
DSD LAB 4

GROUP 07

PAUL DOUMET 260 226 189
SIMON FOUCHER 260 223 197



PART 1: CONVERTER

Goal: Input a number in the form of 26 binary bits and display it on 4 x base 100 LED segments.

Primary unit:
G07_binary_to_base100 (all relevant files in /Part1/ G07_binary_to_base100/)

A) Inputs:
- start: Start button, used to initiate start sequence. The system will start   when start 

goes to 0, then to 1
- binary[25..0]: binary number to be loaded into the system and displayed
- clk: System’s clock at 50MHz
- reset: resets the system

B) Outputs:
(non vital; used for development)

- stateB[2..0]: 3 bit binary representation of the current state (to ensure that the state 
machine transitioned between states; we implemented 5 states)

- q26is[25..0]: content of the 26 bit register (to make sure that the binary number got 
loaded at the right time and that the shifting occurred properly)



- CNT[7..0]: outputs the count of the counter (since we used a full 7 bits, to make sure that 
it reset to 25 and stops counting at 0)

(functional outputs)
-DONE:  will signal high when the system is at rest (done) and low when we are computing

-DIGIT: binary value of a number to be converted to its segment representation

C) Internal components of G07_binary_to_base100
I-adder14  (files in /Part1/adder14/)
II- shift_register7 (files in /Part1/shift7/)
III- shift_register26 (files in /Part1/shift26/)
IV-counter (files in /Part1/counter/)
V- Finite State Machine (embedded in   /Part1/G07_binary_to_base100/G07_binary_to_base100.vhd) 

I-adder14  

I/O ports:
- in7: 7 bit binary number input
- out7: 7 bit binary number output
- Clk: input for a clock. (in our implementation, internal connections are commented out on the 

VHDL code)

Function: This component asynchronously checks if in7 is greater than 49. If so, out7= in7+14. 
Otherwise, out7 = in7



II-shift_register7

I/O ports:
Inputs:

-ldata: a 7 bit vector which loads data presented by the adder
- enable: enable line
- shift_in: Bit to be shifted in (the rightmost register receives it from the 26 bit register; then 

every other register receives its shift_in from the register on its right.
- Clk: System clock at 60MHz
- clear : When high, forces every bit of the register to 0; regardless of clock events and 

inputs

Outputs:
- Q7: 7 bit vector that outputs the content of the register 
- shift_out: bit to be shifter out of the register 

Function:
Since the adder constantly looks at the content of the register and add 14 if needed, the shift register is 
clocked to avoid conflicts with this function. Through the use of intermediate signals, the adder (on the 
rising edge of the clock) loads the data from the adder (which is effectively the same as adding 14 to it's 
content), then shifts the data. 



III-shift_register26

I/O ports

Inputs:
- ldata: a 26 bit wide bus that imports values for the register's bits
- ld_enable: When high, the register takes the values of ldata on the next rising clock 

edge
- shift_in: Bit to be shifted serially into the register (connected to GND)
- Clk: System's 50MHz clock
- clear: When high, all bits inside the register are asynchronously reset to 0

Outputs:
- Q26: The 26 bits contained in the register. Not used for anything else than 
troubleshooting.
- shift_out: Serial bits that gets shifted out of the register at every shifting clock pulse

Function: If clear = 1; all content of register is reset to 0 regardless of anything else. Otherwise, on the 
rising edge of the clock, the register either loads the data presented in ldata if ldata = 1; otherwise, shifts 
its content left.



IV-counter

I/O ports:
Inputs:

- reset : if =1; counter is reset to 25, regardless of any other inputs.
- Clk: 50Mhz system's clock.
- enable: When = 1; the counter counts downwards
- countB: 8 bit vector, contains count value in binary.

