
1

McGill University ECSE-323 Digital System Design / Prof. J. Clark

ECSE-323
Digital System Design

Lab #2 – Combinational Circuit Design with VHDL Fall 2008



2

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Introduction                                                    .

In this lab you will learn how to use the Altera Quartus II 
FPGA design software to implement combinational logic 
circuits described in VHDL. 



3

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Learning Outcomes                                               .

After completing this lab you should know how to:

• Describe a circuit with VHDL
• Include library design entities as components in your VHDL-based 
designs
• Use ROM modules to implement look-up tables 
• Assign circuit outputs and inputs to devices on the Altera DE1 board
• Configure the Cyclone II FPGA on the Altera DE1 board



4

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Table of Contents                                               .

This lab consists of the following stages:

• Design and timing simulation of a log base 2 function circuit
• Design, functional simulation, and testing on the Altera board 

of a Binary to 7-segment LED decoder circuit
• Writeup of the lab reports



5

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Course Project – Design of a Base-100 Financial Calculator

Your job for this term is to develop a financial calculator, for an avaricious 
race of aliens who are not very technically savvy, but have a lot of money 
and like to make investments. They also have a lot of fingers – 100 to be 
exact, so they do all of their arithmetic in base-100.

More details on what sort of functions this calculator is to have will be 
given in later labs. For this lab you will focus on developing a logarithm 
computation circuit (useful in some financial calculations) and a decoder 
used for displaying base-100 numbers on a 7-segment LED.



6

McGill University ECSE-323 Digital System Design / Prof. J. Clark

1. Design of a log Function circuit using a Lookup Table.

In this part of the lab you will create a circuit that computes the log base 2 
function. It will take as input a 12-bit binary word representing a number 
between 1 and 2, and produce as output the logarithm, base-2, of this 
number. 

The output should be a 16-bit fractional binary word representing a number 
between 0 and 1 (represent 1 by all ones). 

[ Note that if you want to compute the log base 2 of a number outside of 
this range you can merely figure out the power of 2 needed to divide this 
number to bring it into the range 1-2, and add this power to the result.

For example:   4.7 = 2^2*(1.175); log_2(4.7) = 2 + log_2(1.175) ]



7

McGill University ECSE-323 Digital System Design / Prof. J. Clark

REPRESENTING FRACTIONAL NUMBERS

Binary numbers can be used to represent fractional values (e.g 42.71) just as easily 
as integer values. It is all a question of where you place the binary point.

Think of  the bits in a binary number as being weighted by powers of 2 (just the 
digits in a decimal number are weighted by powers of 10). If you are given a fixed 
number of bits (say 7) then you have to specify the range of powers of 2 that are 
being represented. For example, we could use the 7 bits to represent powers of 2 
from 2 down to -4:

Using this representation a binary number 1101101 would represent the value 
2^2+2^1+2^-1+2^-2+2^-4 = 6.8125

For example, to represent numbers between 0 and 1, with 28 bits, you would use 
powers of 2 from -1 through -28. For the input you need to represent numbers 
between 1 and 2, so you would use powers of 2 from 0 through -27.

2 1 0 1 2 3 4
6 5 4 3 2 1 02 2 2 2 2 2 2V b b b b b b b− − − −= + + + + + +



8

McGill University ECSE-323 Digital System Design / Prof. J. Clark

We could implement the log function using a numerical method such as 
evaluating the Taylor's series approximation. That approach would require 
a number of multiplication operations, which would use up both space 
(multipliers take a large number of gates) and time (long propagation 
delays). In this lab we will use a simpler approach - that of using a lookup 
table (LUT). In the LUT approach we use a memory unit that has an entry 
for every possible input pattern. The input bits are then used as an address 
for the memory.

Many modern FPGA devices, such as the Cyclone II device that we will 
use throughout the lab experiments, contain embedded memory blocks. If 
these are large enough, they can be used for LUT implementations of 
boolean functions.

You can use one of the pre-defined Altera LPM (Library of Parametrized 
Modules) modules to implement the LUT. You will write a VHDL 
description of the sine computation circuit, and instantiate the LUT using 
the lpm_rom component.



