed circuit, using components to connect the
various modules.

Compile and download the design to the Altera board, and demonstrate its
functioning to the TA, switching between different input patterns.

http://www.theteachersguide.com/clipart/pencheck.gif

16

McGill University ECSE-323 Digital System Design / Prof. J. Clark

TIME CHECK

You should be this far at the
end of your second

2-hour

lab period!

17

McGill University ECSE-323 Digital System Design / Prof. J. Clark

4. Design of an Nth root Calculator .

For your alien financial calculator system a circuit that computes the Nth
root of an M-bit number will be needed.

To compute this, you can use the following binary search algorithm:

1. Initialize the bit counter (BC) to M and set DONE = 1

(reset state)
2. Wait for START

to go low
3. Wait for START

to go high
4. Set DONE = 0, initialize Y

to zero
5. set bit BC

of Y

to 1 (bit 1 is the LSB, bit M is the MSB)
6. compute Z=Y^N, by repeated multiplication. If Z>X, at any time,

reset bit BC

of Y

to 0 and go to step 7
7. BC = BC-1
8. If BC > 0

go back to step 5, else go back to step 1

NY X=

18

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Make the following assumptions:

• 1 ≤

N ≤

63

(6 bits are needed to represent N)
• X

is an integer between 0 and 99. (so only 7 bits are needed for X)

Any other values for N and X should result in the ERROR output being set high.

Y will not be an integer in general, so provide extra bits to represent its fractional
part. The integer part of Y will be at most 99 so only 7 bits are needed for the integer
part. Use 14 bits for the fractional part, for a total of 21 bits. When displayed Y will
have one base-100 digit for the integer part and two base-100 digits for the fractional
part.

It may seem that we would need, in the worst case, 7*63+14=455 bits to represent Z,
because of the repeated multiplications in step-6. But, because of the check to see if
Z>X, the repeated multiplications will be interrupted long before Z grows to be that
large. So, you can use multipliers that have 21 bits for the input operands (14 of these
fractional) and 42 bits for the output (14 for the integer part and 28 for the fractional
part). You can then discard the lower 14 bits and the upper 7 bits.

19

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Design the nth_root circuit using the Datapath/Controller approach, and use
VHDL to describe it. The circuit should be called gNN_Nth_root

and have
the following inputs: X, N, START, clock, reset; and the following outputs: Y,
DONE.

Remember to add in wait states where necessary. For example, the
multipliers will probably have propagation delays longer than the clock
period, so you need to wait until sufficient time has passed before making
use of the multiplier outputs. The comparison operation (Z>X) may also be
slow. You can determine the propagation delay of your datapath elements by
simulation (just simulate the modules by themselves).

Once you have finished your VHDL description of the Nth_root circuit,
show it to the TA and explain its design.

http://www.theteachersguide.com/clipart/pencheck.gif

20

McGill University ECSE-323 Digital System Design / Prof. J. Clark

TIME CHECK

You should be this far (i.e. have
completed the lab) at the end of
your third

2-hour lab period!

21

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Next, compile the circuit and create a symbol for it, then insert the symbol
into a new empty schematic. Then perform a timing

simulation of the
circuit.

Test the circuit by simulating it a number of different input values (trying
various values of X

and N). Compare your results to those provided by a
calculator.

Observe how many clock cycles pass before the computation finishes.
Does this number depend on the input values? What is the worst case time
for completion of the operation?

Show your simulations to the TA.

5. Simulation of the Nth_root Circuit .

http://www.theteachersguide.com/clipart/pencheck.gif

22

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Create a testbed for the Nth_root circuit which displays its output (in base-100 digits) on
the 7-segment LEDs of the DE1 board. Use the switches on the DE-1 board to set the test
input values. Turn on the decimal point indicator of one of the LEDs to indicate the
location of the decimal point in front of the two fractional digits.

Note that, as mentioned earlier in this document, in order to properly display the two
fractional base-100 digits on the 7-segment LEDs, you will have to multiply the output of
the Nth_root

circuit by 10,000 (100^2) before feeding it into the binary_to_base100 circuit.

Compile the testbed circuit and download the programming file to the DE-1board.

Demonstrate to the TA the operation of the Nth_root circuit on the DE-1 board. You may
have difficulties getting the circuit to operate properly. If so, the most likely reason is
timing-related, probably because you did not provide enough time between successive
multiplication or comparison operations. Or you may have the wrong sequence of events
being generated by your controller.

6. Testing of the Nth_root Circuit on the DE1 Board .

http://www.theteachersguide.com/clipart/pencheck.gif

23

McGill University ECSE-323 Digital System Design / Prof. J. Clark

TIME CHECK

You should be this far (i.e. have
completed the lab) at the end of
your fourth

2-hour lab period!

24

McGill University ECSE-323 Digital System Design / Prof. J. Clark

7. Writeup of the Lab Reports .

Write up the reports for the gNN_binary_to_base100

and gNN_nth_root

circuits.

The reports must include the following items:

• A header listing the group number (and company name if you gave it one), the
names and student numbers of each group member.
• A title, giving the name (e.g. gNN_Nth_root) and function of the circuit.
• A description of the circuit's function, listing the inputs and outputs. Provide a
pinout or symbol diagram.
• The VHDL description of the circuit (don’t put this in the report itself, but provide
the .vhd files).
• A discussion of how the circuit was tested, giving details of the testbed and
showing representative simulation plots.
• A summary of the timing performance of the circuit, giving the timing analysis and
the simulated propagation delays.
• A summary of the FPGA resource utilization (from the Compilation Report's Flow
Summary).

25

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The reports should be done in html or pdf (preferred), or in
Microsoft Word, and submitted to the WebCT site .

Make sure that you have uploaded all of the design files (e.g.
.bdf and .vhd files) used in your project. These should be
included with your reports in a single zip file.

The reports are due one week after the last day of the lab
period, or Friday, November 21.

26

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Grade Sheet for Lab #4 Fall 2008.

1. VHDL description of the binary to base-100 converter circuit .
2. Simulation of the binary to base-100 converter circuit .
3. Testing of the binary to base-100 converter circuit .
4. VHDL description of the Nth root circuit .
5. Simulation of the Nth root circuit .
6. Testing of the Nth root circuit on the Altera board .

Group Number: .
Group Member Name: . Student Number: .
Group Member Name: . Student Number: .

Each part should be demonstrated to one of the TAs who will then give a grade and sign the
grade sheet. Grades for each part will be either 0, 1, or 2. A mark of 2 will be given if
everything is done correctly. A grade of 1 will be given if there are significant problems, but an
attempt was made. A grade of 0 will be given for parts that were not done at all, or for which
there is no TA signature.

Marks

TA Signatures

http://www.theteachersguide.com/clipart/pencheck.gif

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

