DSD LAB 4

GROUP 07

PAUL DOUMET 260 226 189
SIMON FOUCHER 260 223 197

PART 1: CONVERTER

Goal: Input a number in the form of 26 binary bits and display it on 4 x base 100 LED segments.

Primary unit:
GO07_binary_to_basel00 (all relevant files in /Part1l/ GO7_binary_to_base100/)

:GO7_binary_to_ba=eido

! stant StateB[Z. 0] [——

St biniary [25..0] QEGIS[25. 0] |f—

— clik CNT[F..0] e
! reset DONE |— -
' DIGITI[G..0] |fe——

DIGITZ[E..0] fe—

DIGITI[6..0] |

DIGITHE..0] f—

in=t

A) Inputs:
- start: Start button, used to initiate start sequence. The system will start when start

goesto 0, thento 1
- binary[25..0]: binary number to be loaded into the system and displayed
- clk: System’s clock at 50MHz
- reset: resets the system

B) Outputs:
(non vital; used for development)

- stateB[2..0]: 3 bit binary representation of the current state (to ensure that the state
machine transitioned between states; we implemented 5 states)

- 026is[25..0]: content of the 26 bit register (to make sure that the binary number got
loaded at the right time and that the shifting occurred properly)

- CNT[7..0]: outputs the count of the counter (since we used a full 7 bits, to make sure that
it reset to 25 and stops counting at 0)

(functional outputs)
-DONE: will signal high when the system is at rest (done) and low when we are computing

-DIGIT: binary value of a number to be converted to its segment representation

C) Internal components of GO7_binary_to_base100

l-adder14 (files in /Partl/adder14/)
I- shift_register7 (files in /Part1/shift7/)
Il- shift_register26 (files in /Part1/shift26/)
IV-counter (files in /Partl/counter/)

V- Finite State Machine (embedded in /Part1/G07_binary_to base100/GO07_binary_to_basel100.vhd)

I-adder14

— inF[E.0] out?[5..0]
— Clk

I/0 ports:
-in7: 7 bit binary number input
- out7: 7 bit binary number output

- Clk: input for a clock. (in our implementation, internal connections are commented out on the
VHDL code)

Function: This component asynchronously checks if in7 is greater than 49. If so, out7=in7+14.
Otherwise, out7 =in7

lI-shift_register7

shift_register?

it ldgta[f. 0] OF[.0] e
- shift_in shift_out |— -
- :
- enable

- clear

inst

I/0 ports:
Inputs:

-ldata: a 7 bit vector which loads data presented by the adder

- enable: enable line

- shift_in: Bit to be shifted in (the rightmost register receives it from the 26 bit register; then
every other register receives its shift_in from the register on its right.

- Clk: System clock at 60MHz

- clear : When high, forces every bit of the register to 0; regardless of clock events and
inputs

Outputs:
- Q7: 7 bit vector that outputs the content of the register
- shift_out: bit to be shifter out of the register

Function:

Since the adder constantly looks at the content of the register and add 14 if needed, the shift register is
clocked to avoid conflicts with this function. Through the use of intermediate signals, the adder (on the
rising edge of the clock) loads the data from the adder (which is effectively the same as adding 14 to it's
content), then shifts the data.

llI-shift_register26

- {'shift_register26

— Idata[25 0] Q26[25 0] —
: — Id_enable shift_out f—i
: —{ shift_in
- Clk
- = clear
) inst1
I/0 ports
Inputs:
- Idata: a 26 bit wide bus that imports values for the register's bits
- Id_enable: When high, the register takes the values of Idata on the next rising clock
edge
- shift_in: Bit to be shifted serially into the register (connected to GND)
- Clk: System's 50MHz clock
- clear: When high, all bits inside the register are asynchronously reset to 0
Outputs:

- Q26: The 26 bits contained in the register. Not used for anything else than
troubleshooting.
- shift_out: Serial bits that gets shifted out of the register at every shifting clock pulse

Function: If clear = 1; all content of register is reset to 0 regardless of anything else. Otherwise, on the
rising edge of the clock, the register either loads the data presented in Idata if Idata = 1; otherwise, shifts
its content left.

IV-counter

counter

— reset countB[7.0] f—
— Clk
— enable

inst2

I/0 ports:
Inputs:
-reset :if =1; counter is reset to 25, regardless of any other inputs.
- Clk: 50Mhz system's clock.
- enable: When = 1; the counter counts downwards
- countB: 8 bit vector, contains count value in binary.