9

McGill University ECSE-323 Digital System Design / Prof. J. Clark

To use the lpm_rom module in your design, you must include the following two 
lines at the beginning of your design entity:

LIBRARY lpm;
USE lpm.lpm_components.all; 

As an example of how to specify the generic parameters of a parametrized 
library module, look at the following component instantiation statement for an 
lpm_rom module:

crc_table : lpm_rom -- use the altera rom library macrocell
GENERIC MAP(

lpm_widthad => 8, -- sets the width of the ROM address bus
lpm_numwords => 256,  -- sets the words stored in the ROM
lpm_outdata => "UNREGISTERED", -- no register on the output
lpm_address_control => "REGISTERED", -- register on the input
lpm_file => "crc_rom.mif", -- the ascii file containing the ROM data
lpm_width => 8) -- the width of the word stored in each ROM location

PORT MAP(inclock => clock, address => x, q => crc_of_x);

Note that memory blocks on the Cyclone II chip must have registered 
inputs. Therefore we need to have a clock input as well.



10

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Note: For all of the Altera LPM modules, you do not have to include a 
COMPONENT statement in the architecture declarations area, as this is 
included when you invoke the lpm library. If you want to include one of your 
own modules as a component, you need to include the COMPONENT 
statement to declare it.

You will need to create an .mif (Memory Initialization File) file to specify 
the contents of the LUT. When your VHDL description is compiled by the 
Altera Quartus software, the .mif file will be read. You could create this file 
by hand, but since it will have 2^12 entries you should probably use a 
computer program (such as one written in C, or using Matlab) to create the 
file. Prepare this file before coming into the lab!

As usual, more information can be obtained from the Quartus help facility, an 
excerpt of which is shown on the next page.



11

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Memory Initialization File   (taken from the Quartus help)
An ASCII text file (with the extension .miff) that specifies the initial content of a memory block (CAM, RAM, 
or ROM), that is, the initial values for each address. This file is used during project compilation and/or 
simulation. A MIF  is used as an input file for memory initialization in the Compiler and Simulator. You can 
also use a Hexadecimal (Intel-Format) File (.hex) to provide memory initialization data. A MIF contains the 
initial values for each address in the memory. A separate file is required for each memory block. In a MIF, 
you are also required to specify the memory depth and width values. In addition, you can specify the radixes 
used to display and interpret addresses and data values.

The following is an example (items between % symbols are comments)

DEPTH = 32;                           % Memory depth and width are required % 
WIDTH = 14;                          % Enter a decimal number % 

ADDRESS_RADIX = HEX;  % Address and value radixes are required %
DATA_RADIX = HEX;         % Enter BIN, DEC, HEX, OCT, or UNS; unless % 

% otherwise specified, radixes = HEX % 
-- Specify values for addresses, which can be single address or range 
CONTENT 

BEGIN 
[0..F] : 3FFF;                           % Range of addresses--Every address from 0 to F = 3FFF % 
6       : F;                                   % Single address--Address 6 = F % 
8       : F E 5;                            % Range of three addresses starting from specific address -- % 
END ;                                       % Addr[8] = F, Addr[9] = E, Addr[A] = 5 %  

If multiple values are specified for the same address, only the last value is used.



12

McGill University ECSE-323 Digital System Design / Prof. J. Clark

-- this circuit computes the log base 2 of the input
--
-- entity name: g00_log2
--
-- Copyright (C) 2008 James Clark
-- Version 1.0
-- Author: James J. Clark; clark@cim.mcgill.ca
-- Date: September 20, 2008

library ieee; -- allows use of the std_logic_vector type
use ieee.std_logic_1164.all;
library lpm; -- allows use of the Altera library modules
use lpm.lpm_components.all;

entity g00_log2 is
port ( clock          : in std_logic;

input_value : in std_logic_vector(11 downto 0);
log2           : out std_logic_vector(15 downto 0));

end g00_log2;

VHDL Description of the complete log2 function circuit.
The entity declaration should have the following form (remember to replace the 
header with your own information)



13

McGill University ECSE-323 Digital System Design / Prof. J. Clark

VHDL Description of the log2 function circuit.

The architecture body will contain the functionality of the circuit. 
You will instantiate the lookup table, and whatever other circuitry 
you deem to be required.

With a resolution in the input of 12 bits, the lookup table would 
need 4096 entries to hold results for all possible input cases. But 
note that the MSB of the input will always be “1”, since the input is 
a number between 1 and 2. So we only need for the lookup table to 
hold 2^11 or 2048 entries. The MSB can be ignored.

Create the .mif file using values computed by a hand calculator or 
computer program. Show the mif file and the vhd file to the TA.

http://www.theteachersguide.com/clipart/pencheck.gif


14

McGill University ECSE-323 Digital System Design / Prof. J. Clark

TIME CHECK

You should be this far (i.e. 
have completed the lab) at 
the end of your first 2-hour 
lab period!



