
1

McGill University ECSE-323 Digital System Design / Prof. J. Clark

ECSE-323
Digital System Design

Datapath/Controller Lecture #2

2

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Datapath/Controller architecture

Control
inputs

Control
signals

Control
outputs

Status
signals

Data
inputs

Data
outputs

Control
Unit Datapath

Clock

3

McGill University ECSE-323 Digital System Design / Prof. J. Clark

General Approach to Design of Datapath/Controller Systems

1. Describe the function to be performed
2. Determine what datapath elements are needed
3. Specify the interconnections of the datapath elements
4. Identify the controller input and output signals
5. Sketch the sequence of control signal values needed

to carry out the desired function
6. Design a Finite State Machine that will implement the

required sequence
7. Simulate (by hand or by computer) the complete

system to verify the proper execution of the desired
function. Go back to step if there are any problems.

8. Implement and test complete system. Go back to step
2 if there are any problems with the implementation

4

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Case Study #1 - Digital Filter

We wish to design recursive digital filter that
implements the equation:

y(n)=a * y(n-1) + b * x(n) + c * x(n-1)
where the coefficients a,b,c are stored in registers.

You can have as many registers and multiplexers as
you want, but assume that you only have available
one multiplier and one adder block. Assume that an
external input named Sample goes high whenever a
new sample value on x is available.

5

McGill University ECSE-323 Digital System Design / Prof. J. Clark

1. y = y (from previous cycle)
2. y = 0 + a*y
3. y = y + b*x(n)
4. y = y + c*x(n-1)

STEP 1: Describe the function to be performed

y(n)=a*y(n-1) + b * x(n) + c*x(n-1)

6

McGill University ECSE-323 Digital System Design / Prof. J. Clark

• Registers to store x(n),x(n-1),y(n), a,b,c
• Adder
• Multiplier (or combination Multiply-Accumulator)
• Multiplexers

STEP 2: Determine the Datapath elements needed

7

McGill University ECSE-323 Digital System Design / Prof. J. Clark

STEP 3: Specify the interconnections of the datapath

AReg BReg CReg

XReg

Multiplier

Adder

MUX

MUX

YReg

MSel1

MSel2

LD_Y
CLR_Y

XOldReg LD_X
CLR_X

MUX MSel3

0

Y

Y(n) X(n)
X(n-1)

8

McGill University ECSE-323 Digital System Design / Prof. J. Clark

STEP 4: Identify the controller inputs and outputs

CONTROLLER

Sample
reset
clock

MSel1
MSel2
MSel3
LD_X
CLR_X
LD_Y
CLR_Y

DONE

9

McGill University ECSE-323 Digital System Design / Prof. J. Clark

STEP 5: Sketch the sequence of control signal values

1. Wait for Sample to go low.
2. Wait for Sample to go high.
3. Set Msel1 to the a input, Msel2 to the Y input, and MSel3 to the 0 input

(thus, the output of the adder will be a*y(n-1)).
4. Assert LD_Y to store the result of the multiply-accumulate into the output

(Y) register.
5. Set Msel1 to the b input, Msel2 to the X(n) input, and MSel3 to the Y

input (thus, the output of the adder will be y+b*x(n).
6. Assert LD_Y to store the result of the multiply-accumulate into the output

(Y) register.
7. Set Msel1 to the c input, Msel2 to the X(n-1) input, and MSel3 to the Y

input (thus, the output of the adder will be y+c*x(n-1).
8. Assert LD_Y to store the result of the multiply-accumulate into the output

(Y) register. This will be the final result, so we also assert the DONE
signal. Finally, we assert the LD_X signal, so that the current X value
becomes the old X value.

10

McGill University ECSE-323 Digital System Design / Prof. J. Clark

STEP 6: Design the FSM
S0

[CLR_Y]
[CLR_X]

S1

S2

S3
[Msel1=A]
[MSel2=Y]
[MSel3=0]

S4

[LD_Y]

S6

[LD_Y]

S5
[Msel1=B]
[MSel2=X]
[MSel3=Y]

S7
[Msel1=C]
[MSel2=XOld]
[MSel3=Y]

S8
[LD_Y]
[LD_X]
[DONE]

Sample=1

Sample=0

Sample=1

Reset
Sample=0

Note: DONE will be high
for only one clock cycle

11

McGill University ECSE-323 Digital System Design / Prof. J. Clark

STEP 7: Simulate the System

Left as an exercise for the student…

12

McGill University ECSE-323 Digital System Design / Prof. J. Clark

STEP 8: Debug and Modify the Design if needed

Is this design correct?

13

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Case Study #2 - GCD Computation

We want to design a system that can compute the
Greatest Common Divisor (GCD) of two binary
numbers (u,v) : g = GCD(u,v).