Function:
If reset = 1; the counter is reset to 25. Otherwise, on the rising edge of the clock, if enable =1, the
counter counts down. When it reaches 0, it resets to 32 (but the FSM resets it to 25 before enabling it)

V- Finite State Machine:

Implemented as a controller that managed the control signals that are sent to the system during
operations and makes decisions based on feedback received from the system.

Implemented using 5 states (we used a different implementation than the one proposed in the lab
description). Each state has a string name (51,52,...,S5) and a name in binary (signal stateB) used so we
were able to map the current stated of the system on a Waveform during simulation to make sure that
state transitions went smoothly and that events happened in their respective states. In future
developments, we could use a 'single-hot-state' implementation and recycle the state value signal as a
control signal to be sent to the system.

When reset is high, the state is set to SO and DONE is set to 1. Otherwise, state transition happens on
the rising edge of the clock based on the feedback received from the system.

SO:
- Wait in SO until start goes low;
- Then transition to to S1.

S1:

- Wait in S1 until start goes high;

- Then set reseting_reg = TRUE. This signal is connected to the reset line of every registers
as well as the counter's reset line. When high, every registers' every bits are asynchronously reset to
0, and the counter's value is reset to 25 (Since the counter has an 8 bit signal bus, it normally loops
back to 31 when it reaches 0).

- DONE is reset to 0 to indicate that a new task has begun. (because of our extra signal
lines like state value and counter value, we never used 'DONE' since we could observe in detail the
system;s operations, but we implemented anyways at the very end because it was required by the

lab's description. Because of the speed at which the system operates (it takes roughly 30
cycles of the 50MHz clock to complete a display operation, even though the 'DONE' got wired to
a LED on the board, it looks like it is always on).

- Then Transition to the next state.

S2:

- Wait in S2 until all registers are reset to 0. To implement this, we OR every bit of every
register into a signal called 'done_reseting'. The only time done_reseting = 0 is when all the
registers have been reset to 0. This signal also implies that the counter's value has been reset to
25, but we consider the content of the register to be suffiscien information to indicate that the

task is complete (Waveform study and successful implementation proved this right)

- Stop reseting by making reseting_reg =0

- Load the binary number to be displayed into the 26 bit register by setting load_binary = 1.
(this signal is connected to the load line of the 26 bit register)

- Then transition to next state.

S4.

- We don't have to wait until the binary is done loaded before proceeding with this state. Since
the binary number gets loaded asynchronously as soon as we leave S3 and that this task takes at
most 12nS, and that it takes at least 1 clock cycle to transition to S4, we know that as soon as we
have reached S4, the previous task has been completed.

- Stop loading binary by reseting load_binary =0

- Start the counter by setting counting26 = 1 (connected to the counter's enable line)
- Start shifting the binary data (shift enable is also connected to count26)

- Then transition to the next state.

S5

- Wait in S5 until done counting. The counter will count at every clock pulse, so when it
reached 0, we shifted the whole 26 bit number through the system and the task is done. To detect
this condition, all the bits of the counter's count are Ored into a signal line called done_counting.
When done_counting ='0', the counter has reached 0.

- When this happens, stop counting by reseting counting26 =0

- Set DONE = 1 to signal that the task is done

- Go back to SO and wait for the next task

TROUBLESHOOTING

State transition and counter: Using wave files, we were able to observe adequate results:

binary 11347559

aosis
el T ——
reset _|
stat [L]

CNT]

stateB 0 b 1 2553 L 5 b4 0

CNT: Counts from 25 to O (resets to 31, but we initialize it to 25 before starting to count)
stateB: Binary number representing current state. We can observe state transitions from 0 to 5, then
back to 0, and follow the work in every state.