15

McGill University ECSE-323 Digital System Design / Prof. J. Clark

First, using the techniques learned in lab #1, do a functional simulation 
of the g00_log2 circuit. 

To generate the clock signal for the memory register, use the overwrite 
clock item on the Waveform Editor. Set the period to 50nsec. This will 
load the input register on each rising edge of the clock signal.

This simulation should test all 4096 input patterns. Compare the results to 
the entries in your .mif file. They should match.

Show the TA the results of your simulation.

SIMULATE THE DESIGN

http://www.theteachersguide.com/clipart/pencheck.gif


16

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Viewing the Compilation Report

Look at the Flow Summary section of the Compilation Report and note the 
FPGA resource utilization (i.e. how many logic elements were used?). You will 
include this information in your report. 

Read over the datasheet for the Cyclone II chip (available on the CD included in 
your lab kit) to understand the architecture of the device.

Finally, look at the Timing Analyzer Summary (under the Timing Analyzer 
section of the compilation report). Take note of the path with the largest 
propagation delay. Include this in your report. It is an important number, as it 
determines the maximum speed of any circuit that uses your design.

Show the Flow Summary and Timing Analyzer Summary to the TA.

http://www.theteachersguide.com/clipart/pencheck.gif


17

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Select the Simulator Tool item from 
the Processing menu. A window like 
the one at the left will appear.

Select "Timing" as the simulation 
mode.

Click on "Open" to bring up the 
Waveform Editor.

Next, you will do a “Timing” simulation of the log2 circuit. This will take 
the various delays in your circuit into account. You should use timing 
simulations when you want to know the propagation delay for your circuits.



18

McGill University ECSE-323 Digital System Design / Prof. J. Clark

In the waveform editor, enter a sequence of 4 different input values, 
where the transitions between different inputs are spaced 1000nsec 
apart. Use an end time of 5,000nsec (or 5usec). Use a clock signal 
with a period of 50nsec.

Use the following 4 input values: 
000000000000, 111111111111, 010101010101, 101010101010

Check to see if the output values are correct, but also see how long it 
takes for the output to settle down to a stable value after the 
transition. Is this settling time the same for every transition? How 
does this settling time compare to the propagation delays reported by 
the Timing Analyzer?

Show the results of your simulation to the TA.

http://www.theteachersguide.com/clipart/pencheck.gif


19

McGill University ECSE-323 Digital System Design / Prof. J. Clark

TIME CHECK

You should be this far (i.e. 
have completed the lab) at 
the end of your second 2- 
hour lab period!



20

McGill University ECSE-323 Digital System Design / Prof. J. Clark

A 7-segment LED display has 7 individual light-emitting segments, as 
shown in the picture below. By turning on different segments at any one 
time we can obtain different characters or numbers. There are four of 
these on the Altera board, which you will use later in your full 
implementation of the base-100 calculator.

2. Design of the 7-Segment LED decoder/driver .

Segment 0

Segment 1

Segment 2
Segment 3

Segment 4

Segment 5 Segment 6



21

McGill University ECSE-323 Digital System Design / Prof. J. Clark

In this part of the lab you will design a circuit that will be used to drive the 
7-segment LEDs on the Altera board. It takes in a 7-bit binary code 
representing the 100 digits between 00 and 99, and generates the 7-segment 
display associated with the input code, as shown on the following pages.  

Note: The outputs should be made active-low. This is 
convenient, as many LED displays, including the ones on the 
Altera board, turn on when their segment inputs are driven low.



22

McGill University ECSE-323 Digital System Design / Prof. J. Clark

00-09

10-19

20-29

30-39

40-49



23

McGill University ECSE-323 Digital System Design / Prof. J. Clark

50-59

60-69

70-79

80-89

90-99

All other input codes should give a blank display (no segments on)



24

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Your circuit should have ripple-blanking capability. Ripple blanking is the 
turning off of leading zeroes in a multi-digit display. For example, suppose 
we had a 4 digit display, with one decimal point. Thus we could display 
numbers such as 241.2 and 788.6.  But what about displaying numbers with 
value less than 100? If we didn’t blank the leading zeroes our display would 
look like  009.5 or 083.4. This looks ugly and unprofessional, so we would 
rather display 9.5 and 83.4 in these cases, where the leading zeroes have 
been suppressed.