Function:
If reset = 1; the counter is reset to 25. Otherwise, on the rising edge of the clock, if enable =1, the 
counter counts down. When it reaches 0, it resets to 32 (but the FSM resets it to 25 before enabling it)

V- Finite State Machine:

Implemented as a controller that managed the control signals that are sent to the system during 
operations and makes decisions based on feedback received from the system.
Implemented using 5 states (we used a different implementation than the one proposed in the lab 
description). Each state has a string name (S1,S2,...,S5) and a name in binary (signal stateB) used so we 
were able to map the current stated of the system on a Waveform during simulation to make sure that 
state transitions went smoothly and that events happened in their respective states. In future 
developments, we could use a 'single-hot-state' implementation and recycle the state value signal as a 
control signal to be sent to the system.

When reset is high, the state is set to S0 and DONE is set to 1. Otherwise, state transition happens on 
the rising edge of the clock based on the feedback received from the system.

S0: 
- Wait in S0 until start goes low; 
- Then transition to to S1.



S1: 
- Wait in S1 until start goes high; 
- Then set reseting_reg = TRUE. This signal is connected to the reset line of every registers 

as well as the counter's reset line. When high, every registers' every bits are asynchronously reset to 
0, and the counter's value is reset to 25 (Since the counter has an 8 bit signal bus, it normally loops 
back to 31 when it reaches 0).

- DONE is reset to 0 to indicate that a new task has begun. (because of our extra signal 
lines like state value and counter value, we never used 'DONE' since we could observe in detail the 
system;s operations, but we implemented anyways at the very end because it was required by the 
lab's description. Because of the speed at which the system operates (it takes roughly 30 
cycles of the 50MHz clock to complete a display operation, even though the 'DONE' got wired to 
a LED on the board, it looks like it is always on).

- Then Transition to the next state.

S2: 
- Wait in S2 until all registers are reset to 0. To implement this, we OR every bit of every 

register into a signal called 'done_reseting'. The only time done_reseting = 0 is when all the 
registers have been reset to 0. This signal also implies that the counter's value has been reset to 
25, but we consider the content of the register to be suffiscien information to indicate that the 

task is complete (Waveform study and successful implementation proved this right)
- Stop reseting by making reseting_reg = 0
- Load the binary number to be displayed into the 26 bit register by setting load_binary = 1. 

(this signal is connected to the load line of the 26 bit register)
- Then transition to next state.

S4: 
- We don't have to wait until the binary is done loaded before proceeding with this state. Since 

the binary number gets loaded asynchronously as soon as we  leave S3 and that this task takes at 
most 12nS, and that it takes at least 1 clock cycle to transition to S4, we know that as soon as we 
have reached S4, the previous task has been completed.

- Stop loading binary by reseting load_binary = 0
- Start the counter by setting counting26 = 1 (connected to the counter's enable line)
- Start shifting the binary data (shift enable is also connected to count26)
- Then transition to the next state.



S5
- Wait in S5 until done counting. The counter will count at every clock pulse, so when it 

reached 0, we shifted the whole 26 bit number through the system and the task is done. To detect 
this condition, all the bits of the counter's count are Ored into a signal line called done_counting. 
When done_counting = '0', the counter has reached 0.

- When this happens, stop counting by reseting counting26 = 0
- Set DONE = 1 to signal that the task is done
- Go back to S0 and wait for the next task



TROUBLESHOOTING

State transition and counter: Using wave files, we were able to observe adequate results:

CNT: Counts from 25 to 0 (resets to 31, but we initialize it to 25 before starting to count)
stateB: Binary number representing current state.  We can observe state transitions from 0 to 5, then 
back to 0, and follow the work in every state.

 

Shifting and adding

q26is: Displays the content of the 26 bit register. We can follow bits from q26 to all the digits as they are 
shifted left.

Final product:

We can observe the transition in count from 25 to 0 in state 5. Once the counter reaches 0 (signaling 
that the shifting operations are done), the state goes to 0 and the output on the DIGITs is stabilise to the 
adequate display. (here,  binary:11347559 is displayed as D4: 11 D3: 34 D2: 75 D1: 59



Timing:

According to this analysis, we can run the circuit on a 161MHz clock. Since we will be implementing this 
using a 50MHz clock, the signals have a comfortably long period to stabilize (more than 3 times the 
theoretical value)

Hardware utilization:

We are using less than 1% of the board with this circuit, leaving plenty of room for expansion.