Shifting and adding

binary 11347553
q26is 10011100007 1001110000000 00717 0000000010717 00000000C¢)1 11 0000000007 1100000000000 1000000000001 000000000000 0000000000000 1000000000000 000000000000

ik mmvmmm—

reset

start

CNT 13 12) { i 10 ¥ E] g ¥ 7 B Y 5 7 Y 3 bt
DIGITT [T077700 f TOTOTOT % 7000070) 707000 ¥ 7070007) OFTI7i1 f OOT7070) OTTO900 f 0000707 % OOOTOTT ¥ OO0 7§
DIGIT2 | DOOOATO § OOOTI01 f OOT1011 | § COT0011 | DOOTOT0 . § 0090701 % 0107011 % 1090110 | % 1007001 f oi00ii0 § do01i100 %
DIGIT3 aonooog W 0000007 %7 00000707 "f7 OOOCTO0 f ' OOCTO00 ¥~ 0070007 — y_ OT000T ~ ¥ 1000710 7§
DIGIT4 0000000 i
stateB g

g26is: Displays the content of the 26 bit register. We can follow bits from g26 to all the digits as they are
shifted left.

Final product:

binary 11347559
q2is [OOO0OOCKO0T 00T DTAOTHTTE T DT AT TH 108 D040 477417470400 K00 K00 0000 K00 00} 00 0T K00 00,100 H0G00000000000000000000000
clk

reset

shart

|

CHT 31
DIGITY EE]
DIGIT2 0 5
(B DIGT3 1 3

I J 0 I

“H staee WZNETED 5 y 0

done

We can observe the transition in count from 25 to 0 in state 5. Once the counter reaches 0 (signaling
that the shifting operations are done), the state goes to 0 and the output on the DIGITs is stabilise to the
adequate display. (here, binary:11347559 is displayed as D4: 11 D3: 34 D2: 75 D1: 59

Timing:

Timing Analyzer Summary

Tupe Slack ?ﬁ;"ed ?;:L;al From To
1§ worst-case tsu M2 Mone 2429 nz reset slow_clock: G10llprm_counterinstlcni
2| Worst-cass too M |Mone 12911 nz shift_register?:GEQ[0] DIGITA[0]
3| worst-cass th M |Mone 2694 ns hinary[1] zhift_register26:GAIO[1]
4| Clack Setup: ‘clk! M/ |Mone 161,47 MHz [period = B.193 ng || slow_clock:G10llpr_counter:insticntr_ptk: auto_generated|zafe_q[18]| slow_clock:G101907_TFF:GONpn_fF:
E Tatal numnber of failed paths

According to this analysis, we can run the circuit on a 161MHz clock. Since we will be implementing this
using a 50MHz clock, the signals have a comfortably long period to stabilize (more than 3 times the
theoretical value)

Hardware utilization:

Flow Statusz Succesziul - Fri Moy 07 13:43:43 2003
Quartus || Yersion 8.0Build 215 05/23,/2003 5. Full Verzion
Revizion Mame g7 _LAaB4
Top-level Entity Hame GO7_binary_to_base] 00
Family Cyclone |l
Device EP2C20F424C7
Timing kModels Final
Met timing requirernents ez
Total logic elements 141 A18.752 (<1 %]
Total combinational functions 141 A18.752 (<1 %]
Dedicated logic registers 71872 (<1 %]
Tatal reqizters 97
Tatal pins 95/ 3N5(30%)
Total wirtual pins]
Total mernony bitz 04238616 0%)
Embedded Multiplier 3-bit elermente 0/52 (0%]
Total PLLs 0/400%)

We are using less than 1% of the board with this circuit, leaving plenty of room for expansion.

TESTBED:
[relevant files on /Part1/G07_binary_to_base100_TESTBED/]

RN ;’ﬁtﬁ'_segmelt_demr

EREIRRET ook .0 RIppEB Ik D1t
PIM_L2Z | . . Rippk B Ek_lh segme s .00
FIN_CZT |
PFIN_hEz] © :

FIN_"12 st

FIH_irg]

FIN_U1Z QO Fegme vt decoder

FIN_UT1 st sheBp (e ;

FIH_ME phanes.q qoekps (=t | - - p— ook .0 RIppEB Ik D1t
-m ck CHT].O et - L RpkBiak_h segmert .1
reset dowe |— :

: DIGTIE. A DU nat

OGTIE —l
DIGM3E.Q ey R L L T == T
DGR [—— I celd
o B ook .0 RIppEB Ik D1t
- Li— RpkBiak_h segmert .1

Dotz

o | iooi_segment decoce

DUl hesx il

< L rppesEk_n seqmert . (e TRIGTIE D FIH_04] -

ook 5.0 RippRB IOt

RERTHE]

(we started a testbed with a circuit diagram —as shown above- but ended up implementing the circuit in
the board using the vhdl code on ‘TESTBED.vhd’]