The ripple blanking output should be connected to the ripple-blanking input 
of the next display decoder to the right. The ripple-blanking input of the left- 
most LED decoder should be connected to ‘1’. The rightmost LED decoder, 
and any decoders right of the decimal point should never be blanked, so their 
ripple blanking inputs should be connected to ‘0’. In the case described 
above, the display circuit would look like:

1 0RB_OutRB_In

digit1

seg1



25

McGill University ECSE-323 Digital System Design / Prof. J. Clark

To implement the 7-segment LED decoder, write a VHDL description 
using a single selected signal assignment statement. (this will have 101 
cases, so use cut-and-paste!) 

Use the following entity declaration, replacing the gNN in 
gNN_7_segment_decoder with your group’s number (e.g. g08). You will 
have to supply the architecture body…

entity gNN_7_segment_decoder is

port ( code   : in std_logic_vector(6 downto 0);

RippleBlank_In : in std_logic;

RippleBlank_Out : out std_logic;

segments           : out std_logic_vector(6 downto 0));

end gNN_7_segment_decoder;



26

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Once you have written the VHDL description, analyze it (using the 
Processing/Analyze Current File menu item, to check for errors.

When your design is error-free, create a symbol for it.

Show your completed VHDL description to your TA.

In preparation for simulation, compile the design for your 
7-segment decoder circuit using the Processing/Start Compilation 
menu item.

CREATE THE DESIGN FILE AND SYMBOL

http://www.theteachersguide.com/clipart/pencheck.gif


27

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Compile the gNN_7_segment_decoder circuit and do a functional 
simulation. This simulation should test all 128 possible input patterns of 
the input value. You should also demonstrate the proper operation of the 
ripple-blanking function.

Show the TA the results of your simulation.

SIMULATE THE DESIGN 

http://www.theteachersguide.com/clipart/pencheck.gif


28

McGill University ECSE-323 Digital System Design / Prof. J. Clark

TIME CHECK

You should be this far (i.e. 
have completed the lab) at 
the end of your third 2-hour 
lab period!



29

McGill University ECSE-323 Digital System Design / Prof. J. Clark

3. Obtain the Altera Design Laboratory Kit
For the remainder of the lab experiments, groups will be using the Altera 
DE1 Development and Education Board. This package includes:

• Altera DE1 Board with a Cyclone II EP2C20F484C7 FPGA 
• Altera DE1 CD-ROM - Version 0.5 with documentation
• Altera Quartus II DVD - Version 7.0
• 1 Power Supply Adapter DC 7.5V/0.8A (US wall plug)
• 1 USB Cable 
• 6 Silicon Footstands
• 2 Cables (black- and red-colored) 
• 2 PIN Headers, 1P1N 



30

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The Altera DE1 Development and Education Board



31

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Each group will have their own package, which they can keep with them 
until the end of the course. To obtain the lab kit, all of the group members 
should go to the ECE department Technician's office, located in room 4140 
of the Trottier building. Ask for Mr. Charles Burtles. He will have a list of 
the lab groups for this course, and will give you one of the Altera lab kits 
after you present appropriate identification (McGill student IDs). 

All group members must be present and display their ID card!

Print out and sign the waiver form (from the WebCT Experiments page) 
accepting responsibility for the kit. Bring this waiver with you when you go 
to pick up the lab kit.

All members of the group must be present in order to receive the kits.

Please note that you are responsible for any loss of or damage to the kits. 
The list price for the Altera DE1 kits is currently $149 (price in US$).



32

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Testing the LED Decoder on the Altera Board         .

Once you compiled the LED decoder circuit, it is time to map it onto the target 
hardware, in this case the Cyclone II 2C20 chip on the Altera DE1 board. Please 
begin by reading over the DE1 user’s manual, which can be found on the 
documentation CD provided as part of your lab kit.

Since you will now be working with an actual device, you have to be concerned 
with which device package pins the various inputs and outputs of the project are 
connected to.

In particular, you will want to connect the LED segment outputs from the 
instances of the gNN_7_segment_decoder circuit to the corresponding segments 
of one of the four 7-segment LED displays on the Altera board.

The mapping of the Altera Board's LED display segments to the pins on the 
Cyclone FPGA device is listed in Table 4.4 on page 31 of the DE1 user’s 
manual.



33

McGill University ECSE-323 Digital System Design / Prof. J. Clark

You will also want to connect, for testing purposes, 7 of the slide switches on the 
DE1 board to the inputs of the gNN_7_segment_decoder circuit. 

The mapping of the slide switches to the FPGA pins is given in Table 4.1 on 
pages 28 and 29 of the DE1 user’s manual.