Example: u=42 v=99
g=GCD(42,99)=3

the divisors of 42 are (1,2,3,6,7,14,21)
the divisors of 99 are (1,3,9,11,33)
3 is the largest divisor common to both numbers.

14

McGill University ECSE-323 Digital System Design / Prof. J. Clark

1. initialize g = 1
2. while ((u is even) and (v is even))

· u = u/2 (right shift)
· v = v/2
· g = 2*g (left shift)

[now u or v (or both) are odd]
3. while (u > 0)

· if (u is even), u = u/2
· else if (v is even), v = v/2
· else
· t = |u-v|/2
· if (u < v), then v = t else u = t

4. return g*v

STEP 1: Describe the function to be performed
Here is an algorithm for finding the GCD:

15

McGill University ECSE-323 Digital System Design / Prof. J. Clark

• Shift registers to store and divide u,v by 2
• Shift register to store and multiply g by 2
• Comparator to determine if u<v and if u<0
• Absolute Difference module to compute |u-v|/2
• Multiplier to compute g*v
• Multiplexers to select inputs to the u,v registers

and to the comparator

We also need a way to determine if a data value is even.
This can be done simply, by taking the inverse of the LSB.

STEP 2: Determine the Datapath elements needed

16

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Power-of-2
Multiplierg-Register

|u-v|/2

u-Register v-Register

MUX MUX

t

vu

u input v input

GCD

Comparator
A B

0 v

AltB AgtB

g_init
g_lsh
clock

u_ld
u_rsh
clock

v_ld
v_rsh
clock

vselusel

MUXcmp_sel

STEP 3: Specify the interconnections of the datapath

17

McGill University ECSE-323 Digital System Design / Prof. J. Clark

STEP 4: Identify the controller inputs and outputs

CONTROLLER

u(0) (lsb)
v(0)
START
AltB
reset
clock

g_init
g_lsh
u_ld
u_rsh
v_ld
v_rsh
usel
vsel
cmp_sel
DONE

18

McGill University ECSE-323 Digital System Design / Prof. J. Clark

STEP 5: Sketch the sequence of control signal values

1. Wait for START to go low.
2. Wait for START to go high.
3. Intialize the g register to a value of 1 (assert g_init), load u and v inputs

into u and v registers (set usel to u input, vsel to v input, assert u_ld and
v_ld).

4. If (u_lsb=0 and v_lsb=0) then assert u_rsh, v_rsh, g_lsh and repeat step
4 else continue to step 5.

5. Set cmp_sel to select zero at input A of the comparator.
6. If AltB=0 (i.e. u<0) then assert DONE (GCD output is now valid) else

continue to step 7.
7. If u_lsb=0 then assert u_rsh and go to step 5 else go to step 8.
8. If v_lsb=0 then assert v_rsh and go to step 5 else go to step 9.
9. Set cmp_sel to select v at input A of the comparator, and set usel and vsel

both to the t input.
10. If AgtB=1 (i.e. u>v) then assert v_ld, else assert u_ld. Go back to step 5.

19

McGill University ECSE-323 Digital System Design / Prof. J. Clark

START0 START1

INIT
[u_ld]
[usel = u]
[v_ld]
[vsel = v]
[g_init]

CMP

[cmp_sel=0]

SHIFT

[u_rsh]
[v_rsh]
[g_lsh]

DONE

[DONE]

SHIFT_U

[u_rsh]

SHIFT_V

[v_rsh]

CMP2

[cmp_sel=v]
[usel = t]
[vsel = t]

USETT

[u_ld]

START = 1
START = 0

RESET

START = 1

START = 0

u(0) + v(0) = 1

u(0) + v(0) = 0

u(0)=0
(u(0) =1)*
(v(0)=0)

AltB=0

START = 1

STEP 6: Design the FSM

VSETT

[v_ld]

START = 0

AgtB=1(u(0) =1)* (v(0)=1)

AgtB=0

20

McGill University ECSE-323 Digital System Design / Prof. J. Clark

STEP 7: Simulate the System

Left as an exercise for the student…

21

McGill University ECSE-323 Digital System Design / Prof. J. Clark

STEP 8: Debug and Modify the Design if needed

Should be correct, but it is important to check…

22

McGill University ECSE-323 Digital System Design / Prof. J. Clark

General Approach to Design of Datapath/Controller Systems

1. Describe the function to be performed
2. Determine what datapath elements are needed
3. Specify the interconnections of the datapath elements
4. Identify the controller input and output signals
5. Sketch out the sequence of control signal values

needed to carry out the desired function
6. Design a Finite State Machine that will implement the

required sequence
7. Simulate (by hand or by computer) the FSM to verify

the proper execution of the desired function
8. Go back to step two if there are any problems with

the implementation

23

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Determining the Maximum Clock Rate

Generally, we want our digital system to run as fast as possible.
This means running with as high a clock rate as possible.