First, we simulated the TESTBED to display binary 10111213, which should be: A, b, C, D.
From the segment decoder, these letters are mapped as:

A :"0001000"
B : "1100000"
C:"0110001"
D : "1000010"

The waveform gave this exact result (after a bit of debugging)

7399 us 7317 us B4.23 us 83.35 us 447 us 3353 us 104,
M arme

binary 10111214

shart

rezet

k|
DIGITT POTHTOTTOCK 11007 T4 0071 TT$I00071 00T T17F 011.0000
DIGIT2 1071711081 00007 TE111177 Cx1 0171 000g 111007 (1170001
DIGIT3 'IDDD1TXID'IIZI‘IDT)’:;ID'I'IW[:#:I'IDD'I'I[};IWD‘ID[X 1100000
DIGIT4 0000001 00T 11 A0 00T CE T o0 ong, 0001000

A timing analysis of the TESTBED yielded once again adequate time for the signals to settle:

ming Analyzer Summary

Type Slack ?in:]euned '?ﬁ_:;al Fram To

“wiorst-caze tau MAA [Mone 5797 n= ken[2] rurmber[21]

“Wiorst-caze too MAs | Maone 18.585 ns GO7_binamy_to_basze100:G0Ishift_register?: GEIQ[3]| hex3[5]

“Worst-caze th M/ [Mone 0643 ns 2] rumber[2]

Clack Setup: 'CLOCE! MNA4 |Nore 168.4E MHz [period = 5.936 ne)| GO7_binary_to_base100:G0fzhift_register?:GEIN[3]| GO7_binary_to_bazel00:G0|state. <0
Total number of failzd paths

From these results, it seems that the TESTBED can operate on a clock even faster than the main
component (169MHz instead of 161MHz)

IMPLEMENTAITON
(relevant files in /Part1/G07_binary_to_base100 TESTBED/)

We implemented this on the board using the segment decoder developed in LAB2. In order to load all 26
bits of the number to be displayed, we used the 4 buttons as 'load' commands and the 10 binary
switches as data lines.

Using a process,
- When key(0) is pressed, the value of the switches is loaded into the 10 LSB of the number.
- When key(1) is pressed, the 10 switches are loaded into bit 19 down to 10 of binary.
- When key(2) is pressed, the 6 rightmost switches are loaded into the 6 MSB of binary. Other
switches are ignored.

- When key(3) is pressed, the leftmost switch is recorded at 'START', and the second leftmost
switch is recorded as 'RESET'. Every other switch is ignored.

With adequate pin assignment, we implements the unit onto the Cyclone Il board successfully and were
successfully able to test many input values and observe the adequate output.

Flow Status Successful - Tue Mow 18 14:46:00 2003

Lluartus [WYersion 2.0 Build 215 05/23,/2002 5J FullYerzion

Rewvizion Mame gy _LAaB4

Top-level Entity M ame TESTEED

Farnily Cyclone |l

Device EP2C20F434C7

Timing Models Final

et timing requirements T'es

Total logic elements 499 A 18,752 [3 &)
Total combinational functions 472 18,752 [3 %)
Dedicated logic reqizters 97 18,2 [<1 X))

Total reqizters 37

Tatal pins 44/ N6[14 %]

T otal wvirtual pinz 0

T otal memary bits 0/239616[0%]

Embedded Multipler 3-bit elermentz: 0/ 52 [0 %)

Total PLL= 04470%]

From the flow summary of the simulation, we can see that 14% of the total pins are used and roughly
3% of the board’s logic.

Part 2: Nth Root Circuit

Description of the Nth Root Circuit

g7 _Mth_Foot
S ¥Iz0..0] .
- — reset OOMNE
- 0] &

N[5.0] DIGITI[S..0]
CESTART DIGIT2[E.0)
' DIGIT2[E..0]
DIGIT4(6..0]
stateB[3..0]
CNTE. 0]

This circuit calculates the Nth roots of a binary number X. There are some restrictions that will be
applied: N has to be bigger or equal to one but smaller or equal to 63 and X is a 7 bit number between 0
and 99.

Inputs:

1) Clock : Pulses with a period of 88.32 MHz frequency. The VHDL code evaluates the different states of
the FSM only at the rising edge of the clock.

2) reset: If reset = ‘1’ we reset back to State 0, otherwise if reset = 0 it evaluates the other states.