TESTBED:

[relevant files on /Part1/G07_binary_to_base100_TESTBED/]

(we started a testbed with a circuit diagram –as shown above- but ended up implementing the circuit in 
the board using the  vhdl code on ‘TESTBED.vhd’] 

First, we simulated the TESTBED to display binary 10111213, which should be: A, b, C, D.
From the segment decoder, these letters are mapped as:

A : "0001000" 
B : "1100000" 
C : "0110001" 
D : "1000010" 

The waveform gave this exact result (after a bit of debugging)



A timing analysis of the TESTBED yielded once again adequate time for the signals to settle:

From these results, it seems that the TESTBED can operate on a clock even faster than the main 
component (169MHz instead of 161MHz)

IMPLEMENTAITON
(relevant files in /Part1/G07_binary_to_base100_TESTBED/)

We implemented this on the board using the segment decoder developed in LAB2. In order to load all 26 
bits of the number to be displayed, we used the 4 buttons as 'load' commands and the 10 binary 
switches as data lines. 

Using a process, 
- When key(0) is pressed, the value of the switches is loaded into the 10 LSB of the number. 
- When key(1) is pressed, the 10 switches are loaded into bit 19 down to 10 of binary.
- When key(2) is pressed, the 6 rightmost switches are loaded into the 6 MSB of binary. Other 

switches are ignored.
- When key(3) is pressed, the leftmost switch is recorded at 'START', and the second leftmost 

switch is recorded as 'RESET'. Every other switch is ignored.

With adequate pin assignment, we implements the unit onto the Cyclone II board successfully and were 
successfully able to test many input values and observe the adequate output. 



From the flow summary of the simulation, we can see that 14% of the total pins are used and roughly 
3% of the board’s logic.

           



                                   
 Part 2: Nth Root Circuit

Description of the Nth Root Circuit

                                                              

This circuit calculates the Nth roots of a binary number X. There are some restrictions that will be 
applied: N has to be bigger or equal to one but smaller or equal to 63 and X is a 7 bit number between 0 
and 99.

Inputs: 

1) Clock : Pulses with a period of 88.32 MHz frequency. The VHDL code evaluates the different states of 
the FSM only at the rising edge of the clock.

2) reset: If reset = ‘1’ we reset back to State 0, otherwise if reset = 0 it evaluates the other states.

3) X[6..0] : X is our 7 bit number that represents an integer between 0 and 99. The goal of our circuit 
here is to calculate the Nth root of this 7 bit number. The minimum value X can have is “0000000” and 
its maximum value is 1100011. 

4) N : This input is used to let the user choose which type of root he intends to use ( square root, third 
root etc…) N is a 6 bit number between 1 and 63, its minimum value is 00001 and its maximum value is
111111. The calculator can therefore compute up to the 63rd  root of our chosen number X.



Outputs: 

Y [20..0] : Y is the Nth root of X. It has 21 bits: the first 7 bits represents the integer part of the Nth root 
of X and the 14 remaining bits represent the fractional part. Therefore we can represent up to 4 
decimals with our 14 fractional bits. Ex: Square root of 2 = 1.4141 will give us 0000010.01010010101001;

Done : Done is equal to 1 when we’re in reset state (S0)  and Done is equal to 0 when we are going from 
state to state.

err: err is the output that flags for an error. Err is equal to one  if N is not between 1 and 63 err or if X 
represents a number greater than 99. Otherwise it is 0.

Digit1[6..0]: This 7 bit output represents the Integer part of the Nth root of Y on the LED screen.

Digit2[6..0]:  This 7 bit output represents the decimal point therefore the LED screen is always going to 
be blank. Digit2 is therefore always “0000000”.

Digit3[6..0]: This 7 bit output represents the first and second decimal places of the Nth root of X. 
Ex : square root of 3 is equal to 1.7320, in this case we will get Digit three to display 73(in base 100) on 
the LED screen which is 1001001 in binary. 