You can tell the compiler of your choices for pin assignments for your inputs and 
outputs by opening the Pin Planner, which can be done by choosing the Pins 
item in the Assignments menu, as shown in the screenshot on the next page.



34

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Enter the schematic pin names in the “Node Name” boxes (using the Edit box). 
Then enter the corresponding FPGA pin using the Location box (either by typing 
into the edit box or double-clicking to get the popup list of nodes as shown).



35

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Once you have assigned all of the inputs and outputs of your circuit to 
appropriate device pins, re-compile your design.

You can check that the pins have been assigned correctly by 
looking at the floorplan on the pin planner (zoom in), and 
verifying that the right pins have been used. 

Your design is now ready to be downloaded to the target hardware. 
Read section 4.1 of the DE1 user’s manual for information on 
configuring (programming) the Cyclone II FPGA on the board. You 
will be using the JTAG mode to configure the device.

Take the Altera board out of the kit box, and connect the USB 
cable to the computer's USB port and to the USB connector on 
the Altera board.



36

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Next select the Programmer item from the Tools menu. You should see a 
window like the one shown below. There should be a file listed. If not, click 
“Add File”. 

If there is no device visible, click on Hardware Setup



37

McGill University ECSE-323 Digital System Design / Prof. J. Clark

In the Hardware Setup window, select the correct communication hardware. 
Select “USB-Blaster". 

Click on Close to return to the Programmer window. If you still do not see a 
device, check the jumper settings on the board, and make sure that the USB 
cable is connected.



38

McGill University ECSE-323 Digital System Design / Prof. J. Clark

If everything seems in order (i.e. a file and a device are shown) you can 
carry out the FPGA programming. To do this, click on Start. Make sure 
that the Program/Configure checkbox is checked.



39

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Demonstrate to the TA that your circuit is functioning properly 
by going through some of the 128 different switch settings. 

Compare the outputs you see on the LEDs to the charts on page 
22 and 23 of this lab description.

You don’t have to demonstrate all 128 possibilities to the TA, 
just 4 or 5 will do. But you should test all 128 yourself, to make 
sure your circuit is working properly. 

http://www.theteachersguide.com/clipart/pencheck.gif


40

McGill University ECSE-323 Digital System Design / Prof. J. Clark

TIME CHECK

You should be this far (i.e. 
have completed the lab) at 
the end of your fourth 2- 
hour lab period!



41

McGill University ECSE-323 Digital System Design / Prof. J. Clark

4. Writeup of the Lab Reports                                    .

Write up two (2) short reports, describing each of the gNN_log2 and 
gNN_7_segment_decoder circuits. 

The reports must include the following items:

• A header listing the group number (and company name if you gave it one), the 
names and student numbers of each group member.
• A title, giving the name (e.g. gNN_7_segment_decoder) and function of the 
circuit.
• A description of the circuit's function, listing the inputs and outputs. Provide a 
pinout or symbol diagram.
• The VHDL description of the circuit (don’t embed this in the text of the report, 
instead include it as a separate file in the assignment submission zip file).
• A complete discussion of how the circuit was tested, showing representative 
simulation plots, and detailing what test cases were used.



42

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The lab report, and all associated design files must be submitted, as an 
assignment to the WebCT site. Only one submission need be made per 
group (both students will receive the same grade!).

Combine all of the files that you are submitting into one zip file, and 
name the zip file gNN_LAB_2.zip (where NN is your group number).

The reports are due at midnight, Friday October 17.



43

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Grade Sheet for Lab #2                             Fall 2008.

• Mif file and VHDL code for the log2 circuit .
• Functional Simulation of the log2 circuit                                                        .
• Timing Simulation of the log2 circuit                                                        .
• VHDL code for the 7_segment_decoder circuit                                                        .
• Simulation of the 7_segment_decoder circuit                                                         .
• Testing of the 7_segment_decoder circuit on the Altera board                                 . 

Group Number:                         .
Group Member Name: . Student Number:                                 .
Group Member Name: . Student Number:                                 .

Each part should be demonstrated to one of the TAs who will then give a grade and sign 
the grade sheet. Grades for each part will be either 0, 1, or 2. A mark of 2 will be given if 
everything is done correctly. A grade of 1 will be given if there are significant problems, 
but an attempt was made. A grade of 0 will be given for parts that were not done at all, or 
for which there is no TA signature.

Marks

TA Signatures

http://www.theteachersguide.com/clipart/pencheck.gif

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43