3) X[6..0] : X is our 7 bit number that represents an integer between 0 and 99. The goal of our circuit
here is to calculate the Nth root of this 7 bit number. The minimum value X can have is “0000000” and
its maximum value is 1100011.

4) N : This input is used to let the user choose which type of root he intends to use (square root, third
root etc...) N is a 6 bit number between 1 and 63, its minimum value is 00001 and its maximum value is
111111. The calculator can therefore compute up to the 63™ root of our chosen number X.

Outputs:

Y [20..0] : Y is the Nth root of X. It has 21 bits: the first 7 bits represents the integer part of the Nth root
of X and the 14 remaining bits represent the fractional part. Therefore we can represent up to 4
decimals with our 14 fractional bits. Ex: Square root of 2 = 1.4141 will give us 0000010.01010010101001;

Done : Done is equal to 1 when we’re in reset state (SO) and Done is equal to 0 when we are going from
state to state.

err: err is the output that flags for an error. Err is equal to one if N is not between 1 and 63 err or if X
represents a number greater than 99. Otherwise it is 0.

Digit1[6..0]: This 7 bit output represents the Integer part of the Nth root of Y on the LED screen.

Digit2[6..0]: This 7 bit output represents the decimal point therefore the LED screen is always going to
be blank. Digit2 is therefore always “0000000”.

Digit3[6..0]: This 7 bit output represents the first and second decimal places of the Nth root of X.
Ex : square root of 3 is equal to 1.7320, in this case we will get Digit three to display 73(in base 100) on
the LED screen which is 1001001 in binary.

Digit4[6..0]: This 7 bit output represent the third and fourth decimal places of the Nth root of X.
Ex : For the square root of 3 we will get Digit 4 to display 20(in base 100) on the LED screen which is
0010100 in binary.

stateB : State B is a 4 bit output to help us visualize our state transitions. Example stateB = “0000” for
State 0 and sateB= “0001” for state 1.

Timing Analysis of the Nth Root circuit

Timing Analyzer Summary
Type Slack. ?i?nqeuired ?ﬁ_ﬁgal From Ta
1§ Worst-caze tsu M [Mone 13.095 ns [0 _TRAMSIAMT10]™_Duplicate_1
2| Worst-caze tco Mt [Mone 18,336 ns Y_TRAMSIAMTIZ]_Duplicate_2| DIGIT4[3]
3] worst-case th Mt [Mone 1119 ns rezet Z_SHIFT[18]
4| Clock Setup: 'CLE! M8 |Mone 88,32 MHz [perod = 11.323 nz)| Z_SHIFT[18] 23]
E Total number of faled paths

We can see from our timing analysis that our worst case Tsu is 13.095 nS, our worst case Tco is 18.336
nS and our worst case This 1.119 nS and our Clock period is 11.323 nS(frequency of 88.32MHz). Our
clock runs at 50 MHz therefore our signals have sufficiently enough time to stabilize.

Waveform of the Nth Root Circuit

h N 179.?2 g 1?9.?3 I 1?9.?5 g 1?9.?5 I 1?9497 I3 1?9.?8 I
e
A
om0 | oo |
g, o1 |ED LIIR
D2 | DG g
g S| Hoem [
B (20| EoeT]
o (D8] BHOG i
*lou| oo
D | e
B | En 7
L
4| AT
| [i
oo |y I TARRTIRRE

In this waveform we tried calculate the square root of 69. On a Calculator the answer would be 8.3066.
Due to precision issue the answer on the waveform will be 8.3066*2/14 = 136095.3344, we take the

integer part which is 136095 and divide it by 2214 we get 8.3065.

It’s 8,3065 that will be shown on the waveform instead of 8,3066. As we can see in the simulation our
input X is 69, our input N is 2. Therefore our output Y which represents the square root of 2 has a value
of “000100001001110011111”. The first 7 bits of Y “0001000” represents the integer part of the square
root of 68 which is 8.

The next “01001110011111” 14 bits represent decimal part of the square root of 69. To display the first
two decimal places, we take the 14 digits and multiply it by 100 (which is 1100100 in binary) In the case
of the square root of 69, this number is 30 .

To display the last two decimal places we take the previous result of multiplying the 14 bit fractional
number by 100 and multiply it again by 100, which is equivalent to multiplying it by 10000. We decided
to run two multiplications of 100 in parallel instead of one multiplication of 10000 such that both of
them can be processed at the same time to adapt to faster clocks. In the case of the square root of 69,
this digit represents 65.