The maximum clock rate is determined by the longest
propagation delay in the datapath (between two sequential
elements).

clk

reg reg
combinational
logic

X Y

Following a clock
transition, the value
of X may change.
The next clock
transition should not
occur until the value
of Y is stable.

24

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Determining the Maximum Clock Rate

Example: Multiply-Accumulate circuit.

VCC
coef f [7..0] INPUT

VCC
clk INPUT

VCC
en INPUT

VCC
aclr INPUT

VCC
data[7..0] INPUT

acc_out[15..0]OUTPUT

DFF
data[15..0]
clock

enable

ac
lr

q[15..0]

lpm_ff0

inst5

A

B
A+B

dataa[15..0]

datab[15..0]
result[15..0]

lpm_add_sub1

inst8

Unsigned
multiplication

dataa[7..0]

datab[7..0]
result[15..0]

lpm_mult0

inst

DFF
data[7..0]
clock

enable

ac
lr

q[7..0]

lpm_ff1

inst9
clk

en

data[7..0]

clk

en

ac
lr

ac
lr

clk

en

aclr

data[7..0]

25

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The maximum propagation delay is 73.3 nsec from the
multiplier input to adder output.

The maximum clock rate is 13.64 MHz.

Timing Analyzer results for FLEX10K70RC240-4

26

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The propagation delay of 73.3 nsec means that the clock period
must be at least 73.3 nsec to allow the output of the adder
enough time to settle before it is stored in the output register.

Thus, the maximum clock frequency is 13.64MHz.

In a synchronous sequential systems, all sequential elements
should be clocked with the same signal (multiple clock domain
techniques are available, but this is a topic outside the scope of
this course).

This means that all circuits must be clocked at 13MHz, even if
their propagation delays are less than 73nsec.

27

McGill University ECSE-323 Digital System Design / Prof. J. Clark

It would be nice to have a way to let some parts of the system run
faster than others, but still use a single clock.

The way to do this is through the use of Wait States.

A wait state is an extra state in which nothing happens, and whose
purpose is to provide an extra clock period's worth of time to allow
signals to settle before they are operated on.

For example, suppose that most of our system could run off of a
40nsec clock, but the multiply-accumulate circuit needs 73nsec
between the setting of the input multiplexer select and the loading
of the output register. This can be done by using a 25MHz global
clock, and adding an extra state between the enabling of the first
register and the enabling of the second register.

28

McGill University ECSE-323 Digital System Design / Prof. J. Clark

S1
[reg1en]

S2
[reg2en]

S3
[reg2en]

S2

S1
[reg1en]

runs at 13MHz runs at 25MHz

wait state

29

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Pipelining

Another approach to speeding up the system is pipeling.

This technique is based on the fact that the maximum clock
speed depends on the longest propagation delay between two
registers (the so-called critical path).

If the critical path contains circuit that can be divided into two
(as in our multiply-accumulate example) then we can insert a
register at the dividing point. This will reduce the maximum
delay time, thereby increasing the maximum clock speed.

30

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Example: Pipelined Version of the Multiply-Accumulate circuit.

VCC
coef f [7..0] INPUT

clk
VCC

clk INPUT

en
VCC

en INPUT

data[7..0]

data[7..0]

clk

en

aclr
VCC

aclr INPUT

ac
lr

VCC
data[7..0] INPUT

DFF
data[15..0]
clock

enable

ac
lr

q[15..0]

lpm_ff0

inst5

A

B
A+B

dataa[15..0]

datab[15..0]
result[15..0]

lpm_add_sub1

inst8

Unsigned
multiplication

dataa[7..0]

datab[7..0]
result[15..0]

lpm_mult0

inst

DFF
data[7..0]
clock

enable

ac
lr

q[7..0]

lpm_ff1

inst9

ac
lr

clk

en

DFF
data[15..0]
clock

enable

ac
lr

q[15..0]

lpm_ff0

inst6

ac
lr

clk

en

Pipeline register

The extra register introduces a latency, but actually results in a speedup

31

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The maximum propagation delay has dropped to 67.8 nsec.

The maximum clock rate has increased to 14.75 MHz.

Timing Analyzer results for FLEX10K70RC240-4

32

McGill University ECSE-323 Digital System Design / Prof. J. Clark

In this example the maximum clock rate did not increase very
much, since the multiplier has most of the delay in the critical
path.

For other circuits the delay might be more evenly spread and there
may be more places in which we could insert registers. This may
provide a significant increase in the maximum clock speed.