Digit4[6..0]: This 7 bit output represent the third and fourth decimal places of the Nth root of X. 
Ex : For the square root of 3 we will get Digit 4 to display 20(in base 100) on the LED screen which is 
0010100 in binary.

stateB : State B is a 4 bit output to help us visualize  our state transitions. Example stateB = “0000” for 
State 0 and sateB= “0001” for state 1.
 



Timing Analysis of the Nth Root circuit

We can see from our timing analysis that our worst case Tsu is 13.095 nS, our worst case Tco is 18.336 
nS and our worst case Th is 1.119 nS and our Clock period is 11.323 nS(frequency of 88.32MHz). Our 
clock runs at 50 MHz therefore our signals have sufficiently enough time to stabilize.

Waveform of the Nth Root Circuit

 In this waveform we tried calculate the square root of 69. On a Calculator the answer would be 8.3066. 
Due to precision issue the answer on the waveform will be 8.3066*2^14 = 136095.3344, we take the 



integer part which is 136095 and divide it by 2^14 we get 8.3065.

It’s 8,3065 that will be shown on the waveform instead of 8,3066. As we can see in the simulation our 
input X is 69, our input N is 2. Therefore our output Y which represents the square root of 2 has a value 
of “000100001001110011111”. The first 7 bits of Y “0001000” represents the integer part of the square 
root of 68 which is 8.
 The next “01001110011111” 14 bits represent decimal part of the square root of 69. To display the first 
two decimal places, we take the 14 digits and multiply it by 100 (which is 1100100 in binary) In the case 
of the square root of 69, this number is 30 . 
To display the last two decimal places we take the previous result of multiplying the 14 bit fractional 
number by 100 and multiply it again by 100, which is equivalent to multiplying it by 10000. We decided 
to run two multiplications of 100 in parallel instead of one multiplication of 10000 such that both of 
them can be processed at the same time to adapt to faster clocks. In the case of the square root of 69, 
this digit represents 65.

To display the square root of 69, our first LED screen which is Digit 1 represents the integer part which is
8. Digit 2 represents the decimal point therefore it is always zero. The first two decimal places of the 
square root of 69 are represented in Digit 3 and the last two decimal places are represented by Digit 4



Flow Summary for Nth Root Circuit

We can see that  our Nth Root circuit is using 14% of the total pins and less than 1% of the total logic 
elements.

Testbed

For the Testbed in Part 2, it is quite similar to the one in part 1 except that instead of loading a 26 bit 
binary number we are loading a 7 bit binary number (which represents X) and a 6 bit binary number 
which represents(N).

Implementation: 

(relevant files in /DSD_LAB4/Part2/TESTBED/g07_Nth_Root_TESTBED.vhd)

We implemented this on the board using the segment decoder developed in LAB2. In order to load all 
our data, we used 3 of the buttons as 'load' commands and the 10 binary switches as data lines. 

Using a process, 
- When key(0) is pressed, the value of the 7 rightmost switches are loaded  into X. 
- When key(1) is pressed, the value of the 6 rightmost switches are loaded into N.
- When key(2) is pressed,  nothing happens.



- When key(3) is pressed, the leftmost switch is recorded at 'START', and the second leftmost 
switch is recorded as 'RESET'. Every other switch is ignored.

With adequate pin assignment, we implements the unit onto the Cyclone II board successfully and were 
successfully able to test many input values and observe the adequate output. 



Timing Analysis for our TestBed

Our worst case Tsu for our testbed circuit is 5.938 nS, our worst case Tco is 23.228 nS and finally our 
worst case Th is 0.541 nS. This circuit runs at a clock of a maximum frequency of 90.87 Mhz. Our current 
clock is at 50 MHz and therefore we are within the convenient. range

Flow Summary of Testbed



We can see from the Flow Summary that the total pins used is less than 14% than the total pins on the 
board and that the total logic used is less than 3% of the total logic elements on the borad.