To display the square root of 69, our first LED screen which is Digit 1 represents the integer part which is
8. Digit 2 represents the decimal point therefore it is always zero. The first two decimal places of the
square root of 69 are represented in Digit 3 and the last two decimal places are represented by Digit 4

Flow Summary for Nth Root Circuit

Flows Stahuz Successhul - Tue Mo 18 15:28:00 2008
Quartus || Yersion 8.0 Build 215 05/23/2008 5J Ful Yersion
Revizion Mame gl7_Mth_Roat
Top-level Entity Mame gl¥_Mth_Root TESTEED
Farnily Cyclone I
Device ER2C20F484CT
Timing kodels Final
het timing requirements Yes
Total logic elements BE3 /18,702 (3%
T atal combinational funchions R/ 187R2 (3 %)
Dedicated logic registers 12318752 (<1 %)
Total registers 123
Total ping 45/ 31614 %)
Tatal virtual ping 0
Tatal memaory hits 0/239616(0%)
Embedded Multiplier 3-bit elements 7452 (13 %)
Total PLLs 0/4(0%]

We can see that our Nth Root circuit is using 14% of the total pins and less than 1% of the total logic
elements.

Testbed

For the Testbed in Part 2, it is quite similar to the one in part 1 except that instead of loading a 26 bit
binary number we are loading a 7 bit binary number (which represents X) and a 6 bit binary number
which represents(N).

Implementation:

(relevant files in /DSD_LAB4/Part2/TESTBED/g07_Nth_Root_TESTBED.vhd)

We implemented this on the board using the segment decoder developed in LAB2. In order to load all
our data, we used 3 of the buttons as 'load' commands and the 10 binary switches as data lines.

Using a process,
- When key(0) is pressed, the value of the 7 rightmost switches are loaded into X.
- When key(1) is pressed, the value of the 6 rightmost switches are loaded into N.
- When key(2) is pressed, nothing happens.

- When key(3) is pressed, the leftmost switch is recorded at 'START', and the second leftmost
switch is recorded as 'RESET'. Every other switch is ignored.

With adequate pin assignment, we implements the unit onto the Cyclone Il board successfully and were
successfully able to test many input values and observe the adequate output.

Timing Analysis for our TestBed

GG TN 8B A0

307 N Poot TESTRED shd ‘ @ Compilation Report - Timing Analyzer Summary

WRegort {Timing Analyzer Summary

e n i Hequired Aplual - I Fiom |To |Faled

iy Tme |Time Clock. (Clock. {Paths

e (1) Waostoastu N Noe 2530 keyll] N inpuif - (LK

ol €3 Woteme o N (Nore {23220 a7 Wi Roat QDY TRANSIENTIZ)” Dupicate 2 besl]Z] oee]-— 10

sl I A T ol Nl - [0omp

ijsq&Synthes 4] Dok Sengr CLOCK™ N None 3067 i =108 07 Wi ook G, SHIFTTS 7 M Roat GOF(RZ) CLOCK|CLOCK]D
E Tokalnumber of faled paths 0

Hl

Our worst case Tsu for our testbed circuit is 5.938 nS, our worst case Tco is 23.228 nS and finally our
worst case Th is 0.541 nS. This circuit runs at a clock of a maximum frequency of 90.87 Mhz. Our current
clock is at 50 MHz and therefore we are within the convenient. range

Flow Summary of Testbed

Flaw Status Sucoesshul - Tug Mo 1814:21:33 2008
Huartusz [l Version 8.0 Buid 21505/23/2008 54 Full Version
Revision Name all7_Nth_Root

Toprlevel Entity Mame gl7_Nth_Root TESTBED

Family Cyclone I

Device ER2C20R434C7

Timing Models Final

Met timing requirements ez

Total logic elemerts B63/18.752[3%

Total combingtional functions 552 118,782 3%
Dedicated logic registers 123871 %)

Total registers 123

Total ping 45/ 315(14%)
Total vitual ping i

Total memary bite 0/ Z8R16[0%]

Embedded Muliplier 34t elements 7/ 52[13%)
Total FLLs 0/4[0%)

We can see from the Flow Summary that the total pins used is less than 14% than the total pins on the
board and that the total logic used is less than 3% of the total logic elements on the borad.

